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Abstract This article is concerned with a posteriori error estimates for a discrete-fracture, multidimensional, numer-
ical model for flow in a fractured porous medium. Local residual error estimators are defined and upper and lower
bounds in terms of these estimators for both the pressure and the Darcy velocity are derived. Numerical examples
using these estimates for automatic grid refinement are given.

Keywords A posteriori error estimate · mixed finite element · reduced model · fractured porous media.

Mathematics Subject Classification (2010) 65N15 · 65N30 · 65N50 · 76S05

1 Introduction

The purpose of this paper is to obtain a posteriori error estimates for a numerical model for fluid flow in a porous
medium with fractures. By a fracture in a porous medium we mean a part of the medium that has very small width
in comparison with the other dimensions of the problem and that has a permeability either much higher than or much
lower than that in the surrounding medium. Because they are very thin it is difficult to include fractures in a numerical
model, but because of their large influence on the flow, providing natural channels for flow if they are highly permeable
but blocking flow if they are of very low permeability, their presence needs to be taken into account in any reasonable
numerical model. Many different ways of accounting for the fractures have been proposed. Homogenization methods
are used to obtain double continuum models or double porosity models in which the fractures are assumed to have
enough regularity in their distribution that their effect may be averaged. In the case of a network of highly permeable
fractures sometimes flow is calculated only in the fractures, flow in the surrounding domain being considered negligi-
ble. In the type of model considered here the flow is calculated both in the fractures and in the surrounding domain, but
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the fractures are included individually in the model. However, because they are so thin they are treated as interfaces.
Such models are called discrete models (since the fractures are taken into account individually and not averaged) or
reduced models (since the fractures are modeled as surfaces of co-dimension 1). This type of model has been much
studied in the mathematical and engineering literature for many types of flow problems and for many different types of
numerical schemes. Using the techniques of domain decomposition [15], a first reduced model has been proposed for
flow in fractured porous media in the case of very permeable fracture in [1]. Later on, a generalization of this model
considering also the case of fracture with low permeability has been proposed in [21], where the fracture can be seen
as geological barrier. This approach has been also used to modeling the two phase flow in [13] and [17], where Darcy’s
law is still applicable separately for each phase and coupling conditions were added. This model has been extended to
the case of flow and transport in porous media in[26] and [13]. Finally porous media with a networks of fracture was
also treated in [11] and [25].

Here we consider incompressible, single-phase flow ignoring gravity and assume that the flow respects Darcy’s law.
We use the model of [21] which was derived through a process of averaging across the fracture with the flow equation
written in mixed form.

Let Ω be a convex domain in Rn, n = 2 or 3, and Γ = ∂Ω the boundary of Ω . We suppose that a fracture domain γ

separates Ω into two connected subdomains Ω1 and Ω2, (Ω\γ = Ω1∪Ω2, Ω1∩Ω2 = /0). The flow in each part Ωi
is governed by a conservation equation together with Darcy’s law relating the gradient of the pressure p to the Darcy
velocity u. As the fracture γ is considered to be an (n− 1)−dimensional porous medium, there too the fluid flow is
governed by a conservation law and Darcy’s law but in dimension (n− 1). There is also the possibility for exchange
between the fracture and the domains Ωi: both the pressure and the normal component of the Darcy velocity may be
discontinuous across γ with the sum of the fluxes through γ from the two domains Ωi being a source (or sink) term for
the conservation equation in γ .

We use the notation ∇τ , respectively divτ , for the tangential gradient, respectively tangential divergence, operator along
the fracture. We assume that the index i of the subdomains varies in Z/2Z (so that 2 + 1 = 1).

For simplicity we suppose here that the fracture can be identified to a surface γ in a hyperplane of Rn. We denote
by Γi the part of the boundary of Ωi shared with the boundary of Ω , for i = 1,2, and we denote by ni the unit,
normal, outward-pointing vector field on ∂Ωi. For i = 1,2, the permeability Ki of the subdomain Ωi is a symmetric,
uniformly continuous, uniformly positive-definite, n× n tensor field on Ωi. We suppose that the permeability in the
(n-dimensional) physical fracture, that is represented in the model by the ((n− 1)-dimensional) interface γ , can be
split into a tangential part Kγ,τ and a normal part Kγ,ν . Both of these parts are considered to be functions on γ (i.e. they
are invariant over cross-sections of the physical fracture), and the tangential permeability Kγ,τ is supposed to satisfy
the same properties as Ki except of course that it is an (n− 1)× (n− 1) tensor. The normal permeability Kγ,ν is a
positive scalar field bounded above and away from 0. (In practice these are all assumed to be piecewise constant.) The
approximate width of the physical fracture is represented in the model by the constant d. The model given in [21] is

ui =−Ki∇pi in Ωi, i = 1,2
divui = fi in Ωi, i = 1,2

uγ =−dKγ,τ ∇τ pγ on γ,
divτ uγ = fγ +[u ·n] on γ,

pi = pγ +
d

2Kγ,ν
{u ·n}ξ ,i on γ, i ∈ Z[2]

pi = p̄i on Γi, i = 1,2
pγ = p̄γ on ∂γ,

(1)

where, for i = 1,2, the scalar function pi is the fluid pressure in Ωi, the n-dimensional vector function ui is the Darcy
velocity in Ωi, fi is an external source term, and p̄i is the given pressure on Γi. For x ∈ γ, pγ(x) is the average pressure
across the cross-section of the physical fracture represented by x, and the (n− 1)-dimensional vector function vγ(x)
is the integral across that same cross-section of the tangential component of the Darcy velocity. The given pressure
on the boundary of γ is p̄γ , and fγ is an eventual external source term in γ. The additional source term [u ·n] in γ is
defined by

[u ·n] = u1 ·n1 +u2 ·n2 (2)
and is the jump across γ of the flux, the difference in what enters γ from one side and what leaves through the other
side. While the normal component of the Darcy velocity in the fracture is not directly included in the model it is
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approximated by the weighted averages {u ·n}ξ ,i, i = 1,2, where

{u ·n}ξ ,i = ξ ui ·ni− (1−ξ )ui+1 ·ni+1, (3)

with ξ ∈ (1/2,1] a quadrature parameter used to approximate the integral across the half-cross-sections of the physical
fracture of the normal component of the Darcy velocity. In this way the normal component of the Darcy law in the
fracture is used to obtain nonstandard Robin type interface conditions on the interface γ .

The purpose of this paper is to derive a posteriori error estimates, for such a model in order to introduce an auto-
adaptive mesh refinement technique.

Since the pioneering work of Babushka and Reinbold [3], much has been written about adaptive methods for finite el-
ement approximation with emphasis on both theoretical and computational aspects of the method. Several a posteriori
error estimators for mixed finite element discretization of elliptic problems have been derived. For the residual-based
estimators, which is the type of estimator that we use here, we can distinguish two types of estimation: the first of these
was introduced by Braess and Verfürth [9] and gives bounds on the error in a mesh dependent norm which is close to
the energy norm of the continuous problem in its primal form. In the presense of a saturation assumption (which is not
always satisfied) this estimator is reliable and efficient in this norm, but somehow it is not efficient in the natural norm
of the mixed formulation. This estimate was improved by Lovadina and Stenberg [20] and Larson and Malqvist [18]
by introducing a postprocessing technique.

The second type of residual-based estimation for mixed finite element discretizations gives bounds on the error in the
H(div;Ω)×L2(Ω)-norm. Such an estimate was first introduced by Alonso who in [2] obtained an upper bound of the
error only on the dual variable in the L2(Ω)-norm. This estimate was generalized by Carstensen who in [10] obtained
upper and lower bounds on the error in the natural norm for the primal and dual variables in the 2D case, by using
a Helmholtz-like decomposition of vectors of H(div;Ω). Hoppe and Wohlmuth in [30] gave a comparison of such
estimates with hierarchical ones and estimates using resolution of local problems. In Nicaise and Creusé [23] one can
find a generalization to the anisotropic 2D and 3D cases of such estimates. The error estimation that we use here is
based on that of [10] and of [23].

For mortar mixed finite element discretization, Wheeler and Yotov in [29] derived a posteriori error estimates that
provide lower and upper bounds for the pressure, velocity, and mortar error in two and three dimensions for Darcy’s
equations in the H(div;Ω)×L2(Ω) formulation under a saturation assumption. While we use spatial discretizations
for the subdomains Ω1 and Ω2 that do not match-up at the interface γ , we have not relied on the work in [29] as the
role of the mortar element in our model is played by the elements in the fracture γ .

In Bernardi, Hecht and Mghazli [6] optimal a posteriori error estimates are derived for the (L2(Ω))d×H1(Ω) formu-
lation and for a nonconforming approximation.

Vohralik in [28] gave a unified framework for a priori and a posteriori error analysis of mixed finite element discretiza-
tion of second-order elliptic problems based on an H1-conforming reconstruction of the pressure. The technique of
[28] for obtaining a posteriori error estimates in the context of our fracture model was investigated in [22].

The remainder of this paper is organized as follows: in Sections 2 and 3 we recall, respectively the continuous mixed
variational formulation of (1) with some of its properties and the discretization using the mixed finite element method
of problem (1), and some technical lemmas related to the projection and interpolation operators that will be used in
the a posteriori analysis . The error indicators and the statement of the main results are given in Section 4. The proof
of upper and lower bounds for the error as a function of the indicators are carried out in Section 5 and Section 6
respectively. A numerical experiment and a summary conclude this paper.

Remark 1 : When n = 2, so that the dimension of γ is 1, both ∇τ and divτ are simply
∂

∂τ
but we will still usually write

∇τ and divτ in order not to have to distinguish the cases n = 2 and n = 3. For the same reason we will in this case
write vγ for the Darcy velocity in the fracture even though it is a scalar function. �
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2 The mixed weak formulation

2.1 Some notation and definitions

We begin this section by fixing some notation while recalling the definitions of some standard function spaces and
operators. For D a domain in Rn, n =1, 2 or 3, let L2(D) be the space of square integrable functions on D and let
H1(D) be the subspace of functions in L2(D) whose gradient belongs to (L2(D))n:

H1(D) := {q ∈ L2(D) : ∇q ∈ (L2(D))n}.

We will use the notation L2(D) for (L2(D))n and H1(D) for (H1(D))n. We will also use the notation ‖ · ‖0,D or ‖ · ‖0
for the norm on L2(D) as well as for the norm on L2(D) and the notation | · |1,D or | · |1, respectively ‖·‖1,D or ‖·‖1, for
the semi-norm, respectively norm, on both H1(D) and H1(D). The trace map ζ : H1(D) −→ L2(∂D) is continuous,
and its kernel is denoted H1

0 (D) while its image is the space H
1
2 (∂D) with norm ‖ · ‖ 1

2 ,∂D or ‖ · ‖ 1
2

defined by

‖ζ q‖ 1
2 ,∂D := inf

q′ ∈ H1(D)

with ζ q′ = ζ q

‖q′‖1,D.

We will often use, for functions q ∈ H1(D), the notation q|∂D instead of ζ q.

To write the variational formulation of our problem we will need also the space H(div;D), the subspace of functions
in L2(D) whose divergence belongs to L2(D):

H(div;D) := {v ∈ L2(D) : divv ∈ L2(D)}.

The norm on H(div;D) is defined by

‖v‖2
div,D or ‖v‖2

div = ‖v‖2
0,D +‖divv‖2

0,D.

The normal trace map ζn : H(div;D)−→D ′(∂D) is continuous, and its kernel is denoted H0(div;D) while its image
is the space H−

1
2 (∂D) with norm ‖ · ‖− 1

2 ,∂D or ‖ · ‖− 1
2

defined by

‖ζnv‖− 1
2 ,∂D := inf

v′ ∈H(div;D)

with ζnv′ = ζnv

‖v′‖div,D.

We will often use, for functions v ∈ H(div;D), the notation v · n|∂D instead of ζnv, with n denoting the outward-
pointing, unit, normal vector field on ∂D. We have Green’s formula∫

D
divv s+

∫
D

∇ s ·v =< v ·n , s >, ∀s ∈ H1(D) and v ∈H(div;D), (4)

with < · , ·> denoting the pairing between H−
1
2 (∂D) and H

1
2 (∂D).

To calculate the a posteriori error bounds we will use the space H(curl;D), the space of functions in L2(D) if n = 3,
or in L2(D) if n = 2, for which the curl belongs to L2(D):

– for n=3,
H(curl;D) :=

{
z ∈ L2(D) : curlz ∈ L2(D)

}
equipped with the norm

‖z‖2
curl,D = ‖z‖2

0,D +‖curlz‖2
0,D,

where the curl operator is defined as usual by

curlz = ∇× z := det

 i j k
∂

∂x1
∂

∂x2
∂

∂x3
z1 z2 z3

=

(
∂ z3

∂x2
− ∂ z2

∂x3
,

∂ z1

∂x3
− ∂ z3

∂x1
,

∂ z2

∂x1
− ∂ z1

∂x2

)
,
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– for n = 2,
– for scalar function

H(curl;D) :=
{

z ∈ L2(D) : curlz ∈ L2(D)
}
,

equipped with the norm
‖z‖2

curl,D := ‖z‖2
0,D +‖curlz‖2

0,D ,

where the curl operator is defined as usual by

curlz =
(

∂ z
∂x2

,− ∂ z
∂x1

)
.

– for a vector valued function the space H(curl;D) is defined to be the space of all functions in L2(D) whose
curl is in L2(D):

H(curl;D) := {z ∈ L2(D) : curlz ∈ L2(D)}.

with

curlz =
∂ z2

∂x1
− ∂ z1

∂x2
.

Of course when n = 1, H(curl;D) is simply H1(D).

The tangential trace map ζτ : H(curl;D) −→ D ′(∂D) is continuous, and its kernel is denoted H0(curl;D) while its
image is the space (H−

1
2 (∂D))3 if n = 3 and is H−

1
2 (∂D) if n = 2. We will often use, for functions z ∈H(curl;D) the

notation z×n|∂D instead of ζτ z, if n = 3, and for functions z ∈H(curl;D), the notation z ·τ|∂D instead of ζτ z, if n = 2
with n denoting the outward-pointing, unit, normal vector field on ∂D and τ denoting the unit tangential vector on ∂D
defined by τ = (−n2,n1) if n = 2 and n = (n1,n2). We have the Green’s formula ([14] page 34)∫

D
z · curlr−

∫
D

curlz · r = 〈ζτ r , z〉, ∀r ∈H(curl;D)

∀z ∈H1(D) if n = 3 and z ∈ H1(D) if n = 2,
(5)

with 〈· , ·〉 denoting the pairing between (H−
1
2 (∂D))3 and (H

1
2 (∂D))3 if n = 3 or between H−

1
2 (∂D) and H

1
2 (∂D) if

n = 2.

2.2 The weak formulation of the fracture problem

All of the operators and spaces in the previous subsection were defined for a domain D of dimension n. When Ω

is of dimension 3, the fracture γ is of dimension 2, and the operators ∇, div, curl and curl on γ will be denoted
∇τ , divτ ,curlτ , and curlτ , respectively. We will speak of the spaces H(divτ ;γ), and H(curlτ ;γ). If n = 2 then the
dimension of γ is 1 so that ∇τ and divτ are just ∂

∂τ
, where τ is the unit vector on γ obtained by rotating n1 by π

2
degrees. In this case H(divτ ;γ) is of course just H1(γ).

To define the variational formulation of (1) we need a few more spaces, operators, and some bilinear forms. As in the
standard mixed formulation for Darcy flow the pressure p is sought in an L2-space M and the Darcy velocity u is an
H(div)-space W defined as follows:

M = {q = (q1,q2,qγ) ∈ L2(Ω1)×L2(Ω2)×L2(γ)}
W = {v = (v1,v2,vγ) ∈H(div;Ω1)×H(div;Ω2)×H(divτ ;γ) :

vi ·ni ∈ L2(γ), i = 1,2}.

These spaces are Hilbert spaces when equipped with the norms

‖q‖2
M =

2

∑
i=1
‖qi‖2

0,Ωi
+‖qγ‖2

0,γ ,
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‖v‖2
W =

2

∑
i=1

(
‖vi‖2

0,Ωi
+‖divvi‖2

0,Ωi

)
+‖vγ‖2

0,γ +‖divτ vγ‖2
0,γ +

2

∑
i=1
‖vi ·ni‖2

0,γ .

If v ∈W we will often write divv for (divv1,divv2,divτ vγ), but also we define the operator Div : W−→M by

Div(v = (v1,v2,vγ)) = (divv1,divv2,divτ vγ − [v ·n]).

We denote the kernel of this latter operator by W̃:

W̃ = {v ∈W : Divv = 0}.

The weak formulation of problem (1) is given by (cf.[21]):

Find (u, p) ∈W×M such that
aξ (u , v)−β (v, p) =−Ld(v), ∀v ∈W,

β (u,q) = L f (q), ∀q ∈M,

(6)

where the bilinear forms aξ and β and the linear forms L f and Ld are defined as follows:

aξ (u , v) =
2

∑
i=1

(
K−1

i ui,vi

)
Ωi

+

〈
(dKγ,τ)

−1uγ ,vγ

〉
γ

+
2

∑
i=1

〈
d

2K f ,ν
{u ·n}ξ ,i,vi ·ni

〉
γ

,

β (u , q) =
2

∑
i=1

(
divui,qi

)
Ωi

+

〈
divτ uγ ,qγ

〉
γ

−
〈
[u ·n],qγ

〉
γ

:=< Divu,q >M′,M ,

L f (q) =
2

∑
i=1

(
fi,qi

)
Ωi

+

〈
fγ ,qγ

〉
γ

,

Ld(v) =
2

∑
i=1

〈
p̄i,vi ·ni

〉
Γi

+

〈〈
p̄γ ,vγ ·nγ

〉〉
∂γ

,

with
(
·, ·
)

Ωi

denoting the scalar product in L2(Ωi), i = 1,2, with
〈
·, ·
〉

Γi

, respectively
〈
·, ·
〉

γ

, denoting the scalar

product in L2(Γi), i= 1,2, respectively L2(γ), with
〈〈
·, ·
〉〉

∂γ

denoting the scalar product on L2(∂γ) and with {u ·n}ξ ,i

and [u · n] as defined in (3) and (2) respectively. When n = 2, γ is a line segment and the notation
〈〈
·, ·
〉〉

∂γ

is

understood to be simply the sum (over the two endpoints of γ) of the product of the two functions evaluated at the
endpoints.

Problem (6) has a unique solution (see [24],[21]) since the bilinear form aξ (·, ·) is W̃−elliptic: i.e.

∃Cα > 0, inf
v∈W̃

aξ (v,v)
‖v‖2

W
≥Cα , (7)

and the bilinear form β (·, ·) satisfies the following inf-sup condition:

∃Cβ > 0, inf
q∈M

sup
v∈W

β (v,q)
‖v‖W‖q‖M

≥Cβ . (8)

We now state a lemma concerning the space W̃ that we will use to obtain the a posteriori error estimates.

Lemma 1 Suppose that v = (v1,v2,vγ) ∈ W̃.
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1. If n = 3, there exist ri ∈H1(Ωi), rγ ∈ H1
0 (γ) and sγ ∈ H1(γ)/R such that

vi = curlri in Ωi for i = 1,2, (9)
vγ = curlτ rγ +∇τ sγ , in γ. (10)

Moreover there exists ργ ∈ H1
0 (γ) such that

∇τ sγ − [r×n] = curlτ ργ , (11)
vγ = curlτ(rγ +ργ)+ [r×n], (12)

where [r×n] =
2

∑
i=1

(ri×ni).

2. If n = 2, there exist ri ∈ H1(Ωi) and rγ ∈ H1
0 (γ)∩H2(γ) such that

vi = curlri in Ωi for i = 1,2, (13)

vγ =
∂ rγ

∂τ
in γ. (14)

Proof The proofs of (9), (10) and (13) follow immediately from [14, Theorems 3.1, 3.2 and 3.4]. For (14) we recall
that γ is a one-dimensional domain and divτ vγ =

∂vγ

∂τ
. To prove (11), let v = (v1,v2,vγ) ∈ W̃ and let ri, i = 1,2, rγ and

sγ be as in (9) and (10). Then we have vi ·ni = (curl ri) ·ni = divτ(ri×ni), so we deduce that

divτ vγ −
2

∑
i=1

vi ·ni = divτ(∇τ sγ −
2

∑
i=1

(ri×ni)) = 0, on γ,

where we have identified 3D vector fields on γ for which the component normal to γ vanishes, with their 2D projection
on γ . By [14, Theorem 3.1] we conclude that

∃ργ ∈ H1
0 (γ) such that ∇τ sγ −

2

∑
i=1

(ri×ni) = curlτ ρ
′
γ .

The proof is completed on noting that (12) is simply a combination of (10) and (11). �

Remark 2 : For n = 3, sγ satisfies (see [14]) ∆τ sγ = divvγ , so ∇τ sγ is in H(div;γ). �

Before turning to the discretization of problem (6), we define one more vector space that we will use only for the a
posteriori error estimates:

N = {z = (z1,z2,zγ) ∈H(curl;Ω1)×H(curl;Ω2)×H(curlτ ;γ)}. (15)

3 Discretization of the problem

In [21] problem (6) was discretized using a mixed finite element method with a conforming grid; i. e. a finite element
mesh on all of Ω was chosen such that γ lay on the union of the edges of the elements in the mesh, and the mesh used
for γ was that inherited from this mesh. In [12] it was shown that one could choose a mesh for each of the subdomains
Ωi and a mesh for γ all independently. Here, following [12], we will not assume that the meshes are conforming.

Let {Th,i}hi∈Hi , for i= 1,2, be a regular family of triangulations of Ωi consisting of closed n-simplexes, and {Th,γ}hγ∈Hγ

a regular family of triangulations of the hypersurface γ made up of closed (n− 1)-simplexes. For i = 1,2, let Eh,i be
the set of (n− 1)-dimensional faces of elements of Th,i; let E Γi

h,i, E γ

h,i and E 0
h,i be the subsets of Eh,i consisting of the

faces lying on the boundary Γi, on γ and in the interior of Ωi, respectively. Let Gh,i be the set of (n− 2) dimensional
faces of elements of Eh,i, let G Γi

h,i be the set of (n− 2) dimensional faces of elements of E Γi
h,i and let G ∂Γi

h,i denote the
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elements of G Γi
h,i lying on ∂Γi. Similarly, let Eh,γ be the set of (n− 2)-dimensional faces of elements of Th,γ and E 0

h,γ

the subset of Eh,γ consisting of faces lying in the interior of γ and E ∂γ

h,γ those lying on the boundary of γ . In the case
d = 2, the (n− 2)-dimensional faces are reduced to points in Γi or γ . Elements of Th,i will be denoted by T , their
(n− 1)-dimensional faces by E and their (n− 2)-dimensional faces by G, whereas elements of Th,γ will be denoted
t and their edges by e. Further, for E ∈ Eh,i let Th,E denote the set of elements of Th,i having E as a face, and for
e ∈Th,γ let Th,e denote the set of elements of Th,γ having e as a face.

We will also introduce some notation for jumps of normal or tangential components of vector functions at interfaces
between elements. If E ∈ Eh,i and T ∈ Th,E then let nT,E denote the unit normal vector on E pointing outward from
T , and for e ∈ Eh,γ and t ∈ Th,γ , let nt,e denote the unit normal vector (in the plane of γ) on e pointing outward from
t. Now if v is a sufficiently regular, vector valued function on Ωi, respectively on γ , then we define the jump in the
normal component of v across an element E ∈ E 0

h,i, across respectively an element e ∈ E 0
h,γ , by

[v]n,E = ∑
T∈Th,E

(
(v|T )|E ·nT,E

)
[v]n,e = ∑

t∈Th,e

(
(v|t)|e ·nt,e

)
.

Similarly we define the jump in the tangential component of a sufficiently regular v (for n = 3) by

[v]τ,E = ∑
T∈Th,E

(
(v|T )|E ×nT,E

)
[v]τ,e = ∑

t∈Th,e

(
(v|t)|e · tt,e

)
.

For n = 2 we have
[v]τ,E = ∑

T∈Th,E

(
(v|T )|E · tT,E

)
[v]τ,e = 0

as there is no tangential component for a jump across a vertex in a line segment.

3.1 Approximation spaces and projection operators

The finite element spaces used to approximate problem (6) are conforming: Mh ⊂M and Wh ⊂W. The scalar approx-
imation space Mh = Mh,1×Mh,2×Mh,γ ⊂M is a space of piecewise constant functions. For i = 1,2, Mh,i ⊂ L2(Ωi) is
the space of functions that are constant on each element of Th,i, and Mh,γ ⊂ L2(γ) is the space of functions that are
constant on each element of Th,γ :

Mh,i = P0(Th,i) := {q ∈ L2(Ωi) : q|T ∈ P0(T ), ∀T ∈Th,i}, for i = 1,2,

Mh,γ = P0(Th,γ) := {qγ ∈ L2(γ) : qγ|t ∈ P0(t), ∀t ∈Th,γ},

where P0(T ), respectively P0(t), is the space of functions constant on T , respectively on t. With this discretization
space is associated the L2-projection operator defined by

P0
h = (P0

h,1,P
0
h,2,P

0
h,γ) : M −→Mh,

and we have the following estimates (see [7, Theorem 2.1 p. 164])

‖qi−P0
h,iqi‖0,T � ‖qi‖0,T , T ∈Th,i, i = 1,2, ‖qγ −P0

h,γ qγ‖0,t � ‖qγ‖0,t , t ∈Th,γ ,

‖qi−P0
h,iqi‖0,T � h|qi|1,T , T ∈Th,i, i = 1,2, ‖qγ −P0

h,γ qγ‖0,t � h|qγ |1,t , t ∈Th,γ ,
(16)

where we use the shorthand notation
x� y (17)

for x≤Cy with the positive constant C independent of x, y, and the meshes involved.

The vector approximation space Wh =Wh,1×Wh,2×Wh,γ ⊂W is a product of lowest order Raviart-Thomas (Nédelec)
(RT(N)) spaces; see [8] or [24]. For i = 1,2, Wh,i ⊂H(div;Ωi) is the space of lowest order RT(N) elements (in n-D)
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subordinate to the grid Th,i, i = 1,2, and Wh,γ ⊂ H(divτ ;γ) is the space of lowest order RT elements (in (n− 1)-D)
subordinate to the grid Th,γ :

Wh,i = RT0(Th,i) := {v ∈H(div,Ωi) : v|T ∈ P0(T )⊕xP0(T )∀T ∈Th,i}, for i = 1,2,

Wh,γ = RT0(Th,γ) := {v ∈H(divτ ,γ) : v|t ∈ P0(t)⊕xP0(t)∀t ∈Th,γ},

where P0(T ) = P0(T )n and P0(t) = P0(t)n−1. Of course when n = 2, Wh,γ = P1(Th,γ) := {vγ ∈ H1(γ) : vγ|t ∈
P1(t), ∀t ∈Th,γ} where P1(t) is the space of polynomial functions of degree ≤ 1.

The interpolation operator associated with W is defined using degrees of freedom that require extra regularity: if s > 2,
then one may define (see [8, (2.5.1)])

Π
D
h = (Π D

h,1,Π
D
h,2,Π

D
h,γ) : W(s):=W∩ (Ls(Ω1)×Ls(Ω2)×Ls(γ))−→Wh

using the following degrees of freedom to define Π D
h,i, i = 1,2:∫

E
(vi−Π

D
h,i(vi)) ·nEds = 0, ∀E ∈ Eh,i, (18)

and the following degrees of freedom to define Π D
h,γ in the case n = 3:∫

e
(vγ −Π

D
h,γ(vγ)) ·neds = 0, ∀e ∈ Eh,γ , (19)

where nE , respectively ne, is a unit normal vector on E, respectively a unit normal vector on e in the plane of γ . In the
case n = 2 (so γ is of dimensional one), Π D

h,γ is just the Lagrange interpolation operator .

With these projection operators we have the following commutative diagram (see [8, Prop. 2.5.2]):

W(s) div−−−−→ MyΠD
h

yP0
h

Wh
div−−−−→ Mh

. (20)

Note that the commuting diagram property also implies that if v ∈W(s) then

divΠ
D
h,ivi = P0

h,idivvi and divτ Π D
h,γ vi = P0

h,γ divτ vγ , (21)(
div(vi−Π

D
h,ivi

)
,q0)T = 0, ∀q0 ∈ P0(T ), ∀T ∈Th,i, i = 1,2, (22)〈

divτ(vγ −Π
D
h,γ vγ),q0

〉
t
= 0, ∀q0 ∈ P0(t), ∀t ∈Th,γ . (23)

Remark 3 : In the case in which the grids match up along γ , we also have the following commutative diagram:

W(s) Div−−−−→ MyΠD
h

yP0
h

Wh
Div−−−−→ Mh

. (24)

�
We have the following approximation properties (see [8, Prop. 2.5.1]): for v ∈W(s)

‖v−Π D
h v‖W � ‖v‖W,

‖v−Π D
h v‖0,T � hT |v|1,T , ∀T ∈Th,i, i = 1,2; ‖vγ −Π D

h,γ vγ‖0,t � ht |vγ |1,t , ∀t ∈Th,γ ,

‖v−Π D
h v‖0,E � h1/2

E |v|1,T̃E
, ∀E ∈ Eh,i, i = 1,2; ‖vγ −Π D

h,γ vγ‖0,e � h1/2
e |vγ |1,̃te , ∀e ∈ Eh,γ ,

(25)
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where T̃E , respectively t̃e, denotes the union of all elements T ′ ∈ Th,i, respectively t ′ ∈ Th,γ , such that E ⊂ ∂T ′,
respectively e⊂ ∂ t ′.

We will also make use of approximation spaces Nh = Nh,1×Nh,2×Nh,γ ⊂ N, (with N defined in (15)), that will be
used only for the a posteriori estimates. These are the lowest order Nédélec spaces of the first kind:

for n = 3,
Nh,i = N0(Th,i) := {zi ∈H(curl;Ωi) : z|T ∈ P0(T )⊕ (x×P0(T )), ∀T ∈Th,i},
Nh,γ = N0(Th,γ) := {zγ ∈H(curlτ ;γ) : z|t ∈ P0(t)⊕x⊥P0(t), ∀t ∈Th,γ},

for n = 2,
Nh,i = N0(Th,i) := {zi ∈H(curl;Ωi) : z|T ∈ P0(T )⊕x⊥P0(T ), ∀T ∈Th,i},
Nh,γ = N0(Th,γ) := P1(Th,γ) := {vγ ∈ H1(γ) : vγ|t ∈ P1(t), ∀t ∈Th,γ},

where x⊥ = (−x2,x1) whenever x = (x1,x2).

The definition of the interpolation operator associated with the curl operator also requires added regularity. Define the
space N(1) by

N(1) = H(curl,Ω1)∩ (H1(Ω1))
3×H(curl,Ω2)∩ (H1(Ω2))

3×H(curl,γ)∩ (H1(γ))2

and define the interpolation operator

Π
C
h = (ΠC

h,1,Π
C
h,2,Π

C
h,γ) : N(1) −→ Nh

componentwise and according to whether n = 2 or n = 3. As in the remark 2.1.5 page 51 in [8], it turns out that in
two dimensions the space H(curl) is isomorphic to H(div). As a consequence the approximation of H(curl) can be
obtained from H(div). For n = 3, we use the Clément type regularization operator introduced in [5]. To every element
G of Gh,i, for i = 1,2, we associate an element TG of Th,i, and we define the operator πG as the orthogonal projection
operator of L2(TG) on P0(TG). For ri ∈ H(curl,Ωi)∩H1(Ωi) i = 1,2 , let

Π
C
h,i(ri) = ∑

G∈Gh,i

(
∫

G
((πGri)(s) · tGds)ξG (26)

where ξG are the basic functions associated to G in Nh,i , and tG the tangent of G .
Similarly, we defined on γ the operator ΠC

h,γ with (26) by taking e ∈ Eh,γ instead of G ∈ Gh,i. This operator verify the
commuting diagram, i.e

curl(ΠC
h (z)) = Π

D
h (curl z). (27)

For that it suffices to note that curl(ΠC
h,iz) is in RT0(Th,i) and satisfies for all E ∈ Eh,i∫

E
curl(ΠC

h,iz) ·n =
∫

E
curl(z) ·n.

Then
N(s) curl−−−−→ WyΠC

h

yΠD
h

Nh
curl−−−−→ Wh

which may be resumed in the following equations: or otherwise written, if z ∈ N(s) then

curlΠ
C
h,izi = Π

D
h,icurlzi and curlτ Π

C
h,γ zγ = Π

D
h,γ curlτ zγ (28)

The following estimates follow from the estimates in the component spaces which can be found in ([5]):

‖ri−ΠC
h,i(ri)‖0,T � hT‖ri‖1,(UT ), ∀T ∈Th,i

‖rγ −ΠC
h,γ(rγ)‖0,T � ht‖rγ‖1,(Ut ), ∀t ∈Th,γ

‖ri−ΠC
h,i(ri)‖0,E � h1/2

E ‖r‖1,T̃E
, ∀E ∈ Eh,i.

(29)
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where UT , (resp. Ut ) is the union of elements which have an intersection with T (resp.t). We will also make use of
the L2−projection operators

P̃Γi
h,i : L2(Γi)→ HΓi

h,i, P̃γ

h,i : L2(∂γ)→Mγ

h,i, P̃∂γ

h,γ : L2(γ)→M∂γ

h,γ , and PE
γ

h,i
: P0(E

γ

h,i+1)→P0(E
γ

h,i) (30)

where HΓi
h,i, Mγ

h,i and M∂γ

h,γ are the spaces of piecewise constant functions on Γi, γ and ∂γ , respectively (constant on

each element of E Γi
h,i, E γ

h,i and E ∂γ

h,γ , respectively).

We conclude this subsection with a lemma concerning elements of W̃ and the projection operator Π D
h,i.

Lemma 2 Let v = (v1,v2,vγ) ∈ W̃, and let ri ∈ H1(Ωi), rγ ∈ H1
0 (γ) and ργ ∈ H1

0 (γ) be as defined in (9), (10), and
(12), respectively. Then

(i) we have, for all wh,i ∈Wh,i, i = 1,2,

∑
T∈Th,i

(K−1
i wh,i,vi−Π

D
h,ivi)T =− ∑

E∈Eh,i

〈
[K−1

i wh,i]τ,E , ri−Π
C
h,i ri

〉
E
, (31)

where [·]τ,E is defined in the beginning of Section 3.
(ii) In the case n = 3 we also have, for all wh,γ ∈Wh,γ ,

∑
t∈Th,γ

〈(
dKγ,τ

)−1 wh,γ ,vγ −Π
D
h,γ vγ

〉
t

(32)

=− ∑
e∈Eh,γ

〈〈[(
dKγ,τ

)−1 wh,γ · τt
]

τ,e,((rγ +ργ)−Π
C
h,γ(rγ +ργ))

〉〉
e

+ ∑
t∈Th,γ

〈(
dKγ,τ

)−1 wh,γ ,
2

∑
i=1

(ri−Π
C
h,i ri)×ni

〉
t
.

Proof To show (31) we use the fact that vi−Π D
h,ivi = curl(ri−ΠC

h,iri), Green’s formula as given in (5) in each T ∈Th,i,
and the facts that Ki is constant on each T ∈Th,i, and that the curl operator vanishes on lowest order Raviart-Thomas-
Nédélec elements:

∑
T∈Th,i

(K−1
i uh,i , vi−Π

D
h,ivi)T =− ∑

T∈Th,i

〈
ζτ

(
K−1

i uh,i
)
, ri−Π

C
h,iri

〉
∂T

.

Since the tangential component of (K−1
i uh,i) is not continuous through E ∈ Eh,i, we introduce the jump across the

interior elements E ∈ E 0
h,i and obtain (31).

To show (32), we recall that by (12) we have vγ = curlτ(rγ +ργ)+
2

∑
i=1

(ri×ni), and apply the projection operator Π D
h,γ

to obtain

Π D
h,γ vγ = curlτ ΠC

h,γ(rγ +ργ)+
2

∑
i=1

(ΠC
h,iri×ni), (33)

where we have used the second equation of (28). Now (32) follows by (33) and using Green’s formula (5). �

Remark 4 : In the case n = 3, if we identify wh,γ with the 3 dimensional vector whose component in the direction
normal to γ is 0 and whose projection on γ is wh,γ , we can rewrite the last term of (32) as follows:

∑
t∈Th,γ

〈(
dKγ,τ

)−1 wh,γ ,
2

∑
i=1

(ri−Π
C
h,i ri)×ni

〉
t
=− ∑

t∈Th,γ

2

∑
i=1

〈(
dKγ,τ

)−1 wh,γ ×ni,ri−Π
C
h,i ri

〉
t
.

�
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3.2 The discretized problem

The discrete mixed formulation of problem (1) is given by

Find (uh, ph) ∈Wh×Mh such that
aξ (uh,vh)−β (vh, ph) =−Ld(vh), ∀vh ∈Wh

β (uh,qh) = L f (qh), ∀qh ∈Mh.

(34)

Problem (34) is well posed (cf.[21], [12]) and we have an optimal a priori error estimate; i. e.

‖u−uh‖2
Wh

+‖p− ph‖2
M ≤Ch

(
‖p‖H +‖u‖H +‖divu‖H +

2

∑
i=1
‖u ·n‖H1(γ)

)
, (35)

where H = H1(Ω1)×H1(Ω2)×H1(γ) and H = H1(Ω1)×H1(Ω2)×H1(γ).

Furthermore the solution satisfies
P0

h,i fi = divuh,i, i = 1,2,

P0
h,γ fγ = divτ uh,γ −P0

h,γ([uh ·n]).
(36)

4 Definition of the error estimators and main results

Our goal now is to derive an a posteriori error estimate of the errors eu = u−uh, and εp = p− ph. We have the residual
equations

aξ (eu,v)−β (v,εp) =−Ld(v)−aξ (uh,v)+β (v, ph), ∀v ∈W,

β (eu,q) = L f (q)−β (uh,q), ∀q ∈M,
(37)

and the orthogonality conditions

aξ (eu,vh)−β (vh,εp) = 0, ∀vh ∈Wh,

β (eu,qh) = 0, ∀qh ∈Mh.
(38)

Following [10] and [23], we will use error indicators associated with lack of regularity in the discrete solution and
failure of the discrete solution to satisfy the equations (1) locally. Let Jτ,E(.) defined by

Jτ,E(vh,i) :=


[K−1

i vh,i]τ,E ; if E ∈ E 0
h,i∪E Γi

h,i(
K−1

i vh,i−
(
dKγ,τ

)−1 vh,γ

)
|E
×ni if E ∈ E γ

h,i,
(39)

where
[
·
]

τ,E is defined in section 3.

Similarly, for any vh,γ ∈Wh,γ , e ∈ Eh,γ and t ∈Th,γ having e as a face, we define

Jτ,e(vh,γ) := [dK−1
γ,τ vh,γ ]τ,e if e ∈ E 0

h,γ , (40)

which, by the definition of [·]τ,e, vanishes in the case n = 2 (cf. Section 3).

The local residual error estimators are defined as follows:

1. Indicators associated with the faces of the elements (These are related to the lack of regularity in the discrete
solution). The jumps of tangential traces give rise to error indicators defined as follows: Define, ∀T ∈ Th,i, i =
1,2, and ∀t ∈Th,γ , and

σ
(i)
E := h1/2

E ‖Jτ,E(uh,i)‖0,E ,

σe := h1/2
e ‖Jτ,e(uh,γ)‖0,e if n = 3.

(41)
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2. Indicators related to the local residual equations (These are related to the failure of the discrete solution to sat-
isfy Darcy’s law locally in the elements or the continuity equation (see (34)). Define, ∀T ∈Th,i, i = 1,2, and ∀t ∈
Th,γ ,

η
(i)
T := hT‖K−1

i uh,i‖0,T and η
(γ)
t := ht‖(dKγ,τ)

−1uh,γ‖0,t , (42)

ω
(i)
T := ‖ fi−divuh,i‖0,T and ωt := ‖ fγ −divτ uh,γ −P0

h,γ([uh ·n])‖0,t (43)

3. Indicators related to the interface condition. Define, ∀E ∈ E γ

h,i, i = 1,2,

δ
(i)
E := ‖A (i)

E (uh, ph)‖0,E , (44)

where A
(i)

E (uh, ph) :=
(

ph,i− ph,γ −
d

2Kγ,ν
{uh ·n}ξ ,i

)∣∣∣∣
E
, (45)

4. Indicators related to the non conformity of the meshes. Define, ∀E ∈ E γ

h,i, i = 1,2, and ∀t ∈Th,γ ,

δ̄
(i)
E := h1/2

E ‖P
γ

h,i

(
ph,γ
)
− ph,γ‖0,E , (46)

δ̄t :=
∥∥P0

h,γ ([uh ·n])− [uh ·n]
∥∥

0,t (47)

∆
(i)
E := h1/2

E

∥∥∥∥ d
2Kγ,ν

(1−ξ )(uh,i+1 ·ni+1−PE
γ

h,i
(uh,i+1 ·ni+1))

∥∥∥∥
0,E

(48)

5. Indicators related to the boundary data. Define,∀E ∈ E Γi
h,i, i = 1,2, and ∀e ∈ E ∂γ

h,γ ,

ω
(i)
E := ‖p̄i− P̃Γi

h,i p̄i‖0,E , , ω
(i)
1E := ‖ p̄i− P̃Γi

h,i p̄i‖1,E , ,

ωe := ‖p̄γ − P̃∂γ

h,γ p̄γ‖0,e , ω1e := ‖ p̄γ − P̃∂γ

h,γ p̄γ‖1,E , if n = 3.
(49)

Remark 5 : In light of (36), the indicators ω
(i)
T and ωt can be viewed as indicators related to source-term data. �

The following three propositions state the main results of this work. We have adopted the notation of (17).

Proposition 1 Let u be the solution of (6) and uh the solution of (34). Then the following a posteriori error estimate
holds in the case n = 3:

‖u−uh‖W �
2

∑
i=1


 ∑

E∈Eh,i

(σ
(i)
E )2

1/2

+

 ∑
E∈E γ

h,i

(δ
(i)
E )2

1/2

+

 ∑
E∈Eh,i

(ω
(i)
1E)

2

1/2

+

 ∑
T∈Th,i

(ω
(i)
T )2

1/2


+

 ∑
e∈Eh,γ

(σe)
2

1/2

+

 ∑
t∈Th,γ

(δ̄t)
2

1/2

+

 ∑
e∈E ∂γ

h,γ

(ω1e)
2


1/2

+

 ∑
t∈Th,γ

(ωt)
2

1/2

.

(50)

In the case n = 2, the estimate differs only in that the term ∑
e∈Eh,γ

(σe)
2 in the right-hand-side of (50) should be replaced

by ∑
t∈Th,γ

(η
(γ)
t )2.
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Proposition 2 Let u be the solution of (6) and uh the solution of (34) then the following a posteriori error estimates
hold:

‖p− ph‖M �
2

∑
i=1


 ∑

E∈E Γi
h,i

(h
1
2
E ω

(i)
E )2


1/2

+

 ∑
T∈Th,i

(η
(i)
T )2

1/2

+

 ∑
T∈Th,i

(hT ω
(i)
T )2

1/2


+
2

∑
i=1


 ∑

E∈E γ

h,i

(δ̄
(i)
E )2

1/2

+

 ∑
E∈E γ

h,i

(∆
(i)
E )2

1/2


+

 ∑
e∈E ∂γ

h,γ

(h
1
2
e ωe)

2


1/2

+

 ∑
t∈Th,γ

(η
(γ)
t )2

1/2

+

 ∑
t∈Th,γ

(htωt)
2

1/2

+

 ∑
t∈Th,γ

(
ht δ̄t
)2

1/2

.

The following proposition concerns a lower bound of the error by the indicators. Let us define some notation. For
D⊂Ωi we put Wi(D) := H(div,D), and for D⊂ γ we put W f (D) := H(divτ ,D).

Proposition 3 For i = 1,2, and for all T ∈Th,i, t ∈Th,γ , E ∈ Eh,i and e ∈ Eh,γ , we have the following estimates:

σ
(i)
E � ‖K

−1
i (ui−uh,i)‖0,T̃E

+‖
(
K−1

i ui− (dKγ,τ)
−1uγ

)
τ,E ‖0,E ,

σe � ‖uγ −uh,γ‖0,̃te

(51)

η
(i)
T � ‖ui−uh,i‖0,T +‖pi− ph,i‖0,T ,

η
(γ)
t � ‖uγ −uh,γ‖0,t +‖pγ − ph,γ‖0,t ,

(52)

δ
(i)
E � ‖u−uh‖W +‖pγ − ph,γ‖M, (53)

δ̄
(i)
E � ‖pγ − ph,γ‖0,E +‖pγ − P̃γ

h,i(pγ)‖0,E ,

δ̄t � ‖divτ(uh,γ −uγ)‖0,t +‖(P0
h,γ( fγ)− fγ)‖0,t +

2

∑
i=1
‖(uh,i−ui) ·ni‖0,t

(54)

∆
(i)
E � ‖ui+1 ·ni+1−uh,i+1 ·ni+1‖0,E +‖PE

γ

h,i
(ui+1 ·ni+1)−ui+1 ·ni+1‖0,E . (55)

5 Upper bounds for the errors in terms of the indicators

In this section we will prove Propositions 1 and 2, which concern the reliability of the estimators, by deriving upper
bounds, in terms of the indicators, for the error in the velocity, eu = u−uh, and for the error in the pressure, εp = p− ph,
in the natural norms, ‖eu‖W and ‖εp‖M .

5.1 An upper bound for the velocity error

To derive an upper bound for ‖eu‖W we will use the following lemma:
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Lemma 3 If u is the solution of (6) and uh the solution of (34), the following estimate holds:

‖u−uh‖W � sup
v ∈ W̃
v 6= 0

aξ (u−uh,v)
‖v‖W

+
2

∑
i=1

 ∑
T∈Th,i

(ω
(i)
T )2

1/2

+

 ∑
t∈Th,γ

(ωt)
2

1/2

+

 ∑
t∈Th,γ

(δ̄t)
2

1/2

. (56)

Proof Let u be the solution of (6) and uh the solution of (34). Since aξ (·, ·) and β (·, ·) satisfy (7) and (8) respectively
(see [12]), it follows (see [8,24]) that for any g ∈M′ the following auxiliary problem has a unique solution:

Find (w,y) ∈W×M such that
aξ (w,v)−β (v,y) = 0, ∀v ∈W,

β (w,q) = g(q), ∀q ∈M,
(57)

and that there is a constant C independent of g such that

‖w‖W ≤C‖g‖M′ . (58)

Now let eu = u−uh, and let (w,y)∈W×M be the solution of problem (57) for g∈M′ defined by g(q)= β (eu,q), ∀q∈
M. We have (eu−w) ∈ W̃ since for all q ∈M, β (eu−w,q) = β (eu,q)−β (w,q) = β (eu,q)−g(q) = 0.

The ellipticity of aξ (·, ·) in W̃ gives (see (7))

Cα‖eu−w‖2
W ≤ aξ (eu−w,eu−w) = aξ (eu,eu−w)−aξ (w,eu−w)

≤ aξ (eu,eu−w)+‖aξ‖‖w‖W‖eu−w‖W.

Then Cα‖eu−w‖W ≤
aξ (eu,eu−w)

‖eu−w‖W
+‖aξ‖‖w‖W, and taking the supremum on W̃ we deduce that

Cα‖eu−w‖W ≤ sup
v∈W̃,v6=0

aξ (eu,v)
‖v‖W

+‖aξ‖‖w‖W. (59)

From the second equation of (37) we have that for any q ∈M,

g(q) =
2

∑
i=1

( fi−divuh,i , qi)Ωi +( fγ −divτ uh,γ +[uh ·n] , qγ)γ . (60)

Thus

‖g‖M′ = sup
q ∈M
q 6= 0

1
‖q‖M

g(q)

≤
2

∑
i=1

 ∑
T∈Th,i

‖ fi−divuh,i‖2
0,T

1/2

+

 ∑
t∈Th,γ

∥∥∥ fγ −divτ uh,γ +P0
h,γ([uh ·n])

∥∥∥2

0,t

1/2

+

 ∑
t∈Th,γ

‖[uh ·n]−P0
h,γ([uh ·n]) ‖2

0,t

1/2

≤
2

∑
i=1

 ∑
T∈Th,i

(ω
(i)
T )2

1/2

+

 ∑
t∈Th,γ

(ωt)
2

1/2

+

 ∑
t∈Th,γ

(δ̄t)
2

1/2

.

So by (58)

‖w‖W ≤C
2

∑
i=1

 ∑
T∈Th,i

(ω
(i)
T )2

1/2

+

 ∑
t∈Th,γ

(ωt)
2

1/2

+

 ∑
t∈Th,γ

(δ̄t)
2

1/2

. (61)

The lemma follows from this last inequality together with (59) and the triangle inequality. �
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We now observe that in Lemma 3 we could replace the supremum over v ∈ W̃,v 6= 0 by the supremum over v ∈
W̃?,v 6= 0, where W̃? is the intersection of W̃ with W? :=C∞(Ω1)×C∞(Ω2)×C∞(γ) since W̃? is dense in W̃. So to

derive estimate (50) and prove Proposition 1, there remains to estimate
aξ (eu,v)
‖v‖W

for an arbitrary vector v 6= 0 in W̃?.

Proof of Proposition 1 Subtracting (34) from (37) we see that for all v ∈W? and an arbitrary vh ∈Wh we have

aξ (u−uh,v)−β (v, p− ph) = −Ld(v−vh)−aξ (uh,v−vh)+β (v−vh, ph),

= −
2

∑
i=1

〈
p̄i,(vi−vh,i) ·ni

〉
Γi

−
〈〈

p̄γ ,(vγ −vh,γ) ·nγ

〉〉
∂γ

−
2

∑
i=1

(
K−1

i uh,i,vi−vh,i

)
Ωi

−
〈
(dKγ,τ)

−1uh,γ ,vγ −vh,γ

〉
γ

−
2

∑
i=1

〈
d

2Kγ,ν
{uh ·n}ξ ,i,(vi−vh,i) ·ni

〉
γ

−
〈

ph,γ , [(v−vh) ·n]
〉

γ

+
2

∑
i=1

(
div(vi−vh,i), ph,i

)
Ωi

+

〈
(divτ(vγ −vh,γ), ph,γ

〉
γ

.

Now if v ∈ W̃? and if vh is taken to be vh = Π D
h v, the last two terms on the righthand side vanish, by (18) and (19),

leaving us with the following equality for all v ∈ W̃?:

aξ (u−uh,v) = −
2

∑
i=1

〈
p̄i,(vi−Π

D
h,ivi) ·ni

〉
Γi

−
〈〈

p̄γ ,(vγ −Π
D
h,γ vγ) ·nγ

〉〉
∂γ

−
2

∑
i=1

(
K−1

i uh,i,vi−Π
D
h,ivi

)
Ωi

−
〈
(dKγ,τ)

−1uh,γ ,vγ −Π
D
h,γ vγ

〉
γ

(62)

−
2

∑
i=1

〈
d

2Kγ,ν
{uh ·n}ξ ,i,(vi−Π

D
h,ivi) ·ni

〉
γ

−
〈

ph,γ , [(v−Π
D
h,iv) ·n]

〉
γ

.

For n = 2, using the fact that in the fracture H(div,γ) is simply H1(γ), then Π D
h,γ is simply the Lagrange interpolation

operator, so the second term in the right hand side of (62) vanishes, and by (25) the fourth term is estimated as following

−
〈
(dKγ,τ)

−1uh,γ ,vγ −Π
D
h,γ vγ

〉
γ

� ∑
t∈Th,γ

ht‖(dKγ,τ)
−1uh,γ‖0,t |vγ |1,t .

We come back to the case n = 3, now with ri, rγ , sγ and ργ given by Lemma 1, using (31) with wh,i = uh,i and (32)
with wh,γ = uh,γ , we may write the sum of the third and fourth terms of the right hand side of (62) as follows:

2

∑
i=1

∑
E∈E 0

h,i

〈
Jτ,E(uh,i) , ri−Π

C
h,iri

〉
E
− ∑

e∈E 0
h,γ

〈〈
Jτ,e(uh,γ),(rγ −Π

C
h,γ rγ)+(ργ −Π

C
h,γ(ργ)

〉〉
e

+
2

∑
i=1

∑
E∈E Γi

h,i

〈
(K−1

i uh,i)×ni , ri−Π
C
h,iri

〉
E
−

2

∑
i=1

∑
E∈E γ

h,i

〈
(K−1

i uh,i)×ni , (ri−Π
C
h,iri)

〉
E

(63)

+
2

∑
i=1

∑
t∈Th,γ

〈(
dKγ,τ

)−1 uh,γ×ni,ri−Π
C
h,iri

〉
t
,

where we have also used the equality < wi× ni,zi >γ= − < wi,zi× ni >γ , for all wi ∈Wi and zi ∈ H1(Ωi) and
Remark 4. The last two terms of the above equation can then be combined to yield (with the notation of (39)) the term

2

∑
i=1

∑
E∈E γ

h,i

〈
Jτ,E(uh,i) , ri−Π

C
h,iri

〉
E
.
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Remark 6 : This term is well defined despite the non-conformity of the meshes because all the functions used are in
L2(γ). We can write this term over all t ∈ Th,γ or over all E ∈ E γ

h,i. We can also use a projection operator Pγ,D
h,i on the

space of restriction on γ of functions in Wh,i, and define Jτ,E in (39) by

Jτ,E(vh,i) =
(

K−1
i vh,i−Pγ,D

h,i (
(
dKγ,τ

)−1 vh,γ)
)
|E ×ni if E ∈ E γ

h,i.

This will introduce another indicator related to the non-conformity of the meshes.

δ̄
γ,i
E = h1/2

E ‖P
γ,D
h,i (
(
dKγ,τ

)−1 vh,γ)−
(
dKγ,τ

)−1 vh,γ‖0,E .

In this case, we add the term
(

∑E∈E γ

h,i
(δ̄

γ,i
E )2

)1/2
in the estimate (50). �

The terms in the last line of (62) can be assembled to obtain

2

∑
i=1

∑
t∈Th,γ

〈
−ph,γ −

d
2Kγ,ν

{uh ·n}ξ ,i , (vi−Π
D
h,ivi) ·ni

〉
t
,

and by (18), the above term may be rewritten as

2

∑
i=1

∑
E∈E γ

h,i

〈
ph,i− ph,γ −

d
2Kγ,ν

{uh ·n}ξ ,i , (vi−Π
D
h,ivi) ·ni

〉
E
.

This term may now be written in terms of the indicator A
(i)

E (uh, ph) defined in (45):

2

∑
i=1

∑
E∈E γ

h,i

〈
A

(i)
E (uh, ph) , (vi−Π

D
h,ivi) ·ni

〉
E
.

To treat the first term of (62), we add and subtract
2

∑
i=1

∑
E∈E Γi

h,i

〈
PΓi

h,i(p̄i) , (vi−Π
D
h,ivi) ·ni

〉
E

and use (18), to obtain

2

∑
i=1

〈
p̄i , (vi−Π

D
h,ivi) ·ni

〉
Γi

=
2

∑
i=1

∑
E∈E Γi

h,i

〈
p̄i−PΓi

h,i(p̄i) , (vi−Π
D
h,ivi) ·ni

〉
E
. (64)

The second term of the right-hand side of (62) is treated similarly:

∑
e∈E ∂γ

h,γ

〈〈
p̄γ ,(vγ −Π

D
h,γ vγ) ·nγ

〉〉
e
= ∑

e∈E ∂γ

h,γ

〈〈
p̄γ−P∂γ

h,γ (p̄γ),(vγ −Π
D
h,γ vγ) ·nγ

〉〉
e
. (65)

We obtain

aξ (u−uh,v) = −
2

∑
i=1

∑
E∈Eh,i

〈
Jτ,E(uh,i),(ri−Π

C
h,iri)

〉
E
− ∑

e∈Eh,γ

〈〈
Jτ,e(uh,γ),(rγ −Π

C
h,γ rγ)− (ργ −Π

C
h,γ(ργ))

〉〉
e

+
2

∑
i=1

∑
E∈E γ

h,i

〈
A

(i)
E (uh, ph) , (vi−Π

D
h,ivi) ·ni

〉
E

(66)

−
2

∑
i=1

∑
E∈E Γi

h,i

〈
p̄i−PΓi

h,i(p̄i) , (vi−Π
D
h,ivi) ·ni

〉
E
− ∑

e∈E ∂γ

h,γ

〈〈
p̄γ−P∂γ

h,γ (p̄γ),(vγ −Π
D
h,γ vγ) ·nγ

〉〉
e
.
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To obtain (50), we use lemma 3 and the Cauchy-Schwarz inequality in the last equality. For the two first terms in the
right-hand side of (66), the second estimation of (29) and the decomposition (12) give the indicators related to (41).∣∣∣∣〈Jτ,E(uh,i),(ri−Π

C
h,iri)

〉
E

∣∣∣∣ � h
1
2
E σ

(i)
E ‖v‖W. (67)∣∣∣∣〈〈Jτ,e(uh,γ),(rγ −Π

C
h,γ rγ)− (ργ −Π

C
h,γ(ργ))

〉〉
e

∣∣∣∣ � h
1
2
e σe‖v‖W. (68)

The three last term contain the normal component of vectors and we have to be careful about it. First, we notice that
for E ∈ E γ

h,i, we have (vi−Π D
h,ivi) ·ni ∈ L2(E) and we can write

∣∣∣∣〈A
(i)

E (uh, ph) , (vi−Π
D
h,ivi) ·ni

〉
E

∣∣∣∣≤ ‖A (i)
E (uh, ph)‖0,E‖(vi−Π

D
h,ivi) ·ni‖0,E � δ

(i)
E ‖v‖W. (69)

To estimate the last terms of (66), we require that p̄i ∈ H1(Γi) and p̄γ ∈ H1(∂γ). We use the interpolation inequality
given in [19] page 49. Indeed H1/2 is the interpolation space of index 1/2 between L2 and H1: H1/2 = [H1,L2] and for
all z ∈ H1 we have ‖z‖ 1

2
≤C‖z‖1/2

1 ‖z‖
1/2
0 . (a similar argument was used for elasticity problem in [4]). Using that and

the fact that the H1(Γi) norm is higher than the L2(Γi) norm, and by the continuity of normal trace operator, we obtain

2

∑
i=1

〈
p̄i , (vi−Π

D
h,ivi) ·ni

〉
Γi

≤
2

∑
i=1

∑
E∈E Γi

h,i

‖p̄i−PΓi
h,i(p̄i)‖1/2,E‖(vi−Π

D
h,ivi) ·ni‖−1/2,E

�
2

∑
i=1

∑
E∈E Γi

h,i

‖p̄i−PΓi
h,i(p̄i)‖1/2

1,E‖p̄i−PΓi
h,i(p̄i)‖1/2

0,E‖(vi−Π
D
h,ivi)‖W

�
2

∑
i=1

∑
E∈E Γi

h,i

‖p̄i−PΓi
h,i(p̄i)‖1,E‖v‖W .

(70)

With a similar argument we obtain

∑
e∈E ∂γ

h,γ

〈〈
p̄γ−P∂γ

h,γ (p̄γ),(vγ −Π
D
h,γ vγ) ·nγ

〉〉
e
≤ ∑

e∈E ∂γ

h,γ

‖ p̄γ−P∂γ

h,γ (p̄γ)‖1,E‖v‖W .

Dividing by ‖v‖W and taking the supremum over W̃ we obtain (50). �

Remark 7 : In the development of the indicators for velocity we can use an integration by part in the first term of (62)
on each E ∈ E Γi

h,i and obtain

2

∑
i=1

〈
p̄i , (vi−Π

D
h,ivi) ·ni

〉
Γi

= −
2

∑
i=1

∑
E∈E Γi

h,i

〈
∇τi(p̄i) , (ri−Π

C
h,iri)×ni

〉
E

+
2

∑
i=1

∑
G∈G Γi

h,i

〈〈
p̄i−PΓi

h,i(p̄i) , (ri−Π
C
h,iri) · tG

〉〉
G
.

The first term in the right-hand side of the last equality can be assembled with the term related to the tangential trace
of the velocity and define Jτ,E with another expression for E ∈ E Γi

h,i. The problem of this way is the difficulty to make a
sense to the trace of the trace of ri. Indeed, ri|Γi is in H1/2(Γi) which do not have a trace. �
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5.2 An upper bound for the pressure error

In this section, we prove Proposition 2. To derive an upper bound for the pressure error we again use the auxiliary
problem (57) with

g(q) =
2

∑
i=1

∫
Ωi

εp,i qidx+
∫

γ

εp,γ qγ dσ , ∀q ∈M,

where εp = (εp,1,εp,2,εp,γ). Let (w,y) ∈W×M be the solution of

aξ (w , v)−β (v , y) = 0, ∀v ∈W,
−β (w , q) = g(q), ∀q ∈M.

(71)

We suppose that we have the elliptic regularity assumption

∃Cs > 0 such that ‖w‖1 +‖y‖1 ≤Cs‖εp‖M. (72)

Proof of Proposition 2. Let (w,y) ∈W×M be the solution of (71), and let wh = Π D
h w and yh = P0

h y, where Π D
h and

P0
h are the quasi-interpolation operators defined in Section 3.

Taking eu ∈W and εp ∈M as test functions in (71), adding the two equations, and using the symmetry of aξ ( , ), then
the orthogonality conditions (38) and then the residual equations (37), we have that

‖εp‖2 = −β (w , εp)+aξ (w , eu)−β (eu , y)

= aξ (eu , w−wh)−β (w−wh , εp)−β (eu , y− yh)

= −Ld(w−wh)−L f (y− yh)−aξ (uh , w−wh)+β (w−wh , ph)+β (uh , y− yh).

(73)

Taking wh = Π D
h w and yh = P0

h y and using (18), (19) and (36), we obtain

‖εp‖2 = −
2

∑
i=1

〈
(wi−wh,i) ·ni, p̄i

〉
Γi

−
〈〈

(wγ −wh,γ) ·nγ , p̄γ

〉〉
∂γ

−
2

∑
i=1

(
fi−P0

h,i( fi),yi− yh,i

)
Ωi

−
〈

fγ −P0
h,γ( fγ),yγ − yh,γ

〉
γ

−
2

∑
i=1

(
K−1

i uh,i,wi−wh,i

)
Ωi

−
〈
(dKγ,τ)

−1uh,γ ,wγ −wh,γ

〉
γ

−
2

∑
i=1

〈
d

2Kγ,ν
{uh ·ni}ξ ,i , (wi−wh,i) ·ni

〉
γ

−
〈
[(w−wh) ·ni] , ph,γ

〉
γ

−
〈
[uh ·n]−P0

h,γ([uh ·n]) , yγ − yh,γ

〉
γ

.

The term
2

∑
i=1

〈
d

2Kγ,ν
{uh ·ni}ξ ,i , (wi−wh,i) ·ni

〉
γ

vanishes if the meshes Th1 ∪Th2 are conforming, otherwise it will

be equal to,

2

∑
i=1

〈
d

2Kγ,ν
(1−ξ )(uh,i+1 ·ni+1−PE

γ

h,i
(uh,i+1 ·ni+1)),(wi−wh,i) ·ni

〉
γ

where PE
γ

h,i
(uh,i+1) is the L2−projection of uh,i+1 ·ni+1 on P0(E

γ

h,i).

Now, we introduce P̃Γi
h,i p̄i, P̃∂γ

h,γ p̄γ , and P̃γ

h,i ph,γ for i = 1,2. Using a Cauchy Scwartz inequality, then the estimates (25)
and (16), and the regularity assumption (72) we have
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‖εp‖ �

{
2

∑
i=1

∑
E∈E Γi

h,i

h
1
2
E‖p̄i− P̃Γi

h,i p̄i‖0,E + ∑
e∈E ∂γ

h,γ

h
1
2
e ‖p̄γ − P̃∂γ

h,γ p̄γ‖e

+
2

∑
i=1

∑
T∈Th,i

hT‖ fi−P0
h,i fi‖0,T + ∑

t∈Th,γ

ht‖ fγ −P0
h,γ fγ‖0,t

+
2

∑
i=1

∑
T∈Th,i

hT‖K−1
i uh,i‖0,T + ∑

t∈Th,γ

ht‖(dKγ,τ)
−1uh,γ‖0,t

+ ∑
t∈Th,γ

ht

∥∥∥∥P0
h,γ ([uh ·n])− [uh ·n]

∥∥∥∥
0,t

+
2

∑
i=1

∑
E∈E γ

h,i

(
h

1
2
E‖ph,γ −Pγ

h,i ph,γ‖0,E

+h
1
2
E

∥∥∥ d
2Kγ,ν

(1−ξ )(uh,i+1 ·ni+1−PE
γ

h,i
(uh,i+1 ·ni+1)

∥∥∥
E

)}

(74)

This yields the desired result �

Remark 8 : Another possibility to work with the term −
2

∑
i=1

〈
d

2Kγ,ν
{uh · ni}ξ ,i , (wi−wh,i) · ni

〉
γ

is to add
〈
(wi−

wh,i) ·ni , ph,i

〉
γ

as in the estimation for the velocity, since vanishes for wh = Π D
h w and we obtain the estimation

‖εp‖ �

{
2

∑
i=1

∑
E∈E Γi

h,i

h
1
2
E‖p̄i− P̃Γi

h,i p̄i‖0,E + ∑
e∈E ∂γ

h,γ

h
1
2
e ‖p̄γ − P̃∂γ

h,γ p̄γ‖e

+
2

∑
i=1

∑
T∈Th,i

hT‖ fi−P0
h,i fi‖0,T + ∑

t∈Th,γ

ht‖ fγ −P0
h,γ fγ‖0,t

+
2

∑
i=1

∑
T∈Th,i

hT‖K−1
i uh,i‖0,T + ∑

t∈Th,γ

ht‖(dKγ,τ)
−1uh,γ‖0,t

+ ∑
t∈Th,γ

ht

∥∥∥∥P0
h,γ ([uh ·n])− [uh ·n]

∥∥∥∥
0,t

+ ∑
E∈E γ

h,i

‖A (i)
E (uh, ph)‖0,E

}
(75)

�

6 The lower bound of the error

In order to prove the lower bound of the error, we use the usual localization technique based on triangle-bubble and
edge-bubble functions, the inverse inequalities and integrating by parts. We recall some notations and preliminary
results, collected in the following lemma. For all T ∈ Th,i let bT be the bubble-fonction on T defined as the product
of n+1 barycentric co-ordinates of T associated to vertices of T . For all E ∈ Eh,i let bE be the bubble-fonction on
T̃E = T1∪T2 (where T1∩T2 = E), defined as the product of n barycentric co-ordinates of each Ti associated to vertices
of Ti, continuous on T̃E and vanishing on ∂ T̃E . With a similar notation, for t ∈ Th,γ and e ∈ Eh,γ we consider also the
bubble functions bt and be.

Lemma 4 (Verfüth [27])
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For T ∈Th,i, E ∈ Eh,i, ϕ ∈Pm(T ) z ∈ Pm(E), and ψ ∈ Pm(T ) we have

‖ϕ‖0,T � ‖b1/2
T ϕ‖0,T ‖bT ϕ‖0,T � ‖ϕ‖0,T (76)

‖z‖0,E � ‖b1/2
E z‖0,E ‖∇(bEz)‖0,T̃E

� h−1/2
E ‖z‖0,E (77)

‖∇(bT ϕ)‖0,T � h−1
T ‖ϕ‖0,T ‖div(bT ψ)‖0,T � h−1

T ‖ψ‖0,T . (78)

We can now give the proof of Proposition3.

Proof of Proposition 3.

1. The indicators σ
(i)
E and σe, defined by (41), are related to the jump of the velocities through E ∈ Eh,i and e ∈ Eh,γ

respectively. We prove the first estimate of (51), the proof of the second is similar.
There are three cases. The proof of the two first cases is analogous to proof in [10], [30], and [23],
(a) Let E ∈ E 0

ih and bE the bubble function defined on T̃E and such that bE |∂ T̃E
= 0.

Let

φE =

{
RE(Jτ,E(uh))bE in T̃E

0 in Ωi \ T̃E ,

where Jτ,E(uh) is defined by (39) and RE is is a lifting operator of trace, from L2(E) to H1(T̃E) in 2D and to
(H1(T̃E))

3 in 3D, satisfying

|RE(Jτ,E(uh))|1,T̃E
� h−1/2

E ‖Jτ,E(uh)‖0,E

By (77), and the definition of φE we have

‖Jτ,E(ui,h)‖2
0,E �

∫
E
|Jτ,E(ui,h)|2bE

=
∫

E
Jτ,E(uh,i) ·φE =−

∫
E

Jτ,E(ui−uh,i) ·φE

= ∑
T⊂T̃E

∫
T

(
K−1

i (ui−uh,i) · curlφE − curl(K−1
i (ui−uh,i)) ·φE

)
where we suppose ui ∈H1(Ωi)

= ∑
T⊂T̃E

∫
T

K−1
i (ui−uh,i) · curlφE

since K−1
i ui = ∇pi, and the operator

Curl vanishes on the lowest order space RT0

� ‖K−1
i (ui−uh,i)‖0,T̃E

‖curlφE‖0,T̃E

� ‖K−1
i (ui−uh,i)‖0,T̃E

h−1/2
E ‖Jτ,E(uh)‖0,E , by (77) .

We obtain
h1/2

E ‖Jτ,E(uh,i)‖0,E � ‖K−1
i (ui−uh,i)‖0,T̃E

.

(b) In the case where E ∈ E Γi
ih , T̃E is reduced to one element T , and the same arguments as above give the estimate.

(c) For the case E ∈ E γ

ih, by (39) and the triangle inequality we have

‖Jτ,E(uh,i)‖0,E ≤ ‖
(
K−1

i (uh,i−ui)
)

τ,E ‖0,E +‖(dKγ,τ)
−1(uh,γ −uγ)‖0,E

+‖
(
(Ki)

−1ui− (dKγ,τ)
−1uγ

)
τ,E ‖0,E .

the last one is a model error on γ .
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2. Let us examine now the indicators (42), related to local residual equations, and prove (52).
Let bT the bubble function on T . By (76), then (78) and the fact that K−1

i is piecewise constant , K−1
i ∇pi = ui and

∇ph,i = 0 on T , we have(
η
(i)
T

)2
= h2

T‖K−1
i uh,i‖2

0,T

� h2
T‖b

1/2
T K−1

i uh,i‖2
0,T

= h2
T

∫
T

bT K−1
i (uh,i−ui) ·K−1

i uh,i−h2
T

∫
T

bT ∇(pi− ph,i) ·K−1
i uh,i,

= h2
T

∫
T

bT K−1
i (uh,i−ui) ·K−1

i uh,i+h2
T

∫
T
(pi− ph,i)div(bT K−1

i uh,i).

Using Cauchy-Schwarz’s inequality and the inverse inequality (78) we get

η
(i)
T � ‖uh,i−ui‖0,T +‖pi− ph,i‖0,T

The same argument gives the second estimate of (42).
3. We consider now the indicators defined by (45) and A

(i)
E (uh, ph) defined by (45) for i = 1,2. Let E ∈ E γ

h,i, and

T ∈ Th,i such that E = ∂T ∩ γ . Let g defined by g|E = bEA
(i)

E (uh, ph)|E and g|∂T\E = 0 where bE is the bubble
function in E. There exists Ψi ∈ H1(T ) solution, for i = 1,2, of the problem

−∆Ψi +Ψi = 0 in T
∂ψi

∂n∂T
= g on E

ψi = 0 on ∂T \E

which admits a solution satisfying

‖Ψi‖1,T ≤ ‖bEA
(i)

E (uh, ph)‖0,E .

So the function wi = ∇Ψi is in H(div,T ) and satisfies

‖wi‖div,T ≤ ‖bEA
(i)

E (uh, ph)‖0,E .

We denote the extension by 0 of wi by w̃i which is in H(div;Ωi). We take now v̄ = (w̃1,0,0) for i = 1, or v̄ =
(0, w̃2,0) for i = 2.

aξ (u−uh, v̄)−β (v̄, p− ph) =
∫

T
K−1

i (ui−uh,i) · w̃i +
∫

E

d
2Kγ,ν

{u ·n−uh ·n}ξiw̃i ·ni

+
∫

T
divw̃i(pi− ph,i)+

∫
E
(pγ − ph,γ)w̃i ·ni

=
∫

T
K−1

i (ui−uh,i) · w̃i +
∫

T
divw̃i(pi− ph,i)

+
∫

E
(pγ +

d
2Kγ,ν

{u ·n}ξi)w̃i ·ni

−
∫

E
(ph,γ +

d
2Kγ,ν

{uh ·n}ξi)w̃i ·ni.

Since on γ we have pi = pγ +
d

2Kγ,ν
{u ·n}ξi we can write

∫
E
(pγ +

d
2Kγ,ν

{u ·n}ξi)w̃i ·ni−
∫

E
(ph,γ +

d
2Kγ,ν

{uh ·n}ξi)w̃i ·ni =

∫
E
(pi− ph,i)w̃i ·ni +

∫
E
(ph,i− ph,γ −

d
2Kγ,ν

{uh ·n}ξi)w̃i ·ni.
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By taking into account the value of wi ·ni on E we obtain∫
E

bEA
(i)

E (uh, ph)
2 = aξ (u−uh, v̄)−β (v̄, p− ph)−

∫
T

K−1
i (ui−uh,i) ·

−
∫

T
divwi(pi− ph,i)−

∫
E
(pi− ph,i)wi ·ni.

By (76) and the estimate on wi we have

‖A (i)
E (uh, ph)‖2

0,E � ‖b
1/2
E A

(i)
E (uh, ph)‖2

0,E

� (‖u−uh‖W +‖p− ph‖M)‖wi‖H(div,T )

� (‖u−uh‖W +‖p− ph‖M)‖A (i)
E (uh, ph)‖0,E

4. The inequalities (54) and (55) are concerned by the indicators related to the non conformity of the meshes. We
firstly remark that even in the context of quasi-conformity δ̄

(i)
E and δ̄t may be no vanishing. Indeed, in the situation

where ht < hE and E = ∪ktk, only δ̄t vanishes since [uh ·n] is a constant on t, and in the situation where hE < ht

and t = ∪kEk only δ̄
(i)
E vanishes. Otherwise we have

δ̄
(i)
E := h1/2

E ‖ph,γ −Pγ

h,i(ph,γ)‖0,E

≤ h1/2
E ‖pγ − ph,γ‖0,E +h1/2

E ‖pγ −Pγ

h,i(pγ)‖0,E +h1/2
E ‖P

γ

h,i(pγ)−Pγ

h,i(ph,γ)‖0,E

�
(
‖ph,γ − pγ‖0,E +‖pγ −Pγ

h,i(pγ)‖0,E

)
since the operator Pγ

h,i is continuous

δ̄t
2
= ‖P0

h,γ(
2

∑
i=1

uh,i ·ni)−
2

∑
i=1

uh,i ·ni‖0,t

= ‖divτ uh,γ −P0
h,γ( fγ)−

2

∑
i=1

uh,i ·ni‖0,t by (36)

= ‖divτ(uh,γ −uγ)− (P0
h,γ( fγ)− fγ)−

2

∑
i=1

(uh,i−ui) ·ni‖0,t

To obtain (55), we add and subtract ui+1 ·ni+1 and PE
γ

h,i
(ui+1 ·ni+1). �

7 Numerical experiments

In this section we give some results related to the performance of the indicators defined in Section 4. We restrict our
attention to the 2D case. All computations are carried out using FreeFem++ [16]. We consider the reduced model
defined by (6) and the test problem proposed in [21], as indicated in Fig.1, where the domain Ω is composed of the
three parts Ω1 =]− 1,0[×]0,3[, Ω2 =]0,1[×]0,3[ and γ = {0}×]0,3[. The analysis of the problem was given (see
section 2) only with the boundary condition on the pressure, but this can be generalized to other conditions easily.
Here, in the numerical test, we consider a boundary condition on velocity as presented in the figure Fig.1. We solve the
discrete problem (34) (with ξ = 1) using Raviart-Thomas mixed finite elements of lowest order to obtain the couple
(uh, ph).

The aim now is to illustrate numerically the convergence and the performance of the following indicators:

– σ
(i)
E , E ∈ Eh,i, i = 1,2, given in (41) which are related to the lack of regularity the discrete solution,

– η
(i)
T , T ∈Th,i, i = 1,2, and η

(γ)
t , t ∈Th,γ , given in (42) which are related to the residual equation for Darcy’s law,

– ω
(i)
T , T ∈Th,i, i = 1,2, and ωt , t ∈Th,γ , given in (43) which are related to the residual equation for the continuity

equation,
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Fig. 1: The Data

– δ
(i)
E , E ∈ E γ

h,i, i = 1,2 given in (45) which are related to the interface condition,

– δ̄
(i)
E , E ∈ E γ

h,i, i = 1,2, and δ̄t , t ∈Th,γ given in (46) and (47), respectively, which are related to the non-conformity
of the meshes.

Note that the indicators ∆
(i)
E vanish when ξ = 1. In our example all of the boundary data are constant so the related

indicators ω
(i)
E , ω

(i)
1E , ωe and ω1e vanish as well. Note that the indicators ω

(i)
T and ωt given in (43) are related to the

source-term data and vanish in all of our experiments due to the property (36) and the fact that the source terms
f1, f2 and fγ are taken to be zero. Before continuing we introduce some more notation: Let Si(T ) and Si for i = 1,2
and S3(t) and S3 be defined by

Si(T ) = (η
(i)
T )2 +(ω

(i)
T )2 + ∑

E⊂∂T
(σ

(i)
E )2 +(δ

(i)
E )2 +(δ̄

(i)
E )2, T ∈Th,i, Si =

 ∑
T∈Th,i

Si(T )

1/2

,

S3(t) = (η
(γ)
t )2 +(ωt)

2 +(δ̄t)
2, t ∈Th,γ , S3 =

(
∑

t∈T hg
S3(t)

)1/2

.

Let S and STOL be defined by

S =
1
m

 2

∑
i=1

∑
T∈Th,i

Si(T )+ ∑
t∈Th,γ

S3(t)

1/2

, where m = ]Th,1 + ]Th,2 + ]Th,γ

STOL = cc∗S where cc ∈]0,1].

We start by showing that all of the indicators converge to zero when the mesh size goes to zero. This can be done
by refining meshes uniformly iteration by iteration denoted in the tables by ite. For this we consider two cases: the
case in which the meshes are quasi-conforming (Table 1) and the case in which they are not (Table 2). In the case of
quasi-conforming meshes we have taken K1 = K2 = 1, Kγ,τ = 100 and d = 0.05; then dKγ,τ = 5 ; whereas, in the case
of non-conforming meshes we have taken K1 = 1, K2 = 10, Kγ,τ = 100 and d = 0.05. The Tables are composed of
three sub-tables, the first corresponds to Ω1 the second to Ω2 and the third to the fracture, where NTi and hi represent
respectively the number of elements and the mesh size of the mesh Th,i, i = 1,2,γ . The others columns represent the
global indicators. It can be seen that all the indicators, as well as Si, for i = 1,2,3 converge to zero when the mesh
size goes to zero. Nevertheless, as expected δ̄t almost vanishes in the ”conforming” case, but δ

(i)
E could vanish only in

the case where Th,γ = E γ

h,i. The second step of our numerical experiments is to use the indicators for a self-adaptive
mesh-refinement. The strategy adopted here is to mark for refinement the elements T ∈ Th,i, i = 1,2, for which Si is
greater than tolerance STol , and elements t ∈Th,γ for which S3 is greater than STol , where STol is defined as above with
cc = 0.7. In the case of nonconforming meshes we have taken K1 = 1, K2 = 10, Kγ,τ = 100 and d = 0.05. The results
are presented in Table 3. First of all, we remark that the indicators still converge with mesh refinement. Secondly, the
self-adaptive strategy gives us ”optimal” meshes to reach a fixed accuracy. Indeed we notice, in Table3, that in the
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iteration 4, for example, the sum S1 is about 0.2 for only 1085 elements, contrary to uniform refinement, where it
required 7200 elements to achieve this accuracy (see Table 2, ite = 6).

Fig. 2a represents the mesh used in the initial iteration for both Tables 2 and 3, and Fig. 2b represents the adapted
meshes of iteration 6 of Table 3. Fig. 3 represents the solution with the adapted meshes of iteration 6. In Fig. 4 we
plot Si as a function of the number of elements NTi for i = 1,2,3, in both the case of uniform refinement and that
of refinement by adaptation. We can see that the strategy of refinement by adaptation is less expensive for the same
accuracy since the meshes are ”optimal”.

Table 1: uniform refinement of meshes (quasi-conform).

ite S1 h1 σ
(1)
E η

(1)
T δ

(1)
E ω(1) δ 1

E NT1
1 0.581267 0.316228 0.476654 0.323672 0.0730908 1.19443e-015 0.0238092 200
2 0.333684 0.158114 0.288979 0.162408 0.0372705 2.42753e-015 0.00841595 800
3 0.238461 0.105409 0.210891 0.108362 0.0250112 3.82392e-015 0.00458058 1800
4 0.187077 0.0790569 0.167408 0.0812983 0.0188203 4.93277e-015 0.00297502 3200
5 0.154637 0.0632456 0.13946 0.0650495 0.015086 6.01288e-015 0.00212868 5000
6 0.132179 0.0527046 0.11988 0.0542131 0.0125882 7.78573e-015 0.00161932 7200

ité S2 h2 σ
(2)
E η

(2)
T δ

(2)
E ω(2) δ 2

E NT2
1 0.578976 0.316228 0.476654 0.323672 0.0517983 1.26172e-015 0.0238092 200
2 0.332575 0.158114 0.288979 0.162408 0.0254945 2.56606e-015 0.00841595 800
3 0.237746 0.105409 0.210891 0.108362 0.0168765 4.12932e-015 0.00458058 1800
4 0.186555 0.0790569 0.167408 0.0812983 0.0126051 5.53824e-015 0.00297502 3200
5 0.154227 0.0632456 0.13946 0.0650495 0.0100563 6.56781e-015 0.00212868 5000
6 0.131844 0.0527046 0.11988 0.0542131 0.00836364 8.15367e-015 0.00161932 7200

ité S3 ht η
(γ)
t ωt δt NT3

1 0.058358 0.111803 0.058358 3.25657e-010 3.27901e-010 60
2 0.0291587 0.0707107 0.0291587 3.36494e-010 3.38721e-010 120
3 0.0194353 0.0600925 0.0194353 3.40223e-010 3.42438e-010 180
4 0.0145752 0.0559017 0.0145752 3.42115e-010 3.44323e-010 240
5 0.0116596 0.0538516 0.0116596 3.43259e-010 3.45462e-010 300
6 0.00971609 0.0527046 0.00971609 3.44025e-010 3.46225e-010 360

Table 2: uniform refinement of meshes (non-conform).

ité S1 h1 σ
(1)
E η

(1)
T δ

(1)
E ω(1) δ 1

E NT1
1 0.861483 0.316228 0.746871 0.418933 0.088564 1.71925e-015 0.0314416 200
2 0.551991 0.158114 0.508454 0.209718 0.0454171 3.66243e-015 0.0111463 800
3 0.41659 0.105409 0.391177 0.139862 0.030485 4.97107e-015 0.00606459 1800
4 0.33817 0.0790569 0.320643 0.104912 0.0229232 7.18826e-015 0.00393726 3200
5 0.286324 0.0632456 0.273114 0.0839357 0.0183588 7.53843e-015 0.00281633 5000
6 0.249221 0.0527046 0.238703 0.0699494 0.015306 1.00737e-014 0.00214193 7200

ité S2 h2 σ
(2)
E η

(2)
T δ

(2)
E ω(2) δ 2

E NT2
1 0.609914 0.180278 0.448429 0.410621 0.0425241 9.28686e-015 0.0221223 400
2 0.348657 0.0901388 0.278125 0.208744 0.0210254 1.82835e-014 0.0138592 1600
3 0.249309 0.0600925 0.205675 0.139777 0.013871 2.93787e-014 0.0110732 3600
4 0.195769 0.0450694 0.164611 0.105029 0.0103213 4.04206e-014 0.0095282 6400
5 0.161933 0.0360555 0.137872 0.0841061 0.00820677 4.83638e-014 0.00850186 10000
6 0.138472 0.0300463 0.118953 0.0701296 0.00680585 6.2314e-014 0.00775341 14400

ité S3 ht η
(γ)
t ωt δt NT3

1 1.40731 0.111803 0.0790741 2.24381e-009 1.40509 60
2 1.07286 0.0707107 0.0389219 2.36445e-009 1.07215 120
3 0.893232 0.0600925 0.0258283 2.40452e-009 0.892859 180
4 0.776756 0.0559017 0.0193315 2.42353e-009 0.776516 240
5 0.693207 0.0538516 0.0154481 2.43418e-009 0.693035 300
6 0.629414 0.0527046 0.0128647 2.44076e-009 0.629283 360
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(a) initial mesh (b) mesh after adaptation

Fig. 2: Meshes

Vec Value
0
1.22117
2.44234
3.6635
4.88467
6.10584
7.32701
8.54817
9.76934
10.9905
12.2117
13.4328
14.654
15.8752
17.0963
18.3175
19.5387
20.7598
21.981
23.2022

vitesse

(a) The velocity (b) The pressure

Fig. 3: Solution

Fig. 4: Comparison between adaptative and uniform refinement
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Table 3: Adaptation using STol cc = 0.7.

ité S1 h1 σ
(1)
E η

(1)
T δ

(1)
E ω(1) δ 1

E NT1
1 0.861483 0.316228 0.746871 0.418933 0.088564 1.71925e-015 0.0314416 200
2 0.448564 0.369846 0.309643 0.315292 0.0763111 1.07442e-015 0.0099058 235
3 0.295902 0.25018 0.212977 0.199245 0.0493663 1.7474e-015 0.00794304 524
4 0.209265 0.166055 0.14535 0.14633 0.0346715 2.44545e-015 0.0071341 1085
5 0.141536 0.147124 0.105082 0.0923014 0.0213347 3.66268e-015 0.00393538 2342
6 0.100893 0.0807819 0.0719949 0.0691567 0.0141477 5.35043e-015 0.00363949 4804

ité S2 h2 σ
(2)
E η

(2)
T δ

(2)
E ω(2) δ 2

E NT2
1 0.609914 0.180278 0.448429 0.410621 0.0425241 9.28686e-015 0.0221223 400
2 0.307273 0.470264 0.200601 0.231325 0.0233625 1.71791e-014 0.0109015 757
3 0.195976 0.179074 0.117551 0.156133 0.0126563 2.90434e-014 0.0071024 1620
4 0.128155 0.176654 0.0823051 0.0976151 0.00840333 4.50863e-014 0.00709591 3752
5 0.0901892 0.0748915 0.0547407 0.0713185 0.00508682 7.01125e-014 0.00503452 7918
6 0.0602512 0.0851743 0.0400974 0.0446159 0.00368594 1.03643e-013 0.00427117 18036

ité S3 ht η
(γ)
t ωt δt NT3

1 1.40731 0.111803 0.0790741 2.24381e-009 1.40509 60
2 0.932386 0.195662 0.0429223 2.36683e-009 0.931397 84
3 0.475513 0.0987598 0.0270506 2.44432e-009 0.474743 136
4 0.54336 0.0996846 0.0192478 2.45243e-009 0.543019 190
5 0.497737 0.0634958 0.0102959 2.45395e-009 0.497631 346
6 0.402759 0.0597944 0.00724793 2.45321e-009 0.402694 522

8 Conclusion

In this work, we have generalized the a posteriori error analysis for mixed finite elements ([10], [30], [23]) to a
reduced coupled nD/(n−1)D problem (n =2 or 3) for calculating flow in a fractured porous medium. In this analysis
no conforming assumption between the three meshes invollved is required. Indeed we could choose a mesh for each of
the subdomains Ωi and a mesh for γ all independently. We obtained upper and lower bounds for the aproximation error
for both the pressure and the velocity in terms of the indicators. The reduced model considered here does not require
mortar finite elements, and the new indicators found are used to control the non-conformity between the meshes. Some
of the indicators are standard; others related to interface conditions or to non-conformity of the meshes are new. The
numerical tests show the convergence of the indicator and provide tool for a self-adaptive refinement.
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