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SyMIL: MinMax Latent SVM for Weakly Labeled
Data

Thibaut Durand, Nicolas Thome, Matthieu Cord

Abstract—Designing powerful models able to handle weakly la-
beled data is a crucial problem in machine learning. In this paper,
we propose a new Multiple Instance Learning (MIL) framework.
Examples are represented as bags of instances, but we depart
from standard MIL assumptions by introducing a symmetric
strategy (SyMIL) that seeks discriminative instances in positive
and negative bags. The idea is to use the instance the most distant
from the hyper-plan to classify the bag. We provide a theoretical
analysis featuring the generalization properties of our model. We
derive a large margin formulation of our problem, which is cast as
a difference of convex functions, and optimized using CCCP. We
provide a primal version optimizing with stochastic sub-gradient
descent and a dual version optimizing with one-slack cutting-
plane. Successful experimental results are reported on standard
MIL and weakly-supervised object detection datasets: SyMIL
significantly outperforms competitive methods (mi/MI/Latent-
SVM), and gives very competitive performance compared to
state-of-the-art works. We also analyze the selected instances
of symmetric and asymmetric approaches on weakly-supervised
object detection and text classification tasks. Finally we show
complementarity of SyMIL with recent works on learning with
label proportions on standard MIL datasets.

Index Terms—Weakly Supervised Learning, Multiple Instance
Learning, Latent SVM, Image Categorization and Pattern Recog-
nition

I. INTRODUCTION

LEARNING from weakly labeled data is a very important
problem that covers several theoretical and practical as-

pects towards the development of powerful learning machines.
On the one hand, relaxing the requirement of expensive
manual and accurate annotations of training data offers the
possibility to build large scale databases at reasonable cost. For
example, in the computer vision field, annotating images with
a global label makes it possible to build databases containing
several millions of examples, whereas annotations at the pixel
level (i.e. segmentation) are much more expensive which
explains that only moderate-size datasets (around thousands
of images) are available. On the other hand, handling weakly
labeled data generally requires to expand the representation
space with latent variables to model hidden factors and com-
pensate for the weak supervision.

The literature in learning from weakly labeled data is very
abundant. In this paper, we focus on the Multiple Instance
Learning (MIL) paradigm: each example is represented as
a bag of instances, and the weak supervision consists in
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providing a single label for each bag. This issue has been
extensively studied during the last 15 years in several contexts:
drug activity recognition in the seminal work of [1], text
classification [2], content-based image retrieval [3], etc. The
main MIL assumption is related to the relationship between
bag and instance labels: a bag is positive if it contains at least
one positive instance, and negative if it contains only negative
instances. A classical toy example consists in viewing a bag as
set of keys: a bag is labeled positive if it contains a key able to
open the door, and negative if none of the keys can. The MIL
approaches can be classified into two categories: bag [3]–[6]
vs instance [2], [7]–[10] approaches. Bag approaches embed
each bag into a feature space, where standard supervised
learning techniques are used, whereas instance approaches
learn a classification function in the instance space.

Another recent paradigm related to this instance-to-bag label
issue is the Learning with Label Proportion (LLP) frame-
work [11]–[14], which generalizes MIL. The authors show
that LLP outperforms baseline MIL methods, by relaxing the
common negative instances in negative bags assumption: a
large portion of instances in a positive bag should be positive,
whereas few instances in the negative bags may be positive.
In LLP, only label ratios between ⊕/	 instances in bags are
provided during training.

Unlike the standard MIL framework and with a similar idea
to that of LLP, we propose in this paper to model positive and
negative bags in a symmetric manner (SyMIL): any bag, either
positive or negative, must contain at least one correct instance.
The proposed method casts the weakly supervised learning
problem as an optimization scheme dedicated to identifying
the most discriminative instances in each bag: discriminative
instances correspond to maximum scoring values for positive
bags, and to minimum scoring values for negative bags. To
this end, we propose a novel learning framework based on
a symmetric Latent SVM. We show that this novel MIL
framework significantly improves predictive accuracy over
state-of-the-art MIL methods in a variety of applications, from
image to text and molecule classification.

II. STATE-OF-THE-ART

The first MIL approach is certainly the work of [1], where
the positive instances are iteratively estimated in the feature
space using the hypothesis class of axis-parallel rectangles. Ba-
sically, as highlighted above, we can classify MIL approaches
between bag and instance learning schemes.

An important class of MIL approaches correspond to meth-
ods that embed each bag into a feature space, where standard
supervised learning techniques (e.g. SVM) can be applied. In



2

this context, Diverse Density (DD) [3], [4] or set kernels [5]
handle the weak labeling by designing a proper embedding or
distance/similarity that captures the structure of the problem.
Recently, eMIL [6] was introduced to represent a bag as an
ellipsoid, and an algorithm specifically tailored for the MIL
paradigm is introduced. These methods treat the instances
as i.i.d samples, but in [15], the authors proposed to go
beyond the i.i.d assumption by introducing two graph kernels
mi/MI-graph that model the correlations between instances.
Despite the appealing ability to model correlation between
instances, these embedding methods somehow lack locality in
the similarity and are prone to noise. More generally, they
are not designed to seek discriminative instances in each
bag. Note that a recent work [16] proposes to combine the
embedding techniques to instance-based methods to further
improve performances.

Because embedding methods are not designed to seek
discriminative instances in each bag, other approaches directly
learn a classification function in the instance space. In this
context, a major issue is to decide how to treat bag instances
during training and prediction. In the reference paper [2],
two variants adapting the soft-margin SVM formulation to
the MIL problem are proposed: mi-SVM and MI-SVM, that
are formulated as a mixed-integer programs. In mi-SVM, the
problem consists in labeling each instance in positive bags
as positive or negative, whereas MI-SVM selects a single
instance (denoted as “witness”) in each positive bag. Both
mi-SVM and MI-SVM result in non-convex problems due
to the negative max function for positive examples. mi-SVM
and MI-SVM are thus two heuristics to solve this complex
problem, and they basically consist in alternating between
solving a standard SVM problem for fixed labeled instances,
and re-labeling instances for positive bags. They are strong
baselines that have been extensively studied for the MIL
problem. The MI-SVM inspired pioneer works for weakly
labeled object detection in the computer vision community.
Specifically, the latent SVM (LSVM) [17] solves a “MI-SVM-
like” problem, where the instances correspond to sub-part
positions of the putative object position. It is worth mentioning
that LSVM slightly differs from MI-SVM in the optimization
scheme, since only the maximum output latent variable is used
for negative examples to solve LSVM optimization problem,
whereas all negative instances are used for MI-SVM. Figure 1
shows the instances used during training, and the position of
the hyperplane for the standard MIL approaches. For example,
mi-SVM uses all instances for each bag, whereas LSVM uses
only one instance per bag. Interesting adaptations of these
SVM-like MIL algorithms have been proposed: a solution
dedicated to sparse positive bags [7], using deterministic an-
nealing to continuously approximate the problem [8], a convex
relaxation with the soft-max loss function [10], modeling
instance dependencies as in MI-CRF [9], or modeling the
ambiguity over latent variables as in max-margin min-entropy
models (M3E) [18].

Another recent paradigm related to this instance-to-bag
label issue is the Learning with Label Proportion (LLP)
framework [11]–[13]. In LLP, only label ratios between ⊕/	
instances in bags are provided during training. Different meth-

mi-SVM MI-SVM

LSVM SyMIL
Fig. 1. Our approach seeks discriminative instances in positive (green) and
negative (red) bags, whereas state-of-the-art methods consider all negative in-
stances for learning(mi/MI-SVM), which may contain noisy features, or select
the max scoring negative instance (LSVM), which may not be discriminative
for the class of interest. Selected instances for training are surrounded in blue.

ods have been developed to estimate the label proportion
of each bag. [11] proposed a theoretically sound method to
estimate the mean of each class using the mean of each bag
and the label proportions. [12] proposed treating the mean
of each bag as a “super-instance”, which was assumed to
have a soft label corresponding to the label proportion. [13]
proposes a method that explicitly models the latent unknown
instance labels together with the known label proportions in
a large-margin framework. In [14] the LLP method of [13] is
explicitly applied to MIL problems, in the context of video
event detection. LLP can be regarded as a generalization of
MIL, and is shown to outperform baseline methods (mi/MI-
SVM), especially by its capacity to relax the assumption that
all negative instances in negative bags are negatives.

In this paper, we introduce a new method for solving MIL
problems, with the following main contributions:

• We propose a new MIL model following LLP ideas,
where the label proportion in positive and negative bags is
set up in a symmetric manner (SyMIL). SyMIL requires
having at least one correct instance in any positive or
negative bag. SyMIL is represented with a latent variable
model seeking the most discriminative instances, i.e. it
seeks the instance which is the most distant from the
hyperplane (see Figure 1). We also provide a theoretical
analysis for SyMIL, highlighting its robustness to out-
liers.

• We derive an optimization based on concave-convex
procedure (CCCP). We propose two different methods
to solve the optimization problem in the primal with
stochastic sub-gradient descent, and another to solve it
in the dual with one-slack cutting-plane.

• We provide an experimental validation to assess the
relevance of this symmetric modeling on standard MIL
datasets. We analyze the selected instances for weakly su-
pervised object detection and text classification. We also
show the complementary between the local information
in our symmetric modeling and the global bag statistics
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in LLP.

III. SYMIL MODEL

First, we introduce the notations and the SyMIL model,
then we propose a learning formulation scheme, and finally
we provide a theoretical analysis.

Notations. We consider the problem of learning with weak
supervision in a binary classification context. Training data are
composed of n labeled bags An = {(b1, y1), . . . , (bn, yn)} ∈
(X × Y)n with input space X and Y = {−1,+1}. Let us
denote the set of positive bags as A+

n = {(bi, yi), yi = +1}
(with n+ = |A+

n |), and the set of negative bags as A−n =
{(bi, yi), yi = −1} (with n− = |A−n |). Each bag bi is itself
a set of mi instances, which are represented using latent
variables h ∈ Hi, with |Hi| = mi

1, and represented with
a joint feature vector Ψ(bi, h) ∈ Rd. Using latent variables
makes the definition of bag instances more general, including
bags with an infinite number of instances or even continuous
latent spaces.

A. Prediction function

Given an unlabeled bag bi, we want to design a discriminant
function fw : X → R, parametrized by w, such that g(b) =
sign [fw(bi)] gives predicted label of bi: fw(bi)>0 classifies
the example as positive, and negative otherwise.

The main novelty of the SyMIL model is based on the
definition of the latent variables h+i and h−i :
h+i =arg max

h∈H
〈w,Ψ(bi, h)〉 h−i =arg min

h∈H
〈w,Ψ(bi, h)〉

h+i (resp. h−i ) is the maximum (resp. minimum) scoring
latent value for the linear model 〈w,Ψ(b, h)〉. Using h+i and
h−i , we define the following prediction function:

fw(bi)=

{
〈w,Ψ(bi,h

+
i )〉 if 〈w,Ψ(bi,h

+
i )〉≥−〈w,Ψ(bi,h

−
i )〉

〈w,Ψ(bi,h
−
i )〉 otherwise

(1)
Model intuition & discussion. The rationale of the function
fw(bi) in Eq. (1) is to compare the score of the most ’⊕-like’
instance (i.e. 〈w,Ψ(bi, h

+
i )〉) to the score of the most ’	-like’

instance (i.e. -〈w,Ψ(bi, h
−
i )〉). h+i (resp. h−i ) represents the

most discriminative latent value for class ⊕ (resp. 	). During
training, we aim at using h+i (resp. h−i ) for positive (resp.
negative) bags, and so learning the most discriminative model.

From the LLP perspective, SyMIL corresponds to a sym-
metric prior for the label proportion: for a positive bag (bi,+1)
(resp. negative bag (bi,−1)), the proportion of positive (resp.
negative) instances is p⊕(bi,+1) ≥ 1

mi
(resp. p	(bi,−1) ≥

1
mi

). This departs from state-of-the-art SVM-like MIL algo-
rithms, e.g. mi/MI-SVM/ LSVM [2], [17]), where the pre-
diction function takes the form fw(bi) = maxh〈w,Ψ(bi, h)〉,
corresponding to p⊕(bi,+1) ≥ 1

mi
but p	(bi,−1) = 1. In

this asymmetric modeling, ⊕ instances represent patterns that
are discriminative for the ⊕ class, whereas 	 instances are
implicitly regarded as background (i.e. everything different
from ⊕ instances in the feature space). In contrast, SyMIL uses

1We ignore the dependence in i for Hi in the following.

symmetric selection of instances in both positive and negative
bags, which is supposed to be beneficial for classification,
because instances shared by positive and negative classes (i.e.
background) are ignored during training.

An illustrative comparison between symmetric and asym-
metric MIL modeling is provided in Figure 2, for an image
classification task. Here, bags represent images, and instances
are rectangular image regions, in a simple two-class case
(bison ⊕ vs llama 	). Basically, asymmetric models tend to
learn a function discriminating bison patches from the most
difficult patches in negative images, i.e. background patches
of llama images. In contrast, for a bison (resp. llama) bag, the
symmetric SyMIL model seeks regions that are statistically
discriminant for bison (resp. llama) class, i.e. the instance
the most distant from the hyperplane. SyMIL model tends to
ignore background regions, i.e. those shared between ⊕ and
	 images. We validate this intuition of our model with toys
experiments in Section V-A.

Fig. 2. SyMIL model motivation: symmetric vs asymmetric modeling between
⊕(blue)/	(red) bags. Asymmetric model seeks discriminative regions for
positive bags only, whereas symmetric model seeks discriminative regions
for both positive and negative bags

B. Learning formulation

During the training step, we want to satisfy the following
constraints:

∀i ∈ A+
n 〈w,Ψ(bi, h

+
i )〉 ≥ 1

∀i ∈ A−n 〈w,Ψ(bi, h
−
i )〉 ≤ −1

∀i ∈ An yi
[
〈w,Ψ(bi, h

+
i ) + Ψ(bi, h

−
i )〉
]
≥ 1 (2)

The constraints given in Eq. (2) are interpreted as follows:
1) The first constraint 〈w,Ψ(bi, h

+
i )〉 ≥ 1 enforces that

the bag bi ∈ A+
n is properly classified in the class ⊕,

using the latent value h+i , with a safety margin of 1.
This is satisfied for the green positive bag in Figure 3.

2) The second constraint 〈w,Ψ(bi, h
−
i )〉 ≤ −1 enforces

that the bag bi ∈ A−n is properly classified in the class
	, using the latent value h−i , with a safety margin of 1.
This is satisfied for the red negative bag in Figure 3.

3) yi
[
〈w,Ψ(bi, h

+
i ) + Ψ(bi, h

−
i )〉
]
≥ 1 enforces that each

positive (resp. negative) bag is represented by h+i (resp.
h−i ). For example, for yi = 1, it translates into
〈w,Ψ(bi, h

+
i )〉 ≥ −〈w,Ψ(bi, h

−
i )〉 + 1, so that h+i is

preferred over h−i to represent bi with a safety margin
of 1, and fw(bi) = 〈w,Ψ(bi, h

+
i )〉. In Figure 3, this

constraint is satisfied for the positive green bag since
∆ =

(
〈w,Ψ(bi, h

+
i ) + Ψ(bi, h

−
i )〉
)
≥ 1. In a similar
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fashion, this constraint is satisfied in Figure 3 for the
negative red bag with ∆ ≤ −1.

Fig. 3. Illustration of Eq. (2) constraints enforced during training for a positive
(green) and a negative (red) bag. Dashed lines represent the safety margin of
1. ∆ = 〈w,Ψ(b, h+) + Ψ(b, h−)〉.

To optimize w over all the constraints of Eq. (2), the
following primal regularized loss function P(w) is minimized:

P(w) =
1

2
‖w‖2 +

C

n

n
n+

∑
i∈A+

n

[
1−max

h∈H
(〈w,Ψ(bi, h)〉)

]
+

+
n

n−

∑
i∈A−

n

[
1 + min

h∈H
(〈w,Ψ(bi, h)〉)

]
+

(3)

+λ
∑
i∈An

[
1−yi

(
max
h∈H

(〈w,Ψ(bi,h)〉)+min
h∈H

(〈w,Ψ(bi,h)〉
)]

+

)
P(w) contains the standard max margin regularization term
‖w‖2 and a data-dependent term El(w) penalizing the vi-
olation of Eq. (2) constraints using a hinge loss function
[b]+ = max(0, b). We derive the following property:

Lemma 1. The loss function El(w) in Eq. (3) defined over
constraints 1−3 in Eq. (2) is a surrogate of the 0/1 loss on the
prediction function g(b) = sign [fw(b)]. (Proof in Appendix A).

Connection to LSSVM [19]. Our prediction function g(b) =
sign [fw(b)] = sign[〈w,Ψ(b, h+) + Ψ(b, h−)〉] in Eq. (1) may
be seen as an instantiation of the LSSVM prediction function.
Indeed, with Y = {−1; 1} and Φ(b, y, h) = y · Ψ(b, h), we
have g(b) = arg max

y∈Y
max
h∈H
〈w,Φ(b, y, h)〉. Interestingly, our

prediction function g(b) is actually the natural instantiation
of LSSVM to the binary classification case, which is not the
case for competitive algorithms, e.g. mi/MI-SVM or LSVM.
However, regarding learning formulation, P(w) in Eq. (3) dif-
fers from the LSSVM objective with the previous instantiation
of g(b), which would correspond to only incorporating the
third constraint in Eq. (2). We add the constraints 1 & 2 of
Eq. (2), because they correspond to the ultimate goal of the
weakly supervised classifier: properly classifying (beyond the
margin) training bags. We show in the experiments that adding
these two constraints indeed favorably impacts classification
performances.

Theoretical Analysis. We provide a bound of the average
Rademacher complexity (Rn) of SyMIL model. We note F the
hypothesis class for instances and F̄ the hypothesis class for
bags and we assume that the instances are in the hyper-sphere

of radius B. To bound the average Rademacher complexity,
we use the Theorem 20 of [20]. The bound in the general case
is:

Rn(F̄ ,D) ≤ 4 + 10 log(4ea21a
2
2B

2rn2)(N + τ)√
n

(4)

where τ = a1a2
β+1K lnβ+1(16a21a

2
2n), n is the number of

training examples, a1 (resp. a2) is the Lipschitz constant of
bag-labeling (resp. loss) function, and N is a constant. The
constant K and β must satisfy an inequality which depends
on the worst-case Rademacher complexity over instances:
Rsupn (F) ≤ K lnβ(n)√

n
. SyMIL learns a classification function

in the instance space, so that the worst-case Rademacher com-
plexity over instances is the same than SVM, i.e. Rsupn (F) ≤
W√
n

2 (proof in [21]), corresponding to β = 0 and K = W .
Note that this bound is the same for LSVM, since both models
use the same classification model over instances.

As mentioned when drawing the connection with LSSVM,
SyMIL prediction function in Eq. (1) is equivalent to g(b) =
sign[〈w,Ψ(b, h+) + Ψ(b, h−)〉]. Therefore, the SyMIL bag-
labeling function is 2-Lipschitz with respect to the infinity
norm, because max and min are 1-Lipschitz with respect to
the infinity norm. The loss function in Eq. (3) is (1 + 2λ)-
Lipschitz. Therefore, by substituting a1, a2, β and K values,
we get τSyMIL = 2(1 + 2λ)W ln(64(1 + 2λ)2n), leading to
the following bound of the average Rademacher complexity:

Rn(F̄ ,D) ≤ 4 + 10 log(16eB2rn2(1 + 2λ)2)(N + τSyMIL)√
n

(5)
The resulting bound indicates that there is a poly-logarithmic
dependence of the sample complexity on the average bag size.
By comparing SyMIL bound with the LSVM one provided
by [20], both bounds are similar and have the same order
of magnitude3. Despite selecting the maximum or minimum
instance, which introduces a non-linearity to the hypothesis
class, this bound enables a control of the model complexity.
It shows that the SyMIL and max prediction models have a
bound with the same asymptotic behavior ( ln(n)√

n
). In spite of

the use of max and min instances, our model has similar
robustness to outliers that max prediction models.

IV. SOLVING THE OPTIMIZATION PROBLEM

Like competitive MIL algorithms (mi-SVM, MI-SVM,
LSSVM), P in Eq. (3) is not a convex function of w.
Without the first and the second constraints, our model is
an instantiation of the LSSVM model [19]. As previously
mentioned, these constraints are however important for optimal
performances. In this section, we introduce our own solver to
optimize Eq. (3).

A. Difference of Convex Functions

First, we show that P in Eq. (3) can be written as P(w) =
u(w)− v(w), where u and v are convex functions. Rewriting

2In the SVM case, the class of functions is the set of linear separators with
a bounded norm {x 7→ 〈w,Φ(x)〉 : ‖w‖ ≤W}, for some W > 0.

3The difference with LSVM is that bag and loss functions are 1-Lipschitz
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P(w) as a difference of convex functions is not straightforward
given the form of Eq. (3). To demonstrate that P(w) (Eq. (3))
can be written as a difference of convex functions, we use the
property:

max(0, a− b) = max(a, b)− b (6)

where a, b are convex functions. We also use the properties
that the maximum of a linear functions is a convex function,
and the minimum of a linear functions is a concave function.
Next, we will show that each hinge loss can be rewritten as
a difference of convex functions. It is not straight-forward
because each loss is neither a concave nor a convex function.
For example, the first loss is the maximum of a concave
function and a constant function, so it is neither a concave
nor a convex function. But with the property (6), this loss can
be written as a difference of convex functions. Each loss can
be written as the difference of convex functions, so we can
rewrite the global optimization problem P(w) as a difference
of convex functions: P(w) = u(w)− v(w) where:

u(w)=
1

2
‖w‖2+

C

n

(∑
i∈A+

n

[ n
n+

max(0,max
h∈H

(〈w,Ψ(bi, h)〉)−1)

(7)

+ λ max(1−min
h∈H

(〈w,Ψ(bi, h)〉),max
h∈H
〈w,Ψ(bi, h)〉)

]
+
∑

i∈A−
n

[ n
n−

max(0,−min
h∈H

(〈w,Ψ(bi, h)〉)−1)

+ λmax(1 + max
h∈H

(〈w,Ψ(bi, h)〉),−min
h∈H
〈w,Ψ(bi, h)〉)

])

v(w) =
C

n

( ∑
i∈A+

n

[
(
n

n+
+ λ) max

h∈H
(〈w,Ψ(bi, h)〉)− n

n+

]
(8)

+
∑

i∈A−
n

[
− (

n

n−
+ λ) min

h∈H
(〈w,Ψ(bi, h)〉) +

n

n−

])

u and v are convex on w as a sum of convex functions.

B. Optimization

Once we exhibit the decomposition in difference of con-
vex functions, we solve the resulting difference of convex
functions using CCCP [22]. In addition to the CCCP con-
vergence properties [23], this solution offers the possibility
to jointly optimize some latent variables with the classifier
parameters for each convex sub-problem, resulting in different
(and better) local minima. The overall scheme of our CCCP-
based optimization is presented in Algorithm 1: we alternate
between linearizing the concave part (−v) at the current
solution (Line 5) and solving the resulting convexified problem
(Line 3). We now detail how the problem is solved in the
primal and the dual.

1) Primal: The overall algorithm to train SyMIL with
CCCP in the primal is given in Algorithm 2. CCCP is
an iterative algorithm that alternates between linearizing
the concave part (−v) at the current solution wt (Line
5 of Algorithm 2) and solving the resulting convex
problem (Line 3 of Algorithm 2). The linearization of
the concave part −v(w) consists in upper bounding it
by its tangent hyperplane: −v(w) ≤ −〈w,∇wv(wt)〉, with:

Algorithm 1 for training SyMIL with CCCP
Require: training set {(bi, yi)}i=1,...,n

1: Set t = 0, randomly initialize {h+i,0, h
−
i,0}i=1,...,n and

linearize the concave part
2: repeat
3: Solve convex problem

wt+1 = argminwPCCCPt (w) or
αt+1 = argmaxαDCCCPt (α)

4: t← t+ 1
5: Linearize the concave part −v at the current solution

wt / αt
6: until stopping criteria reach
7: return wt/αt

∇wv(wt) =

( ∑
i∈A+

n

( n
n+ +λ)Ψ(bi, h

+
i,t)−

∑
i∈A−

n

( n
n− +λ)Ψ(bi, h

−
i,t)

)
where h+i,t = arg max

h∈H
〈wt,Ψ(bi, h)〉 and

h−i,t = arg min
h∈H

〈wt,Ψ(bi, h)〉. After linearization, the

resulting optimization problem is:

PCCCPt (w) = u(w)− 〈w,∇wv(wt)〉 (9)

=
1

2
‖w‖2+C

n

∑
i∈A+

n

[ n
n+

max(0,max
h∈H
〈w,Ψ(bi, h)〉−1) (10)

+ λmax(1− min
h∈H
〈w,Ψ(bi, h)〉,max

h∈H
〈w,Ψ(bi, h)〉)

]
+
∑
i∈A−

n

[ n
n−

max(0,−min
h∈H
〈w,Ψ(bi, h)〉 − 1)

+λmax(1 + max
h∈H
〈w,Ψ(bi, h)〉,−min

h∈H
〈w,Ψ(bi, h)〉)

])

−C
n

∑
i∈A+

n

(
n

n+
+λ)〈w,Ψ(bi, h

+
i,t)〉−

∑
i∈A−

n

(
n

n−
+λ)〈w,Ψ(bi, h

−
i,t)〉


At iteration t, to solve the convexified optimization prob-

lem minw PCCCPt (w) in the primal, we use a Stochastic
(sub)Gradient Descent (SGD) strategy [24] that proves to be
simple and achieves fast convergence. Although we could
use more efficient techniques, such as SAG [25], we find
SGD sufficient in our experiments (Section V). The gradient
computation is given in Appendix B-A.

Algorithm 2 for training SyMIL with CCCP (Primal)
Require: training set {(bi, yi)}i=1,...,n

1: Set t = 0, randomly initialize h+i,0, h−i,0 and

g0 =
C

n

( ∑
i∈A+

n

(
n

n+
+λ)Ψ(bi, h

+
i,0)−

∑
i∈A−

n

(
n

n−
+λ)Ψ(bi, h

−
i,0)
)

2: repeat
3: Solve wt+1 = arg minw [u(w)− 〈w, gt〉]
4: t← t+ 1
5: Compute gt = ∇wv(wt)
6: until [u(wt)− v(wt)]− [u(wt−1)− v(wt−1)] < ε
7: return wt
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Algorithm 3 Cutting plane algorithm with 1-slack formulation
at iteration t
Require: training set {(bi, yi)}i=1,...,n, {(h+i,t, h

−
i,t)}i=1,...,n

1: Set T = 0, c← 0, H ← 0
2: repeat
3: H ← (Hij)1≤i,j≤T where Hij = gT(i)g(j)
4: α← arg max

α
αT c− αTHα s.t. 0 ≤ 1Tα ≤ C

5: ξ ← 1
C (αT c− αTHα)

6: T ← T + 1
7: for i = 1, . . . , n do
8: h+i = arg max

h∈H
〈
∑T−1
i=1 αig(i),Ψ(bi, h)〉

9: h−i = arg min
h∈H

〈
∑T−1
i=1 αig(i),Ψ(bi, h)〉

10: end for
11: g(T ) ← 1

n

∑
i∈An gcave(bi, h

+
i,t, h

−
i,t) −

gvex(bi, h
+
i , h

−
i )

12: c(T ) ← 1
n

∑
i∈An(vex(bi, h

+
i , h

−
i ) −

〈gvex(bi, h
+
i , h

−
i ),
∑T−1
i=1 αig(i)〉)

13: until 〈
∑T−1
i=1 αig(i), g(T )〉 ≥ c(T ) − ξ − ε

14: return α

2) Dual.: For many applications, nonlinear models are
required to achieve good performances. We propose here a
kernelized version of our SyMIL scheme. First, we detail the
linearization of the concave part (Line 5 in Algorithm 1) in
the dual, and then the solving of the convexified problem with
cutting-plane.

Linearizing the concave part. To linearize the concave part
at iteration t+1, we have to fix the latent variables. For a bag
bj , with current solution α(t), the inference of the new latent
variable value is:

h+j,t+1 = arg max
h∈H

〈∑
k

α
(t)
k

1

n

∑
i∈An

(gcave(bi, h
+
i,t, h

−
i,t) (11)

− gvex(bi, h
+
i , h

−
i )),Ψ(bj , h)

〉
h−j,t+1 = arg min

h∈H

〈∑
k

α
(t)
k

1

n

∑
i∈An

(gcave(bi, h
+
i,t, h

−
i,t) (12)

− gvex(bi, h
+
i , h

−
i )),Ψ(bj , h)

〉
where the gradient of the convex and concave terms are:

gcave(bi, h
+
i,t, h

−
i,t) =

{
( n
n+ + λ)Ψ(bi, h

+
i,t) if i ∈ A+

n

( n
n− + λ)Ψ(bi, h

−
i,t) if i ∈ A−n

(13)

gvex(bi, h
+
i , h

−
i ) =

{
D + E if i ∈ A+

n

F +G if i ∈ A−n
(14)

D, E, F , G are defined in equations (26 - 29) in Ap-
pendix B-A. (h+i,t, h

−
i,t) are the predicted latent variable for

linearizing the concave part at iteration t.

Solving the convexified problem. A direct resolution of the
convexified problem in the dual would be intractable, as for
many other kernelized (latent) structured output problems. For
our SyMIL model, the number of constraints in this dual

formulation would be
∏n
i=1 |Hi|2, where |Hi| is the number

of instances for the ist training bag. Therefore, we adopt a
cutting-plane strategy to train our SyMIL model, using the
1-slack formulation [26]. The learning algorithm is given
in Algorithm 3. Cutting-plane training searches the optimal
solution and the set of active constraints simultaneously in an
iterative manner. This algorithm is guaranteed to converge to
an approximate solution with a reasonable number of outer
loops. Starting from an empty working set of constraints, in
each iteration it solves the optimization problem (Line 4) with
only the constraints of the working set. Then it finds the most
violated constraint (Line 7-12) and adds it to the working set.
vex(bi, h

+
i , h

−
i ) is the convex term for bag bi and the equation

is given in Eq. (30) of Appendix B-B. The algorithm stops
once no constraint can be found that is violated by more than
the desired precision ε (Line 13). In our implementation, we
use a stopping criterion defined by a fix number of iterations.
During each iteration, we use MOSEK (www.mosek.com)
to solve the quadratic problem with the given set of active
constraints (Line 4).

V. EVALUATION

We evaluate the symmetric approach on standard MIL
datasets and for weakly-supervised object detection. We also
analyze the selected instances and show the complementary of
SyMIL with label proportion methods.

A. Toy Experiments

1) Synthetic data: First, we design toy datasets. We model
positive and negative bags in a symmetric manner: instances
are generated from two different Gaussian distributions, with
a parameter α controlling the distance between them, and
consequently the proportion of shared instances. (see Fig-
ure 4). The smaller the α, the more instances are shared
between positives and negatives bags: the overlap region is
thus a ”background” area that contains ”non-discriminative”
instances for the classification task.

α = 0.1 α = 0.3 α = 0.5 α = 0.7

Fig. 4. Toy datasets generated with different α values. The blue points (resp.
red) are the instances of the positive bags (resp. negative bags)

Our experimental setup is as follows. We generate 2d
Gaussian distributions and sample bags with 20 instances, with
10 α values in the range [0.1, 1]. We train a linear model with
400 positive and 400 negative bags, evaluate the performance
(accuracy) on other 100 test positive and negative bags, and
average the results over 5 random folds.

Figure 5 shows the performance evolution when varying α
for SyMIL and LSVM. For large overlap values (α ≥ 0.6), the
classification task is easy and SyMIL and LSVM have similar

www.mosek.com
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Fig. 5. Toy Examples: test accuracy with respect to α.

a) LSVM b) SyMIL
Fig. 6. Toy Examples: visualization of the selected instances during training
(α = 0.5): green over positive instances (in blue), orange over negative ones
(in red).

performances. When the task becomes more challenging, (α ≤
0.3), SyMIL outperforms by more than 5 pt LSVM.

To analyze the performance gain and interpret the latent
representation learned by the different models, we visualize
the instances selected by SyMIL and LSVM during training
in Figure 6a) and 6b), respectively. We can notice that SyMIL
selected instances are discriminative for the positive and
negative class, i.e. they belong to a region in the feature space
that is not shared between the two Gaussian distributions. On
the contrary, the instances selected by LSVM for the negative
class essentially belong to the background area, and are shared
by the two classes. This experiment validates the relevance of
our model for bag classification. Note that the computation
time for LSVM and SyMIL is similar because the most time
consuming step is the inference over the instances. In all
our experiments, the inference problems are solved with an
exhaustive search, so seeking the maximum instance or both
maximum and minimum instances both take the same time.

2) Real data: We also validate our hypothesis on Mam-
mal dataset. Mammal dataset [27] is a multi-class dataset,
containing 6 categories: bison, deer, elephant, giraffe, llama
and rhino. We use the same protocol as in [18]: the latent
space H is composed of constant-size rectangular regions
(which is a reasonable assumption for this dataset), and HOG
descriptors [28] are used as features ψ(b, h) for each region
h. For this experiments, we use only the classes bison and
llama. We report in Table I the classification results for bison
vs llama (bison (resp. llama) is the positive (resp. negative)
class) and llama vs bison (llama (resp. bison) is the positive
(resp. negative) class). The performances are evaluated using
a 10-fold cross-validation.

We note that our models has better results than LSVM.

For bison vs llama experiment, SyMIL seeks discriminative
regions for both bison and llama, while LSVM seeks discrim-
inative regions only for bison. We note that reverse the positive
and negative class gives different results for LSVM, because
it use an asymmetric strategy, whereas our model gives the
same results, because it use a symmetric strategy.

bison vs llama llama vs bison
LSVM [17] 90.3 87.7
SyMIL 95.7 95.7

TABLE I
CLASSIFICATION PERFORMANCES (ACCURACY) ON MAMMAL DATASET

B. Standard MIL Datasets

We demonstrate the efficiency of SyMIL on standard MIL
datasets4 with 3 different applications: molecule categoriza-
tion, automatic image annotation, and text categorization. We
start by giving details of datasets:
• Musk dataset: consists of descriptions of molecules using

multiple low-energy conformations. Each conformation is
represented by a 166-dimensional feature vector derived
from surface properties.

• Image dataset: an image consists of a set of segments,
each characterized by color, texture and shape descriptors.
There are three different categories (“elephant”, “fox”,
“tiger”). In each case, the dataset has 100 positive and 100
negative example images. The latter have been randomly
drawn from a pool of photos of other animals. The
original data are color images from the Corel dataset
that have been preprocessed and segmented with the
Blobworld system [29].

• Text dataset: starting from the publicly available TREC9
data set, each document is split into passages using
overlapping windows of maximal 50 words each. Then,
documents are annotated with MeSH terms (Medical
Subject Headings), each defining a binary concept. The
total number of MeSH terms in TREC9 is 4903. The first
seven categories of the pre-test portion with at least 100
positive examples are used to create the dataset.

These datasets do not seem to be adapted for MIL, because
the negative class is not everything. For each image dataset
(Fox, Tiger, Elephant), positive bags are images that contain
the animal, and negative bags are images that contain other
animals (also from other categories, not just from the three
categories here). Table II provides information about the
number of training examples, the average number of instances
per bag for each dataset, and the dimension of the features.

Dataset Image Musk1 Musk 2 Text
pos/neg bags 100/100 47/45 39/63 200/200
instances/bag ∼ 6.5 5.17 64.69 ∼ 8

feature dimension 230 166 166 ∼ 66 500(∗)

TABLE II
DATASET STATISTICS. (*) THE FEATURES ARE SPARSE.

4The datasets used in this section are available online at http://www.cs.
columbia.edu/andrews/mil/datasets.html

http://www.cs.columbia.edu/ andrews/mil/datasets.html
http://www.cs.columbia.edu/ andrews/mil/datasets.html
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The parametrization for our method is the following. Re-
garding hyper-parameters (Eq. (3)), C is fixed to a large value
(104). λ is chosen by cross-validation on the training set,
on the range {0.1, 0.2, 0.5, 1}. We evaluate our method with
linear and RBF kernels (k(x, y) = exp(−γ‖x − y‖22)). The
scale parameter γ for RBF kernels is determined as the mean
pairwise instance distance on the training set. We also try to
cross-validate the C and bandwidth parameters, but we do
not observe significant differences. For all methods, the initial
latent variables are randomly selected. We follow the standard
protocol to evaluate performances [2]: the performances are
evaluated using a 10-times 10-fold cross-validation.

Method Image Musk Text
a) re-implemented methods
mi-SVM 73.4 84.5 81.6
MI-SVM 75.5 81.7 80.3
LSVM 74.4 82.7 80
SyMIL linear 79.1 88.2 84.8

RBF 80.2 89.2 -
b) state-of-the art results Avg.
SyMIL 80.2 89.2 84.8 84.7
MICA 73.9 87.5 82.3 81.2
MIGraph 76.1 90 -
MI-CRF 78.5 86.7 -
GP-WDA 79 88.4 83.2 83.5
eMIL 77 85.3 82.7 81.7
MILEAGE 77.7 - -

TABLE III
CLASSIFICATION ACCURACY (%) ON THE THREE DATASETS. BOLDFACED

NUMBERS INDICATE BEST RESULTS.

The overall results for the three kind of datasets (image, text,
molecule) are gathered in Table III. Detailed results for each
dataset are provided in Table IV and V. A first comparison is
given in Table IIIa) with methods the most closely connected
to ours: mi-SVM/MI-SVM [2] and LSVM [17]. From a
modeling point of view, these approaches basically differ from
ours by the way instances are selected in positive and negative
bags during training. We re-implement the three methods in
order to compare the methods on the same splits. For mi-
SVM and MI-SVM, we use linear kernels, that were reported
to achieve optimal performances5 [2]. One can notice SyMIL
with linear kernel significantly outperforms mi-SVM, MI-
SVM and LSVM: on average in the three types of data, there is
a gain of about 4 pt over the best baseline. We perform paired
t-test to assess the statistical significance of the difference in
each dataset: numbers are given in Table XII and Table XIII in
Appendix C. It turns out that SyMIL is statistically better than
its competitors with a risk of 1% for all image and molecule
datasets, and for all text datasets except TST2 (performance
similar with MI-SVM) and TST1 (outperformed by LSVM).
Note that even with a risk of 0.01% the improvement remains
significant for 8 out of 12 datasets (except TST1, TST2, Musk1
and Tiger). These results clearly highlight the relevance of our
model, i.e. the importance of seeking discriminative instances
in both positive and negative bags.

Using non-linear kernels can further improve performances:
∼ 1 pt increase in the image and molecule datasets. However,
for the text datasets, the linear model outperforms RBF ker-
nels. Note that this trend is conform to the results reported

5Note that our re-implementation matches the results in reported in [2].

in GP-WDA [33]. We also evaluate the performance reached
when using the LSSVM [19] instantiation corresponding to our
prediction function, i.e. ψ(b, y, h) = y·φ(b, h). As explained in
Section III, the SyMIL learning scheme is different from this
LSSVM instantiation, which translates in ignoring constraints
1&2 in Eq. (2). Results are provided in Table IV: we observe a
performance drop between 1 and 3 pt depending on the dataset
(Image-Molecule), and on the kernel type (linear vs RBF). For
example, the superiority of our method is largely significant
on Elephant (t-test validation with a risk of 5%).

An absolute performance comparison with recent state-of-
the-art works is provided in Table IIIb). On average on the
three datasets, our method outperforms all reported results6.
Competitive approaches in these datasets include recent works
such as MILEAGE [16], GP-WDA [33] which solves the MIL
problem using Gaussian Processes, eMIL [6] or MI-CRF [9]
or MIGraph [15]. Despite the complex models used by these
strong competitors, SyMIL outperforms them in the image
and text databases. In particular, we can notice the excellent
performances for Elephant. Although our method remains very
competitive on the Musk datasets, it is slightly outperformed
by MIGraph. One explanation may be that MIL assumptions
are better satisfied on this historical dataset. Note, however,
that MIGraph performs poorly on the image dataset. We use
the code available online7 to perform paired t-test (Table XII).
SyMIL is significantly better than MIGraph on the image
dataset (risk 1%), and the performance is equivalent on the
molecule dataset (risk 5%). To summarize, the excellent results
for the three applications exhibit the capacity of our method to
successfully handle various types of data. Note that the local
information in SyMIL can be combined with a global bag
feature, as done in MILEAGE [16] or MI-CRF.

Analysis of parameter λ. We also study the performances
with respect to the parameter λ, which is an important param-
eter for SyMIL model. This parameter adjusts the trade-off
between constraints 1 & 2 and constraint 3 during training. A
large λ is similar to LSSVM (see section III-B) because the
constraints 1 & 2 are negligible with respect to the constraint 3.
Figure 7 shows the results on Musk2 and Elephant datasets, for
a λ on the range [0.01, 1000]. We observe that the best results
are for a lambda around 1 on Musk2, and 0.1 on Elephant.
The optimal λ change for each dataset. Use a small λ leads
to bad results because the model is not able to predict the
relevant instance.

C. Weakly-supervised Object Detection

In weakly-supervised object detection, the goal is to learn
a model which jointly classifies the image and localizes the
object. Training data only have image-level labels indicating
the presence/absence of each object category in an image. The
exact object location in the image is unknown and is modeled
as a latent variable h. We make experiments on two different
datasets: Mammal dataset and PASCAL VOC 2007.

6SyMIL results are reported for RBF kernels in the image and molecules
datasets, but for linear kernels in the text datasets. This is similar to the setup
in [33], since linear models generally lead to better performances.

7see MiGraph webpage

http://lamda.nju.edu.cn/Default.aspx?Page=code_miGraph&NS=&AspxAutoDetectCookieSupport=1
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method Elephant Fox Tiger average Musk1 Musk2 Avg.
re-implemented method
mi-SVM [2] 81.7±1.7 58.3±1.6 80.2±1.5 73.4 85.5±1.9 83.4±2.1 84.5
MI-SVM [2] 82.2±1.7 60.9±1.9 83.3±1.6 75.5 78.9±3.3 84.4±2.0 81.7
LSVM [17] 81.5±1.9 60.2±1.8 81.6±1.2 74.4 81.6±2.3 83.4±1.5 82.5
SyMIL

linear 87.2±1.1 64.9±0.9 85.3±0.8 79.1 88.5±1.5 87.8±0.9 88.2
RBF 88.2±0.7 66.9±1.2 85.9±0.6 80.3 89.5±1.8 88.8±1.9 89.2

Without constraints 1 & 2
linear 85.0±1.9 64.3±1.7 84.9±1.8 78.1 87.8±2.4 85.9±1.7 86.9
RBF 85.5±1.9 65.5±1.7 85.0±1.2 78.7 88.5±1.2 86.4±1.7 87.5

IAPR [1] - - - - 92.41 89.2 -
DD [4] - - - - 88.9 82.5 85.7
EM-DD [30]2 78.3 56.1 72.1 68.8 84.8 84.9 84.9
MI-kernel (Minimax) [31] - - - - 91.6 86.3 89.0
mi-SVM [2] 82.2 58.2 78.4 72.9 87.4 83.6 85.5
MI-SVM [2] 81.4 57.8 84.0 74.4 77.9 84.3 81.1
ALP-SVM [8] 82.8 65.7 85.2 77.9 86.5 86.1 86.3
AW-SVM [8] 81.9 63.3 82.7 76.0 85.7 83.4 84.6
MICA [32] 80.5 58.7 82.6 73.9 84.4 90.5 87.5
MIGraph [15] 85.1 61.2 81.9 76.1 90.0 90.0 90.0
miGraph [15] 86.6 61.6 86.0 78.1 88.9 90.3 89.6
MI-CRF [9] 85.0 67.5 83.0 78.5 88.0 85.3 86.7
Convex relaxation [10] 86.7 62.5 78.0 75.8 87.7 - -
GP-WDA [33] 83.8 65.7 87.4 79.0 89.5 87.2 88.4
eMIL [6] 84.0 58.3 88.8 77.0 84.5 86.0 85.3
MILEAGE [16] 84.5 64.5 84.0 77.7 - - -

1 Musk1 test data set was used to tune IAPR parameters, see [30]. For this reason, we do not report IAPR average performance on Musk, which is not
representative of the method potential.

2 The EM-DD results reported in [30] were obtained by selecting the optimal solution using the test data. We report here results published in [2] using
the correct algorithm. See [3] pp.935.

TABLE IV
CLASSIFICATION PERFORMANCES (ACCURACY) ON THE IMAGE AND MOLECULE DATASETS. BOLDFACED NUMBERS INDICATE BEST RESULTS.

method TST1 TST2 TST3 TST4 TST7 TST9 TST10 Avg.
re-implemented
mi-SVM 94.4±0.5 78.7±1.4 86.7±0.6 82.9±0.6 81.4±0.6 67.4±1.0 79.7±1.3 81.6
MI-SVM 94.0±0.4 84.9±1.2 82.8±0.9 82.3±0.9 77.7±0.7 61.3±0.5 79.4±0.7 80.3
LSVM 96.0±0.3 78.9±0.8 85.6±0.8 81.2±0.8 76.9±0.4 61.9±1.3 79.3±0.5 80.0
SyMIL 94.3±0.2 84.3±0.5 88.8±0.5 87.1±0.7 82.3±1.0 71.2±0.8 85.8±0.5 84.8

EM-DD 85.8 84.0 69.0 80.5 75.4 65.5 78.5 77.0
mi-SVM 93.6 78.2 87.0 82.8 81.3 67.5 79.6 81.4
MI-SVM 93.9 84.5 82.2 82.4 78.0 60.2 79.5 80.1
MICA 94.5 85.0 86.0 87.7 78.9 61.4 82.3 82.3
GP-WDA 94.4 85.3 86.1 85.3 80.3 70.8 80.4 83.2
eMIL 95.9 79.2 86.8 84.0 80.4 69.0 83.4 82.7

TABLE V
CLASSIFICATION PERFORMANCES (ACCURACY) ON THE TEXT DATASETS. BOLDFACED NUMBERS INDICATE BEST RESULTS.

Fig. 7. Accuracy performance with respect to parameter λ (logarithmic scale)
on Musk2 and Elephant datasets.

1) Mammal dataset: This dataset is presented in Sec-
tion V-A2. To do multi class classification, we use 1vs All
strategy. The performances are evaluated using a 10-fold cross-
validation. We compare the proposed SyMIL RBF model to
LSVM [17] and its recently kernelized version [34], using a
RBF kernel. In addition, we evaluate M3E [18] by using the

code available online8. The best performing M3E models use
a small value of α, so we fix α = 5 for our experiments. We
measure prediction performances by using accuracy (ACC),
and Mean Average Precision (MAP), to be robust to the ⊕/	
unbalance.

MAP (%) ACC (%)
LSVM [17] 67.9 89.3
KLSVM [34] 73.3 90.1
M3E 1vsAll [18] 71.9 91.1
SyMIL 78.7 92.1

TABLE VI
CLASSIFICATION PERFORMANCES ON MAMMAL DATASET

The results are reported in Table VI. As we can see,
our SyMIL model outperforms other approaches using both
metrics. The trend is the same for both metrics (MAP & ACC).

8see M3E webpage.

http://cvn.ecp.fr/personnel/pawan/publications/MKPGK-AISTATS2012.html
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In addition, all improvements are statistically significant (risk
5%), as validated by the t-tests provided in Table XIV of Ap-
pendix D. The prediction results again illustrate the superiority
of the symmetric modeling, especially with respect to KLSVM
[34] where the comparison directly measures the impact of
the min/max selection strategy. Our method also has an edge
over M3E, which tackles the weakly supervised learning in
a direction complementary to ours (modeling ambiguities
between latent variables).

2) VOC 2007: We perform another experiment on the
PASCAL VOC 2007 dataset [35], which is the most famous
object recognition benchmark used in computer vision. The
dataset is composed of 10 000 images and 20 categories.
For this experiment, we use our model as top layers of
the vgg-m-2048 deep ConvNet architecture pre-trained on
ImageNet [36] and we only optimize the classification layer
(no fine-tuning of the pre-trained layers). Our model behaves
like a global pooling function which selects the most discrim-
inative region for the class. In this architecture, each image
is composed 25 regions and each region is represented by a
2048-dimensional vector (output of the 7-th layer after the
ReLU). We follow the standard protocol [35] to evaluate the
performances (Mean Average Precision).

The classification results are shown in Table VII. We
compare SyMIL and LSVM. As observed in previous exper-
iments, SyMIL outperforms LSVM. It confirms that seeking
discriminative instances for both positive and negative class is
relevant, even on challenging dataset like VOC 2007.

LSVM [17] SyMIL
Classification MAP (%) 76.21 78.37

TABLE VII
CLASSIFICATION PERFORMANCES ON PASCAL VOC 2007.

D. Further Analysis
To give additional insights on the symmetric MIL modeling

introduced in this paper, we further analyze the selected
instances on real image and text data.

1) Weakly-supervised Object Detection: We analyze the
predicted instances (regions) for weakly-supervised object de-
tection. We report localization performances to quantitatively
evaluate the quality of the predicted latent values. We use the
standard detection metric [35], measuring the overlap between
the predicted and ground truth bounding boxes. We consider
that a prediction is correct if the overlap is larger than 0.5.

Train Ov. Test Ov. Train MAP Test MAP
LSVM [17] 59.8 61.3 40.2 40.7
KLSVM [34] 60.9 60.8 39.9 40.1
M3E 1vsAll [18] 62.5 60.9 44.3 42.7
SyMIL 64.7 63.2 47.6 46.5

TABLE VIII
DETECTION PERFORMANCES ON MAMMAL DATASET

Table VIII summarizes the average performances for both
detection metrics on Mammal dataset. SyMIL outperforms
asymmetric approaches for both metrics. In addition, all im-
provements are statistically significant (risk 5%), as validated

by the t-tests provided in Table XV of Appendix D. Detection
results are connected to prediction performances. They quan-
titatively validate the motivation of the method illustrated in
Figure 2, i.e. the fact that SyMIL is better able than asymmetric
MIL models to track the structure of the negative class. In this
dataset, we show that SyMIL successfully localizes regions
containing object of the five categories composing the negative
class. Visualizations of weakly supervised objects detection
are given in Figure 8. LSVM tends to predict background
regions, because of the asymmetry of the model, whereas
SyMIL predicts foreground regions.

Train (%) Test (%)
LSVM [17] 36.38 41.99

SyMIL 42.71 43.42

TABLE IX
DETECTION PERFORMANCES ON PASCAL VOC 2007.

For VOC 2007, we normalize the overlap by the area of
the predicted bounding box. Used the intersection over union
score is not adapted, because we have only one size of box. If
the ground truth bounding box is smaller than the size of the
bounding boxes, it is not possible to have a good score even if
the ground truth is in the predicted region. We observe similar
results as on Mammal Dataset. SyMIL achieves better results
for classification (+2,1%) and detection (+6% on training set)
than LSVM (Table IX).

2) Text classification: We perform experiments on a text
dataset from Reuters215789 to analyze selected instances for
real data. We choose the category money as positive examples
and ship, crude as negative. 100 documents from the 3
categories are randomly selected. Each document is a bag, and
each paragraph is an instance. To represent each paragraph, we
use tf-idf feature with vocabulary of size 18933. Performances
are evaluated using a 10-times 5-fold cross-validation.

a) Predictive accuracy
LSVM SyMIL
96.3% 97.6%

b) Similarity between instances and category
bag ⊕ 74% 73%
bag 	 67% 78%

c) Examples

bag ⊕ bank, currency, money, bank, exchange, rate,
exchange, treasury, currency, monetary

bag 	 west, finance, bank oil, opec, shipping
british, money port, union

TABLE X
INSTANCE SELECTION FOR TEXT CLASSIFICATION: A) PREDICTIVE

ACCURACY B) WORDS IN SELECTED INSTANCES WHICH ARE A
SEMANTICALLY CORRELATED TO THE CATEGORY AND C) EXAMPLE OF

TOP 5 SELECTED WORDS.

Results given in Table X show that SyMIL outperforms
LSVM in terms of predictive accuracy (97.6% vs 96.3%).
To analyze the instances selected by the two models, we
compute the semantic similarity between the words in the
selected instances and the related category, using Wu and
Palmer (WP) similarity measure [37] on WordNet10. More

9http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
10http://wordnet.princeton.edu
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Fig. 8. Visualization of predicted latent variable for negative examples: on Mammal Dataset LSVM (red) and SyMIL (blue)

precisely, the similarity is determined by computing the ratio
of words that have a WP similarity with respect to the category
larger than a threshold ∆ (set here to 0.2). For negative
bags, we use the maximum similarity between ship or crude.
In Table Xb), we notice that LSVM and SyMIL perform
similarly (74% vs 73 %) for positive bags, whereas SyMIL
is much better than LSVM for negative bags (78% vs 67 %).
This highlights the superiority of the symmetric modeling to
select instances which are representative of the negative class.
Finally, Table Xc) shows an example of the 5 words that
mostly contribute to the decision function. The top 5 selected
words are generated as follows: for each selected instance (i.e.
paragraph) we compute the top 5 words (i.e. dimensions in
the instance space) that mostly contribute to the classification
score (largest components of |w|), and average over all posi-
tive/negative bags. More precisely, for word k, we compute a
histogram of contribution w[k] × Ψ(x, hpredict)[k]. We can
point out that SyMIL extracts words that are semantically
in touch with the negative class, e.g. (oil, OPEC) for crude
and (port, shipping) for ship. On the contrary, LSVM selected
words are not always semantically meaningful for the negative
class, and are even more related to the positive class (money).
Seeking discriminative instances for both positive and negative
class is more robust than seeking discriminative instances for
only the positive negative class. This analysis confirms the toy
experiments conclusions of Section V-A.

VI. CONCLUSION

We introduced SyMIL, a new model for learning from
weakly labeled data. Following LLP ideas, SyMIL departs
from standard MIL assumptions by modeling positive and
negative bags in a symmetric manner. The resulting latent
variable model is trained by defining a regularized large
margin objective function, which is minimized using CCCP.
In addition, we derive a generalization error bound based on
the Rademacher complexity. Experiments on various datasets
validate the relevance of the proposed model, and an analysis
of the SyMIL instance selection strategy reveals the capacity of
the symmetric modeling to track the structure of the negative
class. To have more robust prediction function, it would be
interested to use several instances.

APPENDIX A
PROOF OF LEMMA 1

In this section, we show that the loss function El(w) in Eq.
(3) is a surrogate of the 0/1 loss our the prediction function
g(b) = sign [fw(b)] - fw(b) defined in Eq. (1). We recall that

El(w) penalizes the violation of constraints 1-3 in Eq. (2),
i.e.:

El(w) =
C

n

(
n

n+

∑
i∈A+

n

[
1−max

h∈H
(〈w,Ψ(bi, h)〉)

]
+

(15)

+
n

n−

∑
i∈A−

n

[
1 + min

h∈H
(〈w,Ψ(bi, h)〉)

]
+

+ λ
∑
i∈An

[
1−yi

(
max
h∈H

(〈w,Ψ(bi, h)〉)+min
h∈H

(〈w,Ψ(bi, h)〉
)]

+

)

=
Cλ

n

(
n

λn+

∑
i∈A+

n

[
1−max

h∈H
(〈w,Ψ(bi, h)〉)

]
+

(16)

+
n

λn−

∑
i∈A−

n

[
1 + min

h∈H
(〈w,Ψ(bi, h)〉)

]
+

+
∑
i∈An

[
1−yi

(
max
h∈H

(〈w,Ψ(bi, h)〉)+min
h∈H

(〈w,Ψ(bi, h)〉
)]

+

)

Let us denote LSyMIL(bi, yi) the loss for a single training
sample with our objective function, and ŷi = sign(fw(xi))
the label predicted by our SyMIL model.

• if yi = +1 and 〈w,Ψ(xi, h+)〉 ≥ −〈w,Ψ(xi, h−)〉, then
ŷi = +1 and ∆(yi, ŷi) = 0

LSyMIL(bi, yi) =
n

λn+
[
1− 〈w,Ψ(bi, h

+)〉
]
+︸ ︷︷ ︸

≥0

(17)

+
[
1− 〈w,Ψ(bi, h

+) + Ψ(bi, h
−)〉
]
+︸ ︷︷ ︸

≥0

≥ ∆(yi, ŷi) (18)

• if yi = +1 and 〈w,Ψ(xi, h+)〉 ≤ −〈w,Ψ(xi, h−)〉, then
ŷi = −1 and ∆(yi, ŷi) = 1

LSyMIL(bi, yi) =
n

λn+
[1− 〈w,Ψ(bi, h

+)〉]+︸ ︷︷ ︸
≥0

(19)

+ [1− 〈w,Ψ(bi, h
+) + Ψ(bi, h

−)〉︸ ︷︷ ︸
≤0

]+

︸ ︷︷ ︸
≥1

≥ ∆(yi, ŷi) (20)
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• if yi = −1 and 〈w,Ψ(xi, h+)〉 ≥ −〈w,Ψ(xi, h−)〉, then
ŷi = 1 and ∆(yi, ŷi) = 1

LSyMIL(bi, yi) =
n

λn−
[1 + 〈w,Ψ(bi, h

−)〉]+︸ ︷︷ ︸
≥0

(21)

+ [1 + 〈w,Ψ(bi, h
+) + Ψ(bi, h

−)〉︸ ︷︷ ︸
≥0

]+

︸ ︷︷ ︸
≥1

≥ ∆(yi, ŷi) (22)

• if yi = −1 and 〈w,Ψ(xi, h+)〉 < −〈w,Ψ(xi, h−)〉, then
ŷi = −1 and ∆(yi, ŷi) = 0

LSyMIL(bi, yi) =
n

λn−
[
1 + 〈w,Ψ(bi, h

−)〉
]
+︸ ︷︷ ︸

≥0

(23)

+
[
1 + 〈w,Ψ(bi, h

+) + Ψ(bi, h
−)〉
]
+︸ ︷︷ ︸

≥0

≥ ∆(yi, ŷi) (24)

We thus have shown that in all cases, our loss LSyMIL(bi, yi)
is a surrogate of the 0/1 loss. Another way to prove it is
to see that the third constraint in Eq. (2) is an instantiation
of LSSVM [19] for binary classification. Therefore, the loss
defined on this constraint is a surrogate of the 0/1 loss (by
design in LSSVM). Since we add a positive loss on the first
two constraints, El is necessarily a surrogate of the 0/1 loss.

APPENDIX B
OPTIMIZATION

A. Primal

In this section, we give the gradient for training SyMIL
with SGD. For any randomly sampled training data (bi, yi),
w is updated using the partial sub-gradient of Eq. (10) with
respect to (bi, yi):

∇wPCCCPt (w) =


w + C

n (D + E − ( n
n+ + λ)Ψ(bi, h

+
i,t))

if yi = +1

w + C
n (F +G+ ( n

n− + λ)Ψ(bi, h
−
i,t))

otherwise
(25)

D =

{
n
n+ Ψ(bi, h

+
i ) if 〈w,Ψ(bi, h

+
i )〉 − 1 > 0

0 otherwise
(26)

E =

{
−λΨ(bi, h

−
i ) if 1− 〈w,Ψ(bi, h

−
i )〉>〈w,Ψ(bi, h

+
i )〉

λΨ(bi, h
+
i ) otherwise

(27)

F =

{
− n
n− Ψ(bi, h

−
i ) if − 〈w,Ψ(bi, h

−
i )〉 − 1 > 0

0 otherwise
(28)

G =

{
λΨ(bi, h

+
i ) if 1+〈w,Ψ(bi, h

+
i )〉>−〈w,Ψ(bi, h

−
i )〉

−λΨ(bi, h
−
i ) otherwise

(29)

B. Dual

In this section, we give the equation of the convex term for
a bag bi: vex(bi, h

+
i , h

−
i ) =

n
n+ max(0, 〈w,Ψ(bi, h

+
i )〉 − 1)

+λmax(1− 〈w,Ψ(bi, h
−
i )〉, 〈w,Ψ(bi, h

+
i )〉)

if i ∈ A+
n

n
n− max(0,−〈w,Ψ(bi, h

−
i )〉 − 1)

+λmax(1 + 〈w,Ψ(bi, h
+
i )〉,−〈w,Ψ(bi, h

−
i )〉)

if i ∈ A−n
(30)

APPENDIX C
ADDITIONAL RESULTS ON STANDARD MIL DATASETS

Finally, we provide paired t-test to assess the statistical
significance of the performance difference of our method
compared to its competitors (mi/MI-SVM, LSVM), on each
datasets. Table XI reports the critical values for different risks.
The results of paired t-test on image and molecule (resp. text)
datasets are report in Table XII (resp. Table XIII).

risk 5% 1% 0.1% 0.01%
tcrit 2.26 3.25 4.78 6.59

TABLE XI
CRITICAL VALUES FOR DIFFERENT RISKS (N=10)

method Eleph. Fox Tiger Musk1 Musk2
SyMIL / mi-SVM 9.24 21.52 11.16 5.92 10.22
SyMIL / MI-SVM 7.62 8.76 4.00 10.28 7.19
SyMIL / LSVM 10.97 7.99 7.69 14.44 10.22
SyMIL / miGraph 6.39 6.04 5.81 -0.18 -1.31

TABLE XII
PAIRED T-TEST RESULTS ON THE MOLECULE AND IMAGE DATASETS

method TST1 TST2 TST3 TST4 TST7 TST9 TST10
mi-SVM -0.52 11.88 7.56 18.90 2.74 9.11 11.74
MI-SVM 2.90 -1.44 22.58 11.27 11.62 47.70 27.41
LSVM -16.30 25.55 11.68 14.91 14.61 24.41 28.71

TABLE XIII
PAIRED T-TEST RESULTS ON THE TEXT DATASETS BETWEEN SYMIL AND

OTHERS METHODS

APPENDIX D
ADDITIONAL RESULTS ON MAMMAL DATASET

The significant tests for classification (resp. detection) are
in Table XIV (resp. XV), and the critical values are given in
Table XVI. SyMIL is significantly better than standard MIL
approaches in both cases.

method LSVM KLSVM M3E
ACC - SyMIL 8,77 6.78 2.67
MAP - SyMIL 7.32 3.09 4.42

TABLE XIV
MAMMAL DATASET: SIGNIFICANT TESTS FOR CLASSIFICATION

method LSVM KLSVM M3E
SyMIL - Train 29.3 24.2 8.6
SyMIL - Test 13.2 14.5 9.3

TABLE XV
MAMMAL DATASET: SIGNIFICANT TESTS FOR DETECTION
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risk 5% 1% 0.1%
tcrit 2.26 3.25 4.78

TABLE XVI
CRITICAL VALUES FOR DIFFERENT RISKS
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