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Introduction

Poisson noise (also called photon noise or shot noise [START_REF] Schottky | Über spontane stromschwankungen in verschiedenen elektrizitätsleitern[END_REF]) is due to a discrete ("quantized") nature of the signal measured by a detector. For instance, light can be considered as a discrete flow of individual "packets" (photons) that arrive to the detector randomly and independently from each other. As a result, photon counting obeys a classical Poisson statistics, and the number of photons y measured by a given detector element over a time interval t is described by the following probability distribution:

P(y|f ) = (f ) y y! e -f , ( 1 
)
where f is the expected number of photons in time interval t. This is the standard Poisson distribution with rate f . For large numbers, the Poisson distribution approaches a normal distribution, meaning that shot noise is practically indistinguishable from a true Gaussian noise, except in the case of very few elementary events (photons, electrons, etc.) that are individually observed. Since the standard deviation of the shot noise is equal to the square root of the expected number of incident photons f , the signal-to-noise ratio (SNR) is given by:

SNR = f √ f = √ f . ( 2 
)
This equation indicates that the SNR is large when f is large. However, in many applications (e.g., night vision, medical imaging, weather forecasting, astronomy, and spectral imaging), very few photons are collected by the detector, due to various constraints (weak light source, short exposure time, phototoxicity). This is referred to as photon-limited imaging. Thus, the limited number of available photons limits the SNR, due to the signal-dependent Poisson statistics. An approach to improve the SNR is to first reduce the dependence of the noise on the signal by an image transformation (e.g., Variable-Stabilizing Transformation (VST), multiscale Variable-Stabilizing Transformation (MVST), conditional variance stabilization (CVS), or Fisz transform [START_REF] Danielyan | Denoising of multispectral images via nonlocal groupwise spectrum-pca[END_REF][START_REF] Boulanger | Patch-based nonlocal functional for denoising fluorescence microscopy image sequences[END_REF][START_REF] Deledalle | Poisson nl means: Unsupervised non local means for poisson noise[END_REF][START_REF] Makitalo | On the inversion of the Anscombe transformation in lowcount Poisson image denoising[END_REF][START_REF] Makitalo | Optimal inversion of the anscombe transformation in low-count poisson image denoising[END_REF][START_REF] Boulanger | Non-parametric regression for patch-based fluorescence microscopy image sequence denoising[END_REF][START_REF] Zhang | Wavelets, ridgelets, and curvelets for poisson noise removal[END_REF][START_REF] Lefkimmiatis | Bayesian inference on multiscale models for poisson intensity estimation: Applications to photon-limited image denoising[END_REF][START_REF] Luisier | Fast interscale wavelet denoising of poisson-corrupted images[END_REF][START_REF] Anscombe | The transformation of poisson, binomial and negative-binomial data[END_REF][START_REF] Borovkov | Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition[END_REF][START_REF] Fisz | The limiting distribution of a function of two independent random variables and its statistical application[END_REF][START_REF] Fryzlewicz | A haar-fisz algorithm for poisson intensity estimation[END_REF][START_REF] Fryzlewicz | Goes-8 x-ray sensor variance stabilization using the multiscale data-driven haar-fisz transform[END_REF][START_REF] Jansen | Multiscale poisson data smoothing[END_REF][START_REF] Prucnal | Transformation of image-signal-dependent noise into image-signal-independent noise[END_REF][START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF][START_REF] Azzari | Variance stabilization for noisy+ estimate combination in iterative poisson denoising[END_REF]) and, then, to use methods that assume signal-independent noise [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF][START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF][START_REF] Hammond | Image modeling and denoising with orientation-adapted gaussian scale mixtures[END_REF][START_REF] Katkovnik | From local kernel to nonlocal multiple-model image denoising[END_REF]. Other approaches to the SNR improvement have also been proposed, such as maximum likelihood estimation [START_REF] Chan | Multilevel algorithm for a poisson noise removal model with total-variation regularization[END_REF][START_REF] Srivastava | Restoration of poisson noise corrupted digital images with nonlinear pde based filters along with the choice of regularization parameter estimation[END_REF][START_REF] Shepp | Maximum likelihood reconstruction for emission tomography[END_REF][START_REF] Van Kempen | Comparing maximum likelihood estimation and constrained tikhonov-miller restoration[END_REF][START_REF] Moon | Three dimensional imaging and recognition using truncated photon counting model and parametric maximum likelihood estimator[END_REF][START_REF] Bardsley | Tikhonov regularized poisson likelihood estimation: theoretical justification and a computational method[END_REF][START_REF] Johnathan | Regularization parameter selection methods for illposed Poisson maximum likelihood estimation[END_REF][START_REF] Le | A variational approach to reconstructing images corrupted by poisson noise[END_REF][START_REF] Giryes | Sparsity-based poisson denoising with dictionary learning[END_REF],Plug-and-Play scheme [START_REF] Rond | Poisson inverse problems by the plug-and-play scheme[END_REF], Deep convolutional denoising [START_REF] Remez | Deep convolutional denoising of low-light images[END_REF] Kullback-Leibler divergence [START_REF] Brune | Forwardbackward em-tv methods for inverse problems with poisson noise[END_REF][START_REF] Wen | Primal-dual algorithms for total variation based image restoration under poisson noise[END_REF][START_REF] Li | A reweighted l2 method for image restoration with poisson and mixed poisson-gaussian noise[END_REF], optimal weights filtering [START_REF] Jin | A new poisson noise filter based on weights optimization[END_REF] based on Non-Local Means approach [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], or Non-Local Principal Component Analysis (NLPCA) [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF].

NLPCA combines Principal Component Analysis (PCA) and sparse Poisson intensity estimation methods in a nonlocal estimation framework and takes into account the heteroscedastic nature of observations. It clusters (K-Means clustering) a set of patches extracted from the entire image into 14 groups, each group containing similar patches. Then, it separates noise and signal in each group by reducing the dimension of the data in the group using PCA. More precisely, most of the low-frequency information will be contained in the first few principal components and the other principal components, corresponding to the high-frequency information, will not be taken into account in the signal reconstruction. Therefore, NLPCA has lower efficiency with images rich in details [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF].

Theoretical analyses and simulation results of Jin et al. [START_REF] Jin | Nonlocal means and optimal weights for noise removal[END_REF][START_REF] Jin | Convergence theorems for the non-local means filter[END_REF] suggest that larger sizes of the window from which the patches are extracted do not necessarily produce better denoising results. More precisely, there is an optimal value of the window size for the best denoising results [START_REF] Jin | Nonlocal means and optimal weights for noise removal[END_REF][START_REF] Jin | Convergence theorems for the non-local means filter[END_REF]. The probability of similarity of patches is higher and the similarity estimation is more accurate for the patches extracted from the same area than for the patches extracted from different areas of the same image. Building on the results of that work [START_REF] Jin | Nonlocal means and optimal weights for noise removal[END_REF][START_REF] Jin | Convergence theorems for the non-local means filter[END_REF], we here propose a denoising method that is based on combining the NLPCA results obtained on different areas of the same image. The method first splits the given image into large pieces. Then, the pieces are individually denoised using NLPCA. Finally, the denoised pieces are combined into a full-size image. The information dimension (complexity) in a piece (local area) of the image is much lower than the complexity of information in the entire image. Therefore, it is easier to separate noise from signal in the local areas than in the entire image.

The approach that we have developed for Poisson denoising using the principle of piecewise PCA is referred to as PieceWise PCA (PWPCA) and it is described in this article. We show that it provides better results than several state-of-the-art approaches, including NLPCA. PWPCA was evaluated using standard real-space test images affected by Poisson noise as well as using single-particle X-ray diffraction images, such as those that can be collected with an X-ray free-electron laser (XFEL). XFEL experiments are currently under rapid development to allow high-resolution determination of biomolecular structures under near-physiological hydration conditions [START_REF] Hosseinizadeh | Conformational landscape of a virus by single-particle x-ray scattering[END_REF][START_REF] Miao | An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images[END_REF][START_REF] Seibert | Single mimivirus particles intercepted and imaged with an x-ray laser[END_REF][START_REF] Yefanov | Orientation determination in single particle x-ray coherent diffraction imaging experiments[END_REF]. The diffraction image collected by XFEL is, in a first approximation, the intensity (the square of the amplitude) of the 2D Fourier transform of the object's 2D real-space projection (or a central slice of the object's 3D Fourier-transform intensity, according to the central slice theorem), whereas the phase information cannot be collected experimentally. One diffraction image contains the diffraction data collected from one biomolecular particle at a random and unknown orientation in 3D space. Therefore, to compute a 3D reconstruction from the 2D diffraction data collected from many copies of the same particle, their orientations (the orientation of different particles hit by the XFEL beam) and phases should be determined computationally. The amplitude volume can be obtained from the square root of the volume assembled from the oriented diffraction images. The phase images can be retrieved from the amplitude images and assembled in 3D at the determined orientations or the 3D phase volume can be retrieved from the 3D amplitude volume, and the phase retrieval is usually done with the standard Fienup method or its variants [START_REF] Miao | An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images[END_REF][START_REF] Fienup | Reconstruction of an object from the modulus of its fourier transform[END_REF][START_REF] Tegze | Atomic structure of a single large biomolecule from diffraction patterns of random orientations[END_REF]. The real-space 3D object can then be computed by inverse Fourier transform of the combined amplitude and phase volumes. Both orientation and phase determination are difficult tasks because the majority of nonzero diffraction-image pixels are concentrated in a very small central region of the diffraction image and the pixel intensities obey Poisson statistics. As very few XFEL experimental data sets had been obtained so far, we have performed experiments using simulated data, as commonly done when validating new methods for XFEL. To the best of our knowledge, diffraction data restoration using Poisson denoising methods has not been previously addressed.

The remaining part of the article is organized as follows. Basic concepts of NLPCA are provided in Section 2. PWPCA is described in Section 3. Results obtained with PWPCA using simulated noisy real-space images and using simulated XFEL data are presented and discussed in Sections 4 and 5, respectively. Conclusions are provided in Section 6.

Background: Non-Local Principal Component Analysis

In this section, we briefly remind the NLPCA approach [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF] that we here propose to be used in a piecewise fashion over an image (Section 3). The set of image pixels is denoted by I = {x = (x (1) , x (2) )|x (1) , x (2) 

= 1, 2, • • • , √ M }
, where both M > 0 and √ M are integers. Let y = {y(x)|x = (x (1) , x (2) ) ∈ I} be the observed image obtained by an image acquisition device and each y(x) is an independent random Poisson variable given by (Eq. 1), whose mean f (x) > 0 is the underlying intensity value to be estimated. Let Y be the M × N matrix of all denoising patches of size √ N × √ N pixels reordered in N -long vectors referred to as denoising vectors (one patch per image pixel for the image size of √ M × √ M pixels). Y i,j is the jth pixel in the ith patch of the noisy image. Let F be defined similarly to Y for the underlying intensity f = {f (x)|x = (x (1) , x (2) ) ∈ I}.

The estimate of F is given by

F i,j = exp ( [U * V * ] i,j ) , i = 1, 2, • • • , M, j = 1, 2, • • • , N, (3) 
where

(U * , V * ) = arg min (U,V) L(U, V). (4) 
In Eq. 4, the matrices U/U * and V/V * have dimensions M × l and l × N and are referred to as matrix of coefficients and matrix of dictionary components (axes), respectively. L is the loss function that accounts for the Bregman divergence D Φ to measure the proximity between two matrices X and Y of size M × N :

D Φ (X||Y ) = Φ(Y ) -Φ(X) -T r((∇Φ(X)) ⊤ (X -Y )), (5) 
where

Φ(θ) =< exp(θ)|1n >= ∑ n i=1 e θi , < a|b > is inner prod- uct of a and b, θ = (θ 1 , • • • , θn) ⊤ , exp is the component-wise exponential function: exp : θ → (e θ1 , • • • , e θn ) ⊤ , 1n is the vector (1, • • • , 1) ⊤ ∈ R n and ∇Φ(θ) is the gradient of Φ(θ). Moreover ∇Φ(θ) = exp(θ).
The use of Eq. 5 amounts to searching for U and V that minimize the following loss function:

L(U, V) = M ∑ i=1 N ∑ j=1 exp ( [UV] i,j ) -Y i,j [UV] i,j , (6) 
the rows of V are dictionary components and l (l ≪ M ) is the number of components. The purpose of the rank l is to regularize the solution.

More details on the NLPCA algorithm are provided in Appendices A and B, in the context of denoising image pieces (Section 3.2). 

New Approach: Poisson Piecewise Principal Component Analysis

The PWPCA approach proposed here consists of three steps. The given image is first divided into a set of overlapping image pieces. Then, Poisson denoising of each individual piece is performed. Finally, all denoised pieces are combined, with some weights, into a full (original size) image. In the remaining part of this section, we describe in detail each of the three steps. The pseudocode of the algorithm is provided in Algorithm 1.

Extraction of image pieces

The first step is to split the given image y i.e. its pixels I into a set of pieces of size (1) , x (2) ) ∈ I|x (1) 

√ M ′ × √ M ′ pixels. The set of pixels in each image piece yq, q = 1, 2, • • • , Q is denoted by Bq = {x = (x
∈ [x (1) q -m, x (1) q + m], x (2) ∈ [x (2) q -m, x (2) 
q + m]}, where m is the number of pixels covered by the image piece from its central pixel and xq = (x

(1) q , x (2) q ) are the coordinates of the central pixel, meaning that √ M ′ = 2 × m + 1. This produces the total number of √ Q × √ Q pieces, where √ Q = ⌈( √ M - √ M ′ )/( 2 3 √ M ′
)⌉ and ⌈t⌉ = min{n ∈ Z|t ≤ n} is the top integral function whose value is the smallest integer greater than the independent variable or equal to it. Let us define T as

T = √ M - √ M ′ .
Then, the central pixel of each piece, xq, is located in the set {(x (1) , x (2) )|x (1) , x (1) 

∈ {1 + m, ⌈T / √ Q⌉ + 1 + m, ⌈2T / √ Q⌉ + 1 + m, T + 1 + m}} and the sets of pixels Bq, q = 1, 2, • • • , Q cover I completely.
As shown in the Fig. 1, the pieces overlap to avoid block type of artifacts and each pixel is covered at least once but not more than 4 times. Note here that each piece of the image (Fig. 1) will be further split into smaller pieces (as it will explained in Section 3.2) and that these sub-pieces will here be referred to as "denoising patches" (Fig. 2), as was the case in the original publication ( [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF]).

Denoising of each image piece

In this step, Poisson denoising of each image piece yq = {y(x)|x = (x (1) , x (2) ) ∈ Bq} is preformed using the NLPCA approach (Section 2) that was adapted to process pieces of an image.

Let Yq be the M ′ × N matrix of all (M ′ ) patches of size √ N × √ N pixels extracted from yq (one patch per pixel of yq) and reordered in N -long vectors (referred to as denoising vectors). 

, q = 1, 2, • • • , Q, each containing M ′ pixels. 3: for each q = 1, 2, • • • , Q do 4:
Patchization: create M ′ × N matrix Yq of all denoising vectors (one patch per pixel of piece yq).

5:

Clustering: create K clusters of patches using K-means algorithm (see Algorithm 2 in Appendix B). The kth cluster (represented by a matrix Y k q ) has M k q elements. 6:

for each cluster k do 7:

Initialize U 0 q = randn(M k q , l) and V 0 q = randn(l, N ) 8:

while t ≤ N iter and test > ε stop do 9:

for all i ≤ M k q do 10:
Update the ith row of U t q using Eq. 20 (Appendix A) 11:

end for 12:
for all j ≤ l do 13:

Update the jth column of V t q using Eq. 21 (Appendix A) 

F k q = exp(U t q V t q )
18:

end for Calculate f (x) using Eq. ( 10) 24: end for Let Fq be defined similarly to Yq for the underlying intensity to be estimated fq = {f (x)|x = (x (1) , x (2) ) ∈ Bq}. We approximate each Fq, q = 1, 2, • • • , Q as follows:

Fq ≈ exp ( [UqVq] i,j ) i ∈ {1, 2, • • • , M ′ }, j ∈ {1, 2, • • • , N }, ( 7 
)
where Uq is the M ′ × l matrix of coefficients, Vq is the l × N matrix of dictionary components or axes, and l ≪ M ′ .

Given Yq ∈ R M ′ ×N , with Y q,i,j being the jth pixel in the ith patch, the underlying intensity Fq is estimated by minimizing the following loss function: [START_REF] Zhang | Wavelets, ridgelets, and curvelets for poisson noise removal[END_REF] with respect to the matrices Uq and Vq. The minimization of L is done using Newton's method (for more details, see Appendix A).

L(Uq, Vq) = M ′ ∑ i=1 N ∑ j=1 exp ( [UqVq] i,j ) -Y i,j [UqVq] i,j
For each image piece yq, we separate its patches into different groups (clusters) according to their similarity and apply matrix factorization on each cluster, which allows representing the data within each cluster with a lower dimensional dictionary and results in more efficient denoising and higher SNR in the denoised image. The clustering of patches of each image piece is here done using K-means clustering algorithm (for more details, see Appendix B). The K-means algorithm is used in the original NLPCA approach as well, where it serves to cluster patches extracted from the entire image [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF]. However, denoising results may be poor when clustering patches of the entire noisy image because noise lowers the clustering accuracy and large cluster dimensions make the matrix factorization difficult. As a remedy to this problem, we here propose to perform a separate patch clustering for each piece extracted from the image.

The denoising of each image piece is vizualized in Fig. 2. Note here that the reprojection of patches in Fig. 2 means a reconstitution of the original, full-size piece of the image from the denoised patches. During the reprojection, the overlapping pixels are averaged.

Full-size image reconstitution

The final entire estimate f is computed by a weighted average of the piecewise estimates fq obtained as explained in Section 3.2. Let pixel xq from the set Bq be the center pixel of the denoised image piece fq (whose size is

√ M ′ × √ M ′ pixels, √ M ′ = 2 × m + 1
). In the merging procedure, each pixel x ∈ I is first assigned the following weight [START_REF] Jin | A new poisson noise filter based on weights optimization[END_REF]:

κq,m (x) =            m ∑ s=∥x-xq∥ ∞ 1 m(2s+1) 2 if x ̸ = xq and x ∈ Bq, m ∑ s=1 1 m(2s+1) 2 if x = xq, 0 if x ∈ I \ Bq, (9) 
where ∥ • ∥∞ denotes supremum norm. Then, the full-size estimate f is obtained as follows ( [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF]):

f (x) = Q ∑ q=1 κq,m(x) fq(x) Q ∑ q=1 χq,m(x)κq,m(x) , ∀x ∈ I, (10) 
where

χq,m(x) = { 1, x ∈ Bq, 0, x ∈ I \ Bq.
For the purpose of illustration, we here give an example of the weighting kernel if the entire image is processed as a single piece (i.e. Q = 1) and the image size is 5 × 5 pixels (m = 2). The weighting kernel in this case (κ 1,2 ) is as follows: 

           1 2 +       0 0 0 0 0 0 1 18 1 18 1 18 0 0 1 18 1 18 1 18 0 0 1 18 1 18 1 18 0 0 0 0 0 0       1 2 =      
      1 .
However, note that the number of image pieces is usually larger than 1 and m is usually much larger than 2 (see Eq 11). 

which takes into account the size of the images used in our experiments (256 × 256 or 257 × 257 pixels). All other parameters are the same as in [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF] (Table 1).

Fig. 3:

No-noise images used in this article and synthetic Poissonnoise images with Peak = 2 ("Spots", "Galaxy", "Cells", "Barbara", "Peppers", "House", "Camera", "Bridge"). 

Computation complexity

The complexity of NLPCA is O(M lN 32 ) (cf. [START_REF] Giryes | Sparsity-based poisson denoising with dictionary learning[END_REF]). As explained in section 3.1, the method proposed here splits the given image into pieces so that each pixel is covered not more than 4 times. Thus, the complexity of the proposed method is not more than O(4M lN 3 2 ), meaning that the proposed method has the same order of computational cost as NLPCA.

Experiments with standard test images

In this section, we show results of experiments conducted with the new method (PWPCA) using standard test images with Poisson noise. Also, we compare the results of PWPCA with those of several state-of-the-art denoising methods, namely PURE-LET [START_REF] Luisier | Fast interscale wavelet denoising of poisson-corrupted images[END_REF], BM3D [START_REF] Makitalo | Optimal inversion of the anscombe transformation in low-count poisson image denoising[END_REF][START_REF] Makitalo | A closed-form approximation of the exact unbiased inverse of the anscombe variance-stabilizing transformation[END_REF], NLPCA [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF][START_REF] Salmon | Poisson noise reduction with non-local PCA[END_REF], and SPDA [START_REF] Giryes | Sparsity-based poisson denoising with dictionary learning[END_REF][START_REF] Giryes | Sparsity based poisson denoising[END_REF].

The noise-free standard test images (image size: 256 × 256 pixels) were graciously obtained from Salmon et al. [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF] and Giryes and Elad [START_REF] Giryes | Sparsity-based poisson denoising with dictionary learning[END_REF]. A noise-free image f with the Peak value P eak was obtained as follows:

f (x) = P eak × S(x)/ max{S(x)|x ∈ I},
where S is a standard test image. The image with Poisson noise (y) corresponding to image f was generated using MATLAB. The standard test images with P eak = 2 and Poisson noise are presented in Fig. 3. When the image intensity is high, the Poisson distribution approaches a normal distribution. In this section, we show the results obtained with images of low intensities, characterized by Peak values of 0.5, 1, 2 and 4.

The denoising results obtained with different methods were evaluated using the so-called Peak Signal-to-Noise Ratio (PSNR) [START_REF] Makitalo | Optimal inversion of the anscombe transformation in low-count poisson image denoising[END_REF], expressed in decibels (dB) as follows:

PSNR = 10 log 10 P eak 2 MSE , ( 12 
)
MSE = 1 card(I) ∑ x∈I (f (x) -f (x)) 2 , ( 13 
)
where card(I) is the number of elements of the set I, f is the noisefree image and f is the denoised image.

The PWPCA and NLPCA denoising results for images with these Peak values, in terms of PSNR, and the difference between the PSNR values obtained with these two methods are shown in Table 2. The PSNR results of all tested methods are listed in Table 3. The proposed PWPCA method achieves 0.25db -1.08db improvement over the NLPCA method, on average, for all four noise levels and the PSNR difference increases significantly as the Peak value increases (Table 2). Also, the proposed PWPCA method achieves the highest average PSNR value in all four noise cases (Table 3). In Fig. 4 and Fig. 5, we compare the visual quality of images denoised by different methods. Fig. 4 shows that PWPCA outperforms the other methods regarding the restoration of image details from the noisy observation such as in the tripod leg area of ąřCamera ąś image, as SPDA and NLPCA result in oversmoothing and PURE-LET and BM3D produce more artifacts (the area indicated by arrows in Fig. 4). Furthermore, Fig. 5 shows that PWPCA produces fewer artifacts and preserves the texture better than other methods (e.g., in the area indicated by arrows in Fig. 5). In summary, PWPCA has strong denoising capability and produces better quantitative (PSNR) and visual results than other tested methods.

Experiments with simulated XFEL diffraction data

In this section, we show an application of Poisson denoising methods in 3D reconstruction of biomolecular structures from single-particle XFEL diffraction data. As very few single-particle XFEL experimental data were obtained so far, we here used simulated data, which is common in evaluating new methods for XFEL. Fig. 8: Fourier shell correlation between the density map of the structure used to simulate XFEL diffraction data (Fig. 7b) and 3D reconstructions from four data sets for the beam intensity of 10 14 photons/pulse/µm 2 (original, processed by PWPCA, processed by BM3D, and ground-truth sets, with ground-truth phases and orientations) (Fig. 10a-d). XFEL diffraction images were simulated using an atomicresolution structure of yeast elongation factor 2 obtained by Xray crystallography, which is available in the Protein Data Bank (PDB entry: 1N0U [START_REF] Jørgensen | Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase[END_REF]) (Fig. 6a). The simulation was done using SPSIM [START_REF] Maia | Single particle diffraction simulator[END_REF], for two different XFEL beam intensities i.e. 10 13 photons/pulse/µm 2 and 10 14 photons/pulse/µm 2 . We found that 10 13 photons/pulse/µm 2 was amongst the lowest beam intensities that could be used with this structure and that the Peak value of the simulated diffraction images was larger than 3 in both cases of beam intensity. Though Table 3 was obtained with a different type of data, it shows that, for P eak > 3, BM3D is the next best performing method after PWPCA. Thus, the results of processing these data using PWPCA are here compared with those obtained using BM3D.

(i) (j) (k) (l) (q) (r) (s) (t) (m) (n) (o) (p) (u) (v) (w) (x) (a) (b) (c) (d) (e) (f ) (g) (h)
The simulated data contain 642 XFEL diffraction images (257 × 257 pixels) for each beam intensity, corresponding to 642 different XFEL beam directions (i.e. to 642 projection directions) uniformly distributed over a sphere with an angular sampling rate of 8 • . In addition, we computed the amplitudes and the phases of the 2D Fourier transforms of the object's 2D projections (or, according to the central slice theorem, central slices of the object's 3D Fourier transform at the same orientations as those of the simulated diffraction images). Two examples of diffraction images (corresponding to two different beam orientations) for the beam intensity of 10 14 photons/pulse/µm 2 are provided in Fig. 7a,e and the same two examples for the beam intensity of 10 13 photons/pulse/µm 2 are provided in Fig. 10a,e. One can notice a concentration of nonzero pixels in a small central region of the image (50 × 50 pixels) and a smaller number of non-zero pixels in the case of lower beam intensity (Figs. 7i,m and10i,m). These diffraction images can be compared with the Fourier intensity data (Figs. 7d,h and 10d,h), whose central regions are shown in Figs. 7l,p and 10l,p. The Fourier intensity data represent expected mean value (the diffraction data as they would be obtained in ideal conditions that are unachievable in practice) and will be here referred to as ground-truth diffraction data. Instead of showing the phase that corresponds to a simulated diffraction image (here referred to as ground-truth phase), we here show the corresponding real-space image. The real-space images obtained by combining the square root of diffraction images and the phase images for the two example beam orientations and intensities are shown in Figs. 7q,u and 10q,u while those obtained by combining the Fourier amplitude and phase images (here referred to as ground-truth real-space images) are shown in Figs. 7t,x and10t,x.

The PWPCA data processing was performed using the parameters provided in Table 1 (with √ M ′ = 101, which corresponds to P eak > 3 according to Eq. 11) while the BM3D data processing was preformed using the same parameters as in [START_REF] Makitalo | Optimal inversion of the anscombe transformation in low-count poisson image denoising[END_REF] ,o and10k,o). One can note that both methods enhance the given diffraction patterns and that PWPCA results in more non-zero pixels recovered than BM3D, which is particularly visible in the case of lower beam intensity (Fig. 10). The real-space images obtained by combining the results of PWPCA (or BM3D) and the ground-truth phases are more similar to the ground-truth real-space images in the case of higher beam intensity (Figs. 7r,v and 7t,x) than in the case of lower beam intensity (Figs. 10r,v and10t,x). In both intensity cases, the 3D structure is globally well recovered, though its resolution is higher in the case of higher beam intensity (Figs. 89) than in the case of lower beam intensity . Indeed, the Fourier shell correlation (FSC) between the recovered density map of the ground-truth structure (Fig. 6b; the density map was obtained using the method introduced in [START_REF] Sorzano | Fast and accurate conversion of atomic models into electron density maps[END_REF]) and the 3D reconstructions (reconstruction in Fourier space using Kaiser-Bessel interpolation) from four data sets for each of the two beam intensities (original, processed by PWPCA, processed by BM3D, and ground-truth sets, with ground-truth phases and groundtruth orientations; Figs. 9 and 12) shows that data processing using any of the two methods (PWPCA or BM3D) improves the resolution of the 3D reconstruction (the spatial frequencies at which the FSC falls below 0.5 are higher for the data processed by PWPCA and BM3D than for the original data) and that this resolution improvement is slightly worse in the case of lower beam intensity (Fig. 11) than in the case of higher beam intensity (Fig. 8). Interestingly enough, PWPCA performs slightly better than BM3D regarding the resolution improvement in the case of lower beam intensity (the FSC falls below 0.5 at a higher spatial frequency when using PWPCA than when using BM3D; Fig. 11).

The 3D reconstruction step requires that phases and orientations of all diffraction images are known (determined by some means prior to 3D reconstruction). As the tasks of orientation determination and phase retrieval are not trivial and prone to errors, we used the groundtruth phases and orientations for the 3D reconstructions. Also, we used the same 3D reconstruction algorithm for all 3D reconstructions. Thus, differences between 3D reconstructions obtained from data processed with PWPCA and BM3D can fully be explained by differences in denoising results of the two methods. 

(q) (r) (s) (t) (m) (n) (o) (p) (u) (v) (w) (x) (i) (j) (k) (l) (e) (f ) (g) (h) (a) (b) (c) (d)

Conclusions

In this article, we presented a new method for reducing Poisson noise from images and compared it with several state-of-the-art methods. We showed that the proposed method, referred to as Piecewise Principal Component Analysis (PWPCA), has the best overall performance with respect to other methods when denoising images with Peak = 0.5, 1, 2 and 4. The overall performance of a method for a particular Peak value was evaluated by averaging the Peak Signalto-Noise Ratio (PSNR) values that the given method achieved on different images with the same, given value of Peak. The visual quality of recovered images was consistent with the obtained PSNR values.

Additionally, we showed that PWPCA can be used to preprocess single-particle XFEL diffraction data of biological macromolecules in order to improve the resolution of 3D reconstruction of the macromolecular structure from such data. In this context, PWPCA was compared with BM3D. The two methods provided similar results in the case of high XFEL beam intensities, such as 10 14 photons/pulse/µm 2 . Furthermore, PWPCA provided slightly better results than BM3D in the case of low beam intensities, more difficult to work with, such as 10 13 photons/pulse/µm 2 . These experiments were performed using simulated data. For our future work, we plan to extend the method to applications with experimental XFEL data, which should allow gaining new biological insights.

MATLAB implementation of PWPCA is available from the authors upon request. (The Estimation step: Center updates) 10:

for each k = 1, 2, • • • , K do 11:

µ k := 1 ♯C k ∑ Yi,:∈C k Y i,:
12:

end for 13: until convergence

Fig. 1 :

 1 Fig. 1: Piecewise image denoising in PWPCA. Image pieces (right) overlap (left) to eliminate block type of artifacts.

Fig. 2 :

 2 Fig. 2: Denoising of each image piece in PWPCA.

Algorithm 1 1 :

 11 Pseudocode of the Poisson Piecewise PCA (PWPCA) method proposed here Require: Noisy image y Parameters: Number of pixels in square-size image pieces, M ′ (piece size: √ M ′ × √ M ′ pixels); length of denoising vectors containing vectorized denoising patches of square size, N (denoising patch size: √ N × √ N pixels); number of patch clusters for each image piece, K; number of dictionary components, l; maximum number of iterations, N iter ; stopping tolerance, ε stop . Ensure: Estimated image f 2: Partitioning: divide image y into square-size pieces yq

19 : 20 :

 1920 Concatenation: fuse the denoising clusters in patches F k q Reprojection: To get the estimate of the qth image piece ( fq), average the pixel estimates in overlapping areas 21: end for 22: for each x ∈ I do 23:

Fig. 4 :

 4 Fig. 4: Denoising of Camera (Peak=0.5) using different methods, with the resulting PSNR indicated in decibels.

Fig. 5 :

 5 Fig. 5: Denoising of Barbara (Peak=1) using different methods, with the resulting PSNR indicated in decibels.

Fig. 6 :

 6 Fig. 6: Structure used to simulate XFEL diffraction data and the corresponding density map. (a) Atomic-resolution structure of yeast elongation factor 2 obtained by X-ray crystallography (from Protein Data Bank; PDB: 1N0U). (b) Density map computed from the structure shown in (a), used for computing the Fourier shell correlation curves shown in Fig. 9 and Fig.12.

Fig. 7 :

 7 Fig. 7: Filtering of diffraction images simulated for the beam intensity of 10 14 photons/pulse/µm 2 and the influence of filtering of diffraction images on real-space projection images. (a,e) Two examples of simulated diffraction images corresponding to two different beam orientations (257 × 257 pixels). (b,f) Filtering of images shown in (a,e) using PWPCA, respectively. (c,g) Filtering of images shown in (a,e) using BM3D, respectively.(d,h) Ground-truth diffraction images related to the simulated diffraction images shown in (a,e), respectively (Fourier intensity data representing the diffraction data as they would be obtained in ideal conditions that are unachievable in practice). (i-p) Central region (50 × 50 pixels) of the diffraction images shown in (a-h), respectively. (q-x) Real-space images obtained by combining the square root of the data shown in (a-h) and the ground-truth phases (not shown), respectively.

Fig. 9 :

 9 Fig. 9: 3D reconstructions in the case of beam intensity of 10 14 photons/pulse/µm 2 . (a-d) 3D reconstructions from the following four data sets: the original data set (a), the set processed by PWPCA (b), the set processed by BM3D (c), and the ground-truth data set (d) (ground-truth phases and orientations were used in each set). (e-f) Ground-truth atomic structure (f) and the corresponding density map (e), which are also shown in Fig. 7b,a, respectively.

  . The results of PWPCA for the two example beam orientations and intensities are shown in Figs. 7b,f and 10b,f (the central regions are shown in Figs. 7j,n and 10j,n) while those of BM3D are shown in Figs. 7c,g and 10c,g (the central regions are shown in Figs. 7k

Fig. 10 :

 10 Fig. 10: Filtering of diffraction images simulated for the beam intensity of 10 13 photons/pulse/µm 2 and the influence of filtering of diffraction images on real-space projection images. (a,e) Two examples of simulated diffraction images corresponding to two different beam orientations (257 × 257 pixels). (b,f) Filtering of images shown in (a,e) using PWPCA, respectively. (c,g) Filtering of images shown in (a,e) using BM3D, respectively.(d,h) Ground-truth diffraction images related to the simulated diffraction images shown in (a,e), respectively (Fourier intensity data representing the diffraction data as they would be obtained in ideal conditions that are unachievable in practice). (i-p) Central region (50 × 50 pixels) of the diffraction images shown in (a-h), respectively. (q-x) Real-space images obtained by combining the square root of the data shown in (a-h) and the ground-truth phases (not shown), respectively.

Fig. 11 :

 11 Fig.11: Fourier shell correlation between the density map of the structure used to simulate XFEL diffraction data (Fig.7b) and 3D reconstructions from four data sets for the beam intensity of 10 13 photons/pulse/µm 2 (original, processed by PWPCA, processed by BM3D, and ground-truth sets, with ground-truth phases and orientations) (Fig.13a-d).

Fig. 12 :

 12 Fig. 12: 3D reconstructions in the case of beam intensity of 10 13 photons/pulse/µm 2 . (a-d) 3D reconstructions from the following four data sets: the original data set (a), the set processed by PWPCA (b), the set processed by BM3D (c), and the ground-truth data set (d) (ground-truth phases and orientations were used in each set). (e-f) Ground-truth atomic structure (f) and the corresponding density map (e), which are also shown in Fig. 7b,a, respectively.

Algorithm 2 1 : 2 : repeat 3 : 5 :

 21235 Bregman clusteringRequire: Data points: {Y i,: } M ′ i=1 ∈ R N , number of clusters: K, Bregman divergence: D Φ given by (5) Ensure: Clusters centers: {µ k } K k=1 , partition associated:{C k } K k=1 Initialize {µ k } K k=1 by randomly selecting K elements among {Y i,: } M ′ i=1 (The Assignment step: Cluster updates) 4: Set C k := ∅, 1 ≤ k ≤ K for each i = 1, 2, • • • , M ′ do 6: C k * := C k * ∪ {Y i,: } 7: k * = arg min k ′ =1,••• ,K D Φ (Y i,: ||µ ′ k )

Table 1

 1 PWPCA parameters and their values in the experiments shown in this articleParameters of the PWPCA method are listed in Table1, together with their values in the experiments shown here (Sections 4 and 5). The image piece size is defined as follows:

	Parameter	Meaning	Value
	M ′	Image piece size	See Eq. (11)
	N	Denoising patch size	400 (=20 × 20)
	l	Number of dictionary	4
		components (axes)
	K	Number of clusters	14
	N iter	Iteration limit	20
	ε stop	Stoping tolerance	10 -1
	3.4 Parameters	
	√ M ′ =	    

257 P eak ≤ 0.3, 161 0.3 < P eak ≤ 0.8, 121 0.8 < P eak ≤ 3, 101 P eak > 3,

Table 2

 2 Comparison between PWPCA and NLPCA. ∆PSNR is The difference PSNR value between them. The "Average" means the average of PSNR values for all images denoised with the same method.

	Method	Peak Spots Galaxy Cells Barbara Peppers House Camera Bridge	Average
	NLPCA	0.5	28.02	24.59 22.81	18.50	18.77	20.89	19.36	18.49	21.43
	PWPCA	0.5	28.99	24.74 23.08	18.58	18.87	21.04	19.51	18.59	21.68
	∆PSNR	0.5	0.97	0.15	0.27	0.08	0.10	0.15	0.15	0.10	0.25
	NLPCA	1	30.95	25.37 24.13	19.19	19.64	22.19	20.34	18.98	22.60
	PWPCA	1	30.81	25.52 24.57	19.62	19.92	22.78	20.59	19.44	22.90
	∆PSNR	1	-0.14	0.15	0.44	0.43	0.28	0.59	0.25	0.46	0.30
	NLPCA	2	34.07	25.73 25.57	19.67	20.63	23.51	20.76	19.52	23.68
	PWPCA	2	34.82	26.16 25.92	20.63	21.05	24.23	21.47	20.03	24.29
	∆PSNR	2	0.75	0.43	0.35	0.96	0.42	0.72	0.71	0.51	0.61
	NLPCA	4	35.01	26.75 26.34	20.36	20.97	24.81	21.15	20.25	24.46
	PWPCA	4	36.24	27.60 27.01	21.78	22.41	26.21	22.09	20.95	25.54
	∆PSNR	4	1.23	0.85	0.67	1.42	1.44	1.40	0.94	0.70	1.08

Table 3

 3 Comparison of PWPCA against several other methods using synthetic Poisson-noise images with different Peak values and the PSNR measure (in decibels).The best PSNR results are marked in bold. The "Average" means the average of PSNR values for all images denoised with the same method.

	Method	Peak Spots Galaxy Cells Barbara Peppers House Camera Bridge	Average
	PURE-LET	0.5	25.93	24.13	22.19	18.11	18.18	20.11	18.67	18.30	20.70
	BM3D	0.5	23.82	24.75	22.66	18.04	18.48	20.36	18.66	18.36	20.64
	SPDA	0.5	28.34	25.30	23.48	18.53	18.66	20.59	18.80	18.54	21.53
	NLPCA	0.5	28.02	24.59	22.81	18.50	18.77	20.89	19.36	18.49	21.43
	PWPCA	0.5	28.99	24.74	23.08	18.58	18.87	21.04	19.51	18.59	21.68
	PURE-LET	1	27.34	24.98	23.45	18.87	19.33	21.37	19.83	19.06	21.78
	BM3D	1	24.84	25.13	24.36	18.92	20.01	22.34	20.49	19.18	21.91
	SPDA	1	31.14	25.62	24.76	19.39	19.99	22.63	20.17	19.21	22.86
	NLPCA	1	30.95	25.37	24.13	19.19	19.64	22.19	20.34	18.98	22.60
	PWPCA	1	30.81	25.52	24.57	19.62	19.92	22.78	20.59	19.44	22.90
	PURE-LET	2	29.59	26.20	24.88	19.71	20.59	22.37	20.86	19.87	23.00
	BM3D	2	27.59	26.24	25.68	20.49	22.10	23.95	22.23	20.26	23.56
	SPDA	2	32.60	26.47	25.98	19.98	21.23	25.05	21.49	20.14	24.11
	NLPCA	2	34.07	25.73	25.57	19.67	20.63	23.51	20.76	19.52	23.68
	PWPCA	2	34.82	26.16	25.92	20.63	21.05	24.23	21.47	20.03	24.29
	PURE-LET	4	31.60	27.39	26.00	20.46	21.86	23.90	22.12	20.96	24.29
	BM3D	4	30.82	27.59	27.06	22.24	24.19	26.13	24.06	21.62	25.46
	SPDA	4	34.25	27.22	26.71	20.52	22.09	26.02	21.87	20.55	24.90
	NLPCA	4	35.01	26.75	26.34	20.36	20.97	24.81	21.15	20.25	24.46
	PWPCA	4	36.24	27.60	27.01	21.78	22.41	26.21	22.09	20.95	25.54
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APPENDIX A. Newton Method for Minimizing L

The estimate of Fq is given by

where the elements of the matrix Fq are exp

q ∈ R M ′ ×l and V * q ∈ R l×N are found by minimizing, with respect to Uq and Vq, the loss function L given by

(15) We use Newton method [START_REF] Roy | Finding Approximate POMDP solutions Through Belief Compression[END_REF][START_REF] Gordon | Generalized 2 Linear 2 Models[END_REF] to minimize L. As L is not convex jointly in Uq and Vq, the minimization is done by solving two separate partial optimization problems (the problem is convex for one variable fixed and the other one varying).

The gradient of L(Uq, Vq) with respect to the matrix Uq is given by

and the gradient of L(Uq, Vq) with respect to the matrix Vq is given by

Using element-wise representation, this is equivalent to [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF] and

In element-wise form, the Hessian matrices lN diagonal matrix) are respectively written as follows:

and

To facilitate the calculation, let us introduce the function

) ⊤ that transforms a matrix into a single column (concatenates the columns) and the function Vect R Vect R :

that transforms a matrix into a single row (concatenates the rows). The Newton updating steps for Uq and Vq can then be written as follows:

and

q )).

Considering [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF], the ith row of U

, denoted by U (t+1) q,i,: , is updated as follows:

where D i is a diagonal matrix of size N × N i.e.

The term V (t+1) q,:,j , the jth column of V (t+1) q

, is updated in the same way as follows:

where E j is a diagonal matrix of size M ′ × M ′ i.e.

q ] M ′ ,j )).

APPENDIX B. Patch clustering algorithm

The K-means clustering algorithm can be generalized using Bregman divergences (Eq. 5), which was introduced in [START_REF] Banerjee | Clustering with bregman divergences[END_REF] and refereed to as Bregman clustering. We have adapted this algorithm to our piecewise processing approach as shown in Algorithm 2.