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Key Points (Word Count = 119) 52 

Question 53 

Can Bayesian analysis clarify the interpretation of clinical trial results? 54 

 55 

Findings 56 

In a post hoc Bayesian analysis of the recent EOLIA (ECMO to Rescue Acute Lung Injury) trial, the 57 

posterior probability of mortality benefit (relative risk<1) ranged between 88% and 99% given a range of 58 

prior assumptions reflecting varying degrees of skepticism and enthusiasm regarding previous evidence 59 

for the benefit of ECMO. Probabilities varied according to the definition of minimum clinically important 60 

mortality benefit; for example, the posterior probability of relative risk <0.67 ranged between 0% to 48% 61 

given the same range of prior assumptions. 62 

 63 

Meaning 64 

Information about the posterior probability of treatment effect provided by Bayesian analysis may help to 65 

clarify the interpretation of clinical trial findings.   66 
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Abstract (Word Count = 445) 67 

Importance 68 

Bayesian analysis of clinical trial data may provide useful information to aid in study interpretation, 69 

especially when trial evidence suggests that the benefits of an intervention are uncertain, such as in a trial 70 

that evaluated early extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress 71 

syndrome (ARDS).  72 

 73 

Objective 74 

To demonstrate the potential utility of Bayesian analyses by estimating the posterior probability, under 75 

various assumptions, that early ECMO was associated with reduced mortality in patients with very severe 76 

ARDS in a recent randomized trial. 77 

 78 

Design and Evidence 79 

A post hoc Bayesian analysis of data from a randomized clinical trial (ECMO to Rescue Acute Lung 80 

Injury, EOLIA) that included 249 patients with very severe ARDS who had been randomized to receive 81 

early ECMO (n=124; mortality at 60 days, 35%) versus initial conventional lung-protective ventilation 82 

with the option for rescue ECMO (n=125, mortality at 60 days, 46%). Statistical prior distributions were 83 

specified to represent varying levels of pre-existing enthusiasm or skepticism for ECMO and by Bayesian 84 

meta-analysis of previously published studies (with downweighting to account for differences between 85 

studies). The relative risk (RR), credible interval (CrI), absolute risk reduction (ARR), and probability of 86 

clinically important mortality benefit (varying from RR<1 to RR<0.67 and ARR from ≥2% to ≥20%) 87 

were estimated with Bayesian modelling. 88 

 89 

Findings 90 

Combining a minimally informative prior distribution with the findings of EOLIA, the posterior 91 

probability of RR < 1 for mortality at 60 days after randomization was 96%  (RR 0.78, 95% CrI 0.56-92 
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1.04); the posterior probability of RR<0.67 was 18%, the  probability of ARR≥2% was 92%, and the 93 

probability of ARR≥20% was 2%. With a moderately enthusiastic prior, equivalent to information from a 94 

trial of 264 patients with an RR of 0.78, the estimated RR was 0.78 (95% CrI 0.63-0.96), the probability 95 

of RR<1 was 99%, the probability of RR<0.67 was 8%, the probability of ARR≥2% was 97%, and the 96 

probability of ARR≥20% was 0%. With a strongly skeptical prior, equivalent to information from a trial 97 

of 264 patients with an RR of 1.0, the estimated RR was 0.88 (95% CrI 0.71-1.09), the probability of 98 

RR<1 was 88%, the probability of RR<0.67 was 0%, the probability of ARR≥2% was 78%, and the 99 

probability of ARR≥20% was 0%. If the prior was informed by previous studies, the estimated RR was 100 

0.71 (95% CrI 0.55-0.94), the probability of RR<1 was 99%, the probability of RR<0.67 was 48%, the 101 

probability of ARR≥2% was 98%, and the probability of ARR≥20% was 4%.  102 

 103 

Conclusion 104 

Post hoc Bayesian analysis of data from a randomized trial of early ECMO compared with conventional 105 

lung-protective ventilation with the option for rescue ECMO among patients with very severe ARDS 106 

provides information about the posterior probability of mortality benefit under a broad set of assumptions 107 

that may help inform interpretation of the study findings. 108 

 109 

Trial Registration – this analysis was NOT registered 110 

  111 
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Introduction 112 

The conventional frequentist approach to statistical analysis of clinical trials evaluates study 113 

hypotheses indirectly by estimating the probability that data as or more extreme than the observed 114 

treatment effect size would be obtained if the null hypothesis (which generally assumes that there is no 115 

treatment effect) was true—the goal of frequentist analysis is to determine whether the evidence leads one 116 

to confidently reject the null hypothesis. In Bayesian analysis, information available prior to the trial 117 

about plausible range of values of the treatment effect (represented as a probability distribution) is 118 

updated by the data collected in the trial to produce a revised estimate of the plausible range of values of 119 

the treatment effect.
1
 Bayesian analysis informs clinical decisions by directly estimating the probability of 120 

a hypothesized treatment effect given the observed data. 
2,3

 In addition, because information about 121 

treatment effect from pre-existing clinical and biological evidence is formally incorporated into statistical 122 

evaluation, Bayesian methods explicitly quantify the otherwise implicit influence of clinical judgment and 123 

prior beliefs on the interpretation of trial results.
4-6

 124 

A recent randomized trial of extracorporeal membrane oxygenation (ECMO to Rescue Lung Injury 125 

in Severe ARDS—EOLIA)
7
 offers an example of the value of Bayesian analysis. In this trial, the effect of 126 

early ECMO on mortality in very severe ARDS did not reach statistical significance (p=0.09 in the 127 

primary analysis). However, the clinically important point estimate of the absolute risk difference (11%), 128 

the near statistical significance of the effect despite early stopping for futility, and the wide divergence of 129 

pre-existing views regarding the benefit of ECMO
8,9

 (due in part to differences between prior studies and 130 

their potential methodological limitations) have made interpretation of the trial  controversial.
10-12

 In this 131 

Special Communication,  a post hoc Bayesian analysis of this trial demonstrating the potential utility of 132 

the Bayesian approach is presented. 133 

 134 

Methods 135 

EOLIA was a multicenter international randomized clinical trial designed to test the hypothesis that  136 

early venovenous ECMO reduces 60-day mortality in patients with very severe forms of ARDS 137 
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(PaO2/FiO2 < 50 mm Hg for >3 hours; or PaO2/FiO2 < 80 mm Hg for >6 hours; or pH<7.25 and 138 

PaCO2≥60 mm Hg with a maximum plateau pressure of 32 cm H2O and respiratory rate set at 35 breaths 139 

per minute for ≥6 hours).
13

 The trial was designed to detect a decrease in mortality risk from 60% to 40% 140 

(absolute risk reduction [ARR] of 20%, relative risk [RR] of 0.67). The trial received ethical approval 141 

from the ethics committees at all participating sites.  142 

This article presents a previously unplanned re-analysis of the primary pre-specified end-point 143 

conducted using Bayesian methods. The aim was to estimate the posterior probabilities that the treatment 144 

effect exceeded a range of potential values for the minimum clinically important treatment effect (RR<1, 145 

RR<0.9, RR<0.8, RR<0.67; and ARR≥2%, ARR≥4%, ARR≥6%, ARR≥8%, ARR≥10%, and ARR≥20% 146 

assuming a baseline mortality risk of 46% based on the EOLIA control group). This range of possible 147 

values for the minimum clinically important treatment effect was established from several considerations. 148 

First, because the null hypothesis under frequentist conventions in the trial was ‘no benefit’ (RR=1), we 149 

estimated the probability of any mortality benefit (RR<1). Second, we deemed ARR values of 2% to be a 150 

reasonable potential minimum clinically important effect as this would be equivalent to an estimated  500 151 

lives saved every year in the United States (assuming approximately 25,000 cases of very severe ARDS 152 

annually in the United States based on a population of 328 million persons,
14

 an annual incidence of 153 

ARDS of 80/100,000 population,
15

 and a prevalence of very severe ARDS of approximately 10% among 154 

all cases of ARDS
16

). However, arguments can be made supporting a lower RR or larger ARR as a 155 

minimal clinically important difference, and the trial was designed to detect an RR<0.67 and an 156 

ARR≥20%; therefore the posterior probabilities across a range of effect sizes were computed. 157 

Bayesian analysis represents one’s prior beliefs about the plausible range of values for treatment 158 

effect as a probability density distribution. The width (variance) of this distribution represents the 159 

confidence in the treatment effect while the area under the distribution at any given value represents the 160 

probability that the treatment effect is greater than or equal to that value (see Figure 1 for examples). 161 

Two approaches were used to develop prior statistical priors for this analysis. First, priors were used to 162 

reflect varying degrees of enthusiasm and skepticism for the benefit of ECMO before the trial. A 163 
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minimally informative prior (which regards all possible log-relative risk values to be equally likely) was 164 

used to produce results essentially dependent on data from the trial alone; this prior adds minimal 165 

information to the trial in calculating posterior probabilities.  166 

  A range of reference priors were defined to represent “strongly enthusiastic”, “moderately 167 

enthusiastic”, “skeptical”, and “strongly skeptical” archetypes of prior belief about the probability of 168 

benefit from early ECMO consistent with pre-existing controversy amongst experts in the field
8,17

 (Table 169 

1). Each prior distribution was characterized by a different assumed value for median RR (the value for 170 

RR that an enthusiast or skeptic would assume to have a 50% probability of obtaining) and a different 171 

width (variance, representing the magnitude of uncertainty about the plausible range of values for 172 

treatment effect). To aid in understanding the strength of the enthusiasm or skepticism represented by 173 

these theoretical priors, the sample size and observed RR were computed for a hypothetical clinical trial 174 

achieving the same level of certainty in the treatment effect as each prior. This sample size was computed 175 

by comparing the variance of each prior distribution to the variance of the log-relative risk observed in the 176 

trial (Table 1).  177 

In accordance with previously published recommendations,
9,16

 the priors were defined so as to 178 

represent enthusiastic or skeptical viewpoints with respect to (a) the probability that the true effect of 179 

ECMO on mortality is the same or greater than that used to power the trial (i.e. RR≤0.67) or the effect 180 

observed in the ARDSNet trial of low tidal volume ventilation (a classic trial in the treatment of ARDS, 181 

RR≤0.78)
18

 and (b) the probability that ECMO would worsen mortality (i.e. RR>1). Reference priors 182 

specified on this basis are described in detail in Table 1. Figure 1A depicts the probability density 183 

distribution for RR specified by each reference prior distribution. 184 

Second, data-derived prior distributions were developed based on relevant studies
19-21

 from a meta-185 

analysis of ECMO for ARDS.
22

 The treatment effects in these previous studies were combined with the 186 

observed data from this trial in a Bayesian hierarchical random effects model (that itself used non-187 

informative priors). In effect, the previous studies generated a prior for what the treatment effect in the 188 

“next” study would be, a prior that is combined with data from this trial to produce an updated 189 



 9 

distribution of the estimated treatment effect after this trial. To reflect concerns about possible differences 190 

between the current and prior studies (e.g., non-randomized design in two studies, confounding by 191 

transfer to specialist centers, suboptimal control group management), the variance of the previous studies 192 

was  inflated so that patients in pre-existing studies were “downweighted” to exert less influence (i.e. 193 

received less weight in the analysis) on the pooled estimate of effect. Downweighting was applied to 194 

varying degrees so that patients in previous studies exerted between 0% and 100% of the weight of 195 

patients enrolled in the trial. It allowed us to mathematically represent the uncertainty about the estimates 196 

of effect in studies given their likely differences (methodological limitations?). The effects and level of 197 

uncertainty described by the data-derived priors are represented graphically in Figure 1B. 198 

Each prior distribution for the log relative risk in the trial was included in a Bayesian model which 199 

specified independent binomial sampling of the numbers of deaths in the ECMO and control groups [AU: 200 

This phrase is confusing and it is unclear if the 46% mortality in the control group was held 201 

constant or, instead, the data for the control group was resampled in some way.]  and a uniform 202 

prior on the control group risk of mortality. Markov Chain Monte Carlo modelling (with 3 chains, 20,000 203 

iterations burn-in and 20,000 saved iterations per chain) was used to derive treatment effect estimates and 204 

95% credible intervals (CrI) from the median, 2.5
th
 and 97.5

th
 percentiles of the posterior distribution, and 205 

to estimate the posterior probabilities of treatment effects exceeding certain thresholds. The Gelman-206 

Rubin statistic was used to assess convergence of all models. All analyses were conducted in R (www.r-207 

project.org, Version 3.5.0) using R2jags
23

 to run JAGS.
24

 208 

 209 

Results 210 

Bayesian Analysis Using a Minimally Informative Prior  211 

Posterior probabilities of relative and absolute risk reductions in mortality for a range of priors are 212 

shown in Table 2 and Table 3. Figure 2 presents both the likelihood function for the trial and the 213 

posterior probability distribution for relative risk reductions for each prior. With the non-informative 214 
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prior, the estimated median relative risk for mortality at 60 days with early ECMO was 0.78 (95% 215 

credible interval, CrI, 0.56-1.04). The posterior probability of mortality benefit with early ECMO (i.e. 216 

RR<1) was 96%, the probability of RR<0.67 was 18%. Assuming a baseline mortality risk of 46%, the 217 

probability of ARR≥2% was 92%, and the probability of ARR≥20% was 2% (Table 3).  218 

 219 

Bayesian Analysis Using Reference Priors 220 

The posterior probability of RR<1 exceeded 90% across the strongly enthusiastic, moderately 221 

enthusiastic, and skeptical priors (Table 2, Figure 2). In the most extreme case of a strongly skeptical 222 

prior the estimated RR was 0.88 (95% CrI 0.71-1.09), the posterior probability of RR<1 was 88%, the 223 

probability of RR<0.67 was 0%, the probability of ARR≥2% was 78%, and the probability of ARR≥20% 224 

was 0%.  225 

 226 

Bayesian Analysis Using the Data-Derived Prior  227 

When combining treatment effects from previous studies with the data from the trial in the 228 

hierarchical model, estimated relative risk in the trial was 0.71 (95% CrI 0.55-0.94). With this prior, the 229 

posterior probability of RR<1 was 99%, probability of RR<0.67 was 48%, the probability of ARR≥2% 230 

was 98%, and the probability of ARR≥20% was 4%. 231 

When the previous studies were downweighted to account for their likely differences 232 

(methodological limitations?) by up to 90%, the upper limit of the 95% credible interval for treatment 233 

effect fell below 1 and the probability of RR<1 exceeded 90% (Figure 3). The probability of RR<0.67 234 

and ARR≥20% remained low across the range of downweighting (Table 2 and Figure 3). 235 

 236 

Discussion 237 

Bayesian analysis constitutes an alternative to the conventional paradigm for the statistical 238 

evaluation of medical hypotheses. Rather than estimating the probability of the data given the hypothesis, 239 

it aims to estimate the probability of the hypothesis given the data. Statisticians have long identified either 240 
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as “Bayesians” or as “frequentists”; 
2
 the debate turns in part on the role of deductive vs. inductive 241 

inference in scientific reasoning. 
25

 Many statisticians have advocated for the incorporation of Bayesian 242 

analysis in trial design and interpretation to complement frequentist analysis but adoption in clinical 243 

research has been limited. Recently, the United States Food & Drug Administration developed guidelines 244 

for the application of Bayesian statistics in trial design and interpretation in clinical trials of medical 245 

devices. 
26

 Bayesian analysis may suggest differing conclusions from frequentist analysis, particularly 246 

when observed effect sizes are relatively large but statistical power is relatively low. 
3
 247 

In the original description of the trial, the  investigators concluded that “early application of ECMO 248 

was not associated with mortality at 60 days that was significantly lower than that in the control group.” 249 

This conclusion appropriately reflects the frequentist approach to hypothesis testing. The probability of 250 

observing an absolute mortality difference of ≥11% under the null hypothesis of no treatment effect was 251 

not sufficiently low to warrant rejection of the null hypothesis according to frequentist conventions (RR 252 

0.76, 95% CI 0.55-1.04, p=0.09 in the primary analysis). This conclusion may be at variance with clinical 253 

and scientific intuition as it discounts altogether the clinically relevant effect size and a 95% confidence 254 

interval that lies mostly below 1. The difficulty of interpreting the results of this frequentist analysis was 255 

immediately evident with one editorial concluding that “the routine use of ECMO in patients with severe 256 

ARDS is not superior to the use of ECMO as a rescue maneuver”
11

 while another suggested that “ECMO 257 

probably has some benefit in this context.”
27

 258 

The statement that ECMO probably has some benefit is an intuitive expression of the Bayesian 259 

approach to data analysis. The Bayesian framework aims to define the probability of a desired treatment 260 

effect rather than to rule out the absence of treatment effect. Bayesian analysis of the EOLIA trial 261 

demonstrates that across a range of prior assumptions about the probability of benefit from early ECMO, 262 

the posterior probability of any mortality benefit (RR<1) with early ECMO is high, ranging between 88% 263 

to 99%. The influence of priors on the posterior probability varied with the definition of treatment effect, 264 

particularly for absolute risk reduction. For an absolute risk reduction of ≥2%, the posterior probability of 265 
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benefit ranged between 78% and 98%, depending on the prior. For an absolute risk reduction of ≥20%, 266 

the posterior probability ranged between 0%-2%.  267 

The analyses described here highlight several advantages of the Bayesian framework. First, the use 268 

of statistical priors permits the wide spectrum of opinion within the clinical community regarding any 269 

treatment to be formally incorporated in the analysis. This is particularly important with ECMO. In a 270 

Bayesian analysis of a previous clinical trial of ECMO in children published in 1989,
20

 Kass and 271 

Greenhouse observed that “diverse opinions among knowledgeable and thoughtful observers arise 272 

because (…) different people attach different degrees of importance to various pieces of information 273 

concerning the merits of the treatment.”
28

 By incorporating these varying background beliefs as priors, 274 

Bayesian analysis can quantify the overall strength of evidence in support of a hypothesis, complementing 275 

conventional frequentist approaches to hypothesis testing in clinical trials. 276 

Second, Bayesian methods directly estimate the probability that the treatment effect is larger than a 277 

clinically important threshold, given prior assumptions; such information may be more directly 278 

informative to clinicians and patients or families wrestling with complex treatment decisions than 279 

probabilities of observing data more extreme than the observed data if there is no real treatment effect 280 

quantified by frequentist p-values. The probabilistic results of Bayesian analysis naturally align with the 281 

thought processes of clinicians making treatment decisions at the bedside where the probabilities of 282 

various competing benefits and harms must be weighed. 283 

Third, by representing what is known about the treatment effect through a probability distribution, 284 

Bayesian analysis allows the probabilities for different magnitudes of treatment effect to be estimated. For 285 

the purposes of analysis, we defined an absolute risk reduction of 2% as a potential threshold for 286 

clinically important treatment effect. However, this threshold may be insufficient to motivate the routine 287 

use of early ECMO. Indeed, with an absolute risk reduction threshold of 20%, the posterior probability 288 

was 2%. Various factors must be weighed in defining the minimum clinically important effect: the 289 

baseline risk of the outcomes, the relevance of the outcome under study, the resources and expertise 290 

required to deliver the intervention, the risk of treatment-related adverse effects, and the effect on other 291 
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clinical outcomes. Given uncertainty over this value, posterior probabilities for a range of relative and 292 

absolute risk reductions were reported. Further investigation using decision analysis may help to define 293 

the optimal value for clinically important treatment effect. 294 

There are challenges with Bayesian analysis. Given their significant influence on posterior 295 

probabilities, the priors must be specified to appropriately reflect the evidence available prior to the trial. 296 

Selection of priors therefore requires careful forethought. Bayesian analysis also requires decisions about 297 

the minimum clinically important treatment effect, as discussed above. Because decisions about priors 298 

and treatment effects inevitably incorporate an element of judgement, Bayesian analysis is sometimes 299 

criticized for perceived subjectivity. To address these challenges, posterior probabilities were computed 300 

for a wide range of potential values of minimum clinically important treatment effect under a range of 301 

reference priors specified based on archetypal considerations and on prior data. 302 

The data-derived prior was estimated based on previous studies deemed to be of acceptable 303 

methodological quality (randomized trials and ‘quasi-randomized’ studies employing rigorous propensity-304 

score techniques for analysis). Because the methodological limitations of these studies reduced 305 

confidence in their estimates of effect,
22,29

 the weight of these studies was reduced in the Bayesian 306 

hierarchical model to render them less informative in the construction of the prior. Reassuringly, the 307 

probability of treatment benefit remained high even when these studies were heavily downweighted such 308 

that a patient in the pre-existing studies contributed much less influence in comparison to a patient 309 

enrolled in EOLIA.  310 

Reference priors were specified based on previous recommendations for establishing representative 311 

levels of enthusiasm and skepticism.
1,3

 This approach permits assessment of prior probability both in 312 

terms of existing clinical data and the strength of the biological plausibility. Readers should determine 313 

which prior best matches their own background assessment of the prior probability of benefit from 314 

ECMO in very severe ARDS and assess the posterior probability of benefit in light of EOLIA 315 

accordingly. One important decision is the specification of the strongly skeptical prior; this requires a 316 

judgment about the upper limit of reasonable skepticism. The strongly skeptical prior specified for this 317 
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analysis is equivalent to the information derived from a hypothetical trial of early ECMO enrolling 264 318 

patients (6% more than EOLIA) that finds the same risk of death in treatment and control groups—as 319 

there are no studies of this magnitude published in the current ECMO era, this degree of skepticism may 320 

be difficult to justify. This prior distribution therefore appears to appropriately represents the upper limit 321 

of reasonable prior skepticism. 322 

Whether the findings of this Bayesian analysis support the routine use of early ECMO for very 323 

severe ARDS remains a matter of judgment. This judgment must incorporate several considerations: the 324 

distribution of prior probability, the probability of mortality benefit (level of certainty) required to 325 

motivate action (i.e. should one apply a treatment that has a predicted probability of benefit of 70% vs. 326 

80% vs. 90% etc.), the minimum clinically important treatment effect size, the effect on outcomes other 327 

than mortality (i.e. long-term functional status, quality of life, costs, resource implications), and the risk 328 

of adverse events. This is particularly important, because physicians often underestimate the risk of 329 

adverse events. This complexity highlights the need for decision analyses; Bayesian posterior probability 330 

distributions very naturally inform decision analysis.
1
 The decision to initiate ECMO will always remain 331 

complex; no clinical trial, however conclusive, can remove the role of clinical judgment in making 332 

decisions about treatments. The findings of this Bayesian analysis may be helpful to inform these 333 

judgments. 334 

Bayesian posterior probabilities can also inform the question as to whether future trials are 335 

required. For example, some might propose conducting yet another randomized trial of early ECMO to 336 

confirm mortality benefit (RR<1) under frequentist conventions (i.e. p<0.05). The posterior probabilities 337 

reported here can help to inform future discussions about the need for additional trials and whether the 338 

ethical requirement for equipoise in a randomized trial can be satisfied. Decisions about the need for a 339 

future trial depend on the definition of equipoise (probability of benefit sufficient to exclude equipoise) 340 

and the definition of the minimum clinically important treatment effect.
30

 341 

 342 

Limitations 343 
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Limitations of this analysis include those inherent in the primary trial. Premature termination and a 344 

high rate of crossovers may have led to limited statistical power to detect a meaningful treatment effect. 345 

Patients were enrolled from both ECMO centers and non-ECMO referral centers, resulting in delayed 346 

ECMO initiation for some patients, although this reflects clinical practice given the regionalized nature of 347 

ECMO services.   348 

In addition, there are limitations specific to these Bayesian re-analyses. First, the present analysis 349 

constitutes an unplanned post hoc analysis of trial data. Such analyses should generally be treated with 350 

caution (i.e., regarded as hypothesis-generating only) because, among other concerns, repeated hypothesis 351 

testing using different analyses increases the chance of erroneously concluding that the null hypothesis 352 

can be rejected (‘p-hacking’).
31

 Several considerations, however, suggest that the present analyses are less 353 

vulnerable to these concerns. They tested the same hypothesis and analyzed the same pre-specified 354 

primary end-point as in the original publication—the pre-specified hypothesis or primary outcome were 355 

not revised (generally entailed in secondary analyses). In addition, under Bayesian analysis, the risk of 356 

erroneously estimating the posterior probability of treatment effect arises from incorrectly specifying the 357 

priors, not from repeated estimates of this probability. The capacity to allow repeated estimates of 358 

posterior probability is the basis for Bayesian adaptive trial design.
32

  359 

Second, because the analyses were planned after the trial was published, it was difficult to use 360 

empirical methods to elicit prior beliefs about the benefit of ECMO; beliefs about benefit would 361 

unavoidably be influenced by the results of EOLIA.
33

 Empirically-derived priors might have helped to 362 

clarify the extent to which EOLIA should modify the perceived probability of benefit. Recognizing this 363 

limitation, a range of priors was specified to represent the range of potential prior beliefs about treatment 364 

effect that might have been described by an empirical method. 365 

Third, these analyses focused specifically on mortality and did not consider other adverse events. 366 

 367 

Conclusions 368 



 16 

Post hoc Bayesian analysis of data from a randomized trial of early ECMO compared with 369 

conventional lung-protective ventilation with the option for rescue ECMO among patients with very 370 

severe ARDS provides information about the posterior probability of mortality benefit under a broad set 371 

of assumptions that may help inform interpretation of the study findings.  372 

 373 
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Figure Legends 477 

 478 

Figure 1. Graphical representation of reference priors (Left) and data-derived priors (Right). Each prior 479 

distribution represents a belief about the probability of differing mortality benefits (relative risks of death) 480 

with the use of early ECMO in patients with very severe acute respiratory distress syndrome. Bayesian 481 

analysis combines each prior distribution with the likelihood function of the observed treatment benefit to 482 

determine the posterior probability of treatment benefit. A range of reference prior distributions were 483 

specified in an effort to match the spectrum of belief within the clinical community about the benefit of 484 

ECMO. The minimally informative prior distribution entails that all potential values for log relative risk 485 

are approximately equally likely. The data-derived priors are based on previous studies (see text for 486 

details). To account for likely differences in previous studies, the weight (influence) of patients enrolled 487 

in these prior studies was reduced by artificially inflating the study variance (resulting in a wider prior 488 

probability density distribution).  489 

 490 

Figure 2. Posterior probability distributions for relative risk (Panel A) and absolute risk reduction (Panel 491 

B) obtained based on the EOLIA trial results under varying prior assumptions about the benefit of early 492 

ECMO on mortality. Prior distributions (represented by the red lines) are combined with the likelihood 493 

function summarizing the treatment effect observed in the trial (green shaded region) to compute the 494 

posterior probability for the treatment effect. In each case the likelihood function, summarizing the trial 495 

data, is the same; variation in the posterior distribution arises from variation in the prior. In the case of a 496 

non-informative prior, the likelihood function and posterior distribution are identical. The median effect 497 

and credible interval are shown as the black point and line below each set of distributions. This approach 498 

allows assessment of the influence of prior enthusiasm or skepticism for early ECMO on the 499 

interpretation of the trial. 500 

 501 
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Figure 3. Posterior probabilities for a reduction in mortality with VV-ECMO in very severe ARDS given 502 

EOLIA and the results of previous studies. Varying degrees of weight were applied to the previous 503 

studies by artificially increasing the variance (width) of their probability distribution to reflect varying 504 

levels of confidence in their estimates of effect given their likely differences (and potential 505 

methodological limitations). The left panel shows the resulting credible interval for the relative risk of 506 

mortality for various levels of weighting of previous studies in proportion to the weight assigned to the 507 

EOLIA trial. The right panel shows the resulting estimated probability of a given relative risk reduction 508 

for varying weights assigned to the previous studies. EOLIA = “ECMO to Rescue Acute Lung Injury” 509 

randomized trial; CrI = credible intervals; RR = relative risk. 510 

  511 
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Table 1. Characteristics of Reference Prior Probability Distributions Representing Prior Beliefs About 512 
Mortality Benefit from ECMO 513 
 514 

Prior belief 

Assumed 

Median 

Relative Risk 

Assumed 

Standard 

Deviation of 

Logarithm of 

Relative Risk 

Prior Evidence 

Equivalent* 

Probability of Treatment Effect Equal to or 

Greater Than Specified Threshold Rationale for 

Specifying Distribution 

Characteristics 
RR < 1 RR < 0.9 RR < 0.8 RR < 0.7 

Non-

informative 
1.0 10 

Equivalent to 

essentially no 

prior data 

50% 50% 49% 49% 

All possible values for 
treatment effect for log 

RR [author – correct?] 

are equally likely 
 

Strongly 

enthusiastic 
0.67 0.25 

Equivalent to a 
previous RCT 

enrolling 100 

patients finding a 
33% relative risk 

reduction 

95% 89% 77% 58% 

Probability of observing 

a treatment effect equal 

to or greater than that 

assumed in EOLIA 

design is 50%; 

probability of harm 
(RR>1) is 5% 

Moderately 

enthusiastic 
0.78 0.15 

Equivalent to a 

previous RCT 
enrolling 264 

patients finding a 

22% relative risk 
reduction 

95% 83% 57% 24% 

Probability of observing 

a treatment effect equal 
to or greater than that 

approximating effect 

observed in ARDSNet 
lower tidal volumes trial 

(RR=0.78) is 50%; 

probability of harm 
(RR> 1) is 5% 

Skeptical 1.0 0.24 

Equivalent to a 
previous RCT 

enrolling 100 

patients finding a 
0% relative risk 

reduction 

50% 33% 18% 7% 

Probability of observing 

a treatment effect equal 

to or greater than that 

assumed in EOLIA 

design (RR=0.67) is 5%; 

probability of benefit 
and harm are equivalent 

Strongly 

skeptical 
1.0 0.15 

Equivalent to a 

previous RCT 
enrolling 264 

patients finding 

0% relative risk 
reduction 

50% 24% 7% 1% 

Probability of observing 
a treatment effect equal 

to or greater than that 

observed in the 
ARDSNet lower tidal 

volume trial (RR=0.78) 

is 5% 

RR = relative risk, EOLIA = ECMO to Rescue Acute Lung Injury trial, ARDSNet = NIH/NHLBI ARDS 515 
Network, RCT = randomized controlled trial 516 
*”Prior evidence equivalent” communicates the level of certainty represented in each reference prior by 517 
reference to the treatment effect and sample size of a hypothetical randomized trial required to generate 518 
the level of informative influence on posterior probability specified by the reference prior relative to the 519 
size of the EOLIA trial 520 
  521 
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Table 2. Probability of treatment effects estimated by Bayesian analysis using varying distributions to 522 
describe prior beliefs 523 

Prior belief 

Posterior 

Median  

Relative Risk  

(95% Credible 

Interval)  

Posterior Probability that True Relative Risk Is  

Less Than or Equal to Specified Threshold 

RR < 1 RR < 0.9 RR < 0.8 RR < 0.67 

Reference Prior 

Distributions 

Non-informative 0.78 (0.56-1.04) 96% 85% 60% 18% 

Strongly enthusiastic 0.74 (0.57-0.95) 99% 94% 73% 22% 

Moderately 

enthusiastic 
0.78 (0.63-0.96) 99% 91% 61% 8% 

Skeptical 0.84 (0.64-1.07) 93% 73% 39% 5% 

Strongly skeptical 0.88 (0.71-1.09) 88% 58% 18% 0% 

Data-derived 

Prior 

Distributions 

No downweightinga 

of previous studies 
0.71 (0.55-0.94) 99% 96% 83% 48% 

50% downweighting 

of previous studies 
0.73 (0.56-0.96) 99% 94% 77% 40% 

75% downweighting 

of previous studies 
0.74 (0.56-0.98) 98% 92% 72% 36% 

RR = relative risk 524 
a
Downweighting refers to a deliberate reduction in the influence (weight) of previous studies in the 525 

Bayesian hierarchical model by artificially increasing the variance of these studies. Downweighting 526 
provides a method of representing uncertainty about the estimates of effect in these studies given their 527 
likely differences compared to the current trial.   528 



 24 

Table 3. Probability that early ECMO reduces mortality by a proposed minimum clinically important 529 
difference according to varying possible baseline mortality rates in patients with very severe ARDS 530 

Prior belief 

Posterior Median 

Absolute Risk Reduction 

(95% Credible Interval) 

Posterior Probability that Absolute Risk 

Reductiona is Greater Than or Equal to 

Specified Threshold 

2% 4% 6% 8% 10% 20% 

Reference Prior 

Distributions 

Non-informative -10.6% (-20.0% - 1.8%) 92% 86% 78% 67% 53% 2% 

Strongly enthusiastic -12.0% (-19.9% - -2.1%) 98% 95% 89% 79% 65% 2% 

Moderately enthusiastic -10.4% (-17.2% - -2.0%) 97% 93% 85% 71% 51% 0% 

Skeptical -7.8% (-16.5% - 3.4% 86% 76% 62% 47% 30% 0% 

Strongly skeptical -5.6% (-13.3% – 4.1%) 78% 63% 45% 26% 13% 0% 

Data-Derived 

Prior Distribution 

No downweighting of 

previous studies 
-13.6% (-20.5% - -2.9%) 98% 96% 93% 88% 79% 4% 

50% downweighting of 

previous studies 
-12.8% (-20.4% - -1.9%) 97% 95% 91% 83% 72% 3% 

75% downweighting of 

previous studies 
-12.1% (-20.3% - -1.1%) 97% 93% 88% 79% 66% 3% 

 531 
ECMO = extracorporeal membrane oxygenation; ARDS = acute respiratory distress syndrome 532 
a
Absolute risk reduction was computed assuming a baseline mortality risk of 46% (based on the mortality 533 

rate in the control group of EOLIA) 534 
 535 
 536 
  537 
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Figure 2 541 
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Figure 3 571 
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