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Abstract. Evaporation or condensation in the vicinity of the immobile (pinned) contact line in an atmo-
sphere of some inert (noncondensable) gas is considered here in a partial wetting configuration. Such a
problem is relevant to many situations, in particular to a drop or a liquid film drying in open air. The
thermal effects are not important and the mass exchange rate is controlled by the vapor dynamics in the
gas. By following previous works, we account for the weak coupling between the diffusion in the gas and
flow in the liquid through the Kelvin effect. Such a problem is nonlocal because of the diffusion in the
gas. For generality, we consider a geometry of a liquid wedge posed on a flat and homogeneous substrate
surrounded by a gas phase with a diffusion boundary layer of uniform thickness Λ. Similarly to the moving
contact line problem, the phase change leads to the hydrodynamic contact line singularity. The asymptotic
analysis of this problem is carried out for the liquid wedge of the length L ≫ Λ. Three asymptotic regions
are identified: the microscopic one (in which the singularity is relaxed, in the present case with the Kelvin
effect) and two intermediate regions. The Kelvin effect alone turns to be sufficient to relax the singular-
ity. The scaling laws for the interface slope and mass evaporation/condensation flux in each region are
discussed. It is found that the difference of the apparent contact angle (i.e. interface slope in the second
intermediate region) and the equilibrium contact angle is inversely proportional to the square root of Λ
and square root of the microscopic length, whatever is the singularity relaxation mechanism.

1 Introduction

Evaporation and condensation phenomena are met widely
both in everyday life and in various industrial processes.
From physicist’s point of view, there are two practically
important limiting cases of the mass exchange,depending
on which mechanism limits the phase change rate. The
first is the phase change controlled by the heat transfer
in the liquid phase, where the liquid is in contact with its
pure vapor [1–3]. During evaporation, the liquid-covered
solid substrate is overheated with respect to the satura-
tion temperature and the heat coming from the substrate
is consumed as the latent heat at the liquid-gas inter-
face. During condensation, the heat flow is opposite. This
case of strong mass exchange is met in various heat ex-
changers (boiling heat exchangers, heat pipes, etc.). The
second limiting case is that of a generally weaker mass
exchange with an atmosphere of some inert (noncondens-
able) gas [4, 5]. A common example is the drop drying in
the open air. The thermal effects are much less important
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because the slowest (thus limiting) process is the vapor
dynamics in the diffusion layer formed in the gas phase.
Many researchers worked in this important field. A signif-
icant progress has been achieved by Deegan et al [4] who
have obtained the stationary diffusion problem solution in
the half-space above a spherical-cap-shaped sessile liquid
droplet posed on a solid substrate with the known macro-
scopic (i.e. apparent) contact angle. Many theories based
on this solution have been developed afterwards, one can
cite [6–11] among many others. The success of the Deegan
et al solution is due to the integrability of the resulting
local evaporation flux so that the total evaporation rate
can be calculated and compared to the experiment. How-
ever, an incoherency appears in the liquid phase hydro-
dynamic problem. As discussed in sec. 3 below, such an
evaporation flux would lead to the hydrodynamic stress
that diverges at the contact line in a non-integrable way,
similarly to what happens in the isothermal contact line
motion problem [12]. Such a divergence is nonphysical.
On the one hand, the total viscous dissipation becomes
infinite, which implies the infinite energy. On the other
hand, in a problem with a free interface it would lead to
the infinite interface slope. One knows that the singular-



2 F. Doumenc et al.: Thin wedge evaporation/condensation controlled by the vapor dynamics in the atmosphere

ity is possible to relax by introducing some microscopic-
scale phenomena like precursor film [10], hydrodynamic
slip [13] or Kelvin effect [14, 15]. The macroscopic scale
solution is obtained by matching the solutions in micro-
scopic and macroscopic regions [16]. The introduction of
an intermediate length scale turns out to be necessary.
A remarkable feature of such a problem is that the form
of the macroscopic solution (called Cox-Voinov formula)
is independent of the microscopic mechanism that condi-
tions only two constants, the Voinov length and angle.

In the case of pure vapor and latent-heat-controlled
evaporation, the microscopic mechanisms have been ex-
tensively studied by many authors starting from Potash
and Wayner [1]. These studies showed that the apparent
contact angle grows with the evaporation intensity (see,
e.g. [2, 3, 17–20] among many others). The theoretical
results have been confirmed experimentally [21, 22]. The
independence of the results of the microscopic model has
been shown numerically by comparing the apparent con-
tact angle for different microscopic mechanisms but the
same fluid parameters [23]. We do not discuss this evap-
oration regime below. Instead, we address the diffusion-
controlled evaporation regime that was less studied.

It has been shown experimentally [24] that the increase
of apparent contact angle with evaporation rate exists in
this case too. In earlier approaches [6–9], the evaporation
flux distribution along the interface was imposed indepen-
dently of the interface shape. The full coupling of the prob-
lems in the vapor and liquid phases through the Kelvin
effect is studied in more recent works [10, 11, 25]. The
problem is more complicated in this case because of the
non-locality of evaporation flux: the evaporation rate at
one point of the interface depends on the vapor concen-
tration distribution over the whole liquid-vapor interface.
However the Kelvin effect is important as it provides zero
evaporation flux at the immobile contact line [20] in the
case of partial wetting (the case considered here), which
conforms to the complete wetting case.

In the continuity of the above cited works, our purpose
is to study the effect of the apparent contact angle increase
under evaporation. This objective was targeted by several
groups. Berteloot et al [8] proposed an approximate solu-
tion for an infinite liquid wedge on a solid substrate using
the expression for the evaporation flux given by Deegan
et al [4] thus decoupling the diffusive and hydrodynamic
parts of the problem. The singularity is avoided by assum-
ing a finite liquid height at a microscopic cut-off distance,
imposed a priori. Eggers and Pismen [10] have considered
the vapor phase and liquid phase problems coupled via the
concentrational Kelvin effect for an axisymmetric drop ge-
ometry. They considered the complete wetting conditions
and the precursor film.

By following our preceding work [26] devoted to the
moving contact line, we consider a partial wetting config-
uration with a 2D geometry suitable, e.g., for drying of
the liquid films deposited on the Wilhelmy plate [27]. We
consider a diffusive layer of thickness Λ above the thin liq-
uid wedge-like film. In a real process the value of Λ would
depend on the characteristic of the flow (diffusion, natural
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Fig. 1: Hierarchy of scales considered in the article and
geometries for the vapor diffusion (a) and hydrodynamic
(b-d) problems. Note that the radius of curvature in (b)
is assumed to be much larger than the diffusive boundary
layer width Λ shown in (a).

convection or forced convection). We consider also the ki-
netic interfacial resistance effect that appears to be impor-
tant in many cases. Using the Kelvin effect as microscopic-
scale phenomenon to relax the contact line singularity, we
develop a complete description of the micro and interme-
diate regions (cf. fig. 1 and sec. 2). The influence of Λ
is analyzed, and a law for the apparent contact angle is
deduced. Although the regularisation by the Kelvin effect
may not apply to common fluids, (the micro-region size
being too small for a continuum hydrodynamic approach
[26]), the scalings characterising the intermediate region
are independent of the mechanism chosen to relax the sin-
gularity. We thus draw results of general significance for
the scaling of the apparent contact angle, since they are
valid for any microscopic-scale phenomenon.

2 Problem statement

The problem to be considered is a thin liquid wedge-
shaped film posed on a flat and homogeneous substrate
in a situation of partial wetting. The atmosphere of a
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non-condensable inert gas surrounds the substrate and the
condensation or evaporation mass exchange with it is con-
trolled by the vapor transfer in the gas. The gas supersatu-
ration with vapor causes condensation onto the film, and
under-saturation causes its evaporation. The fluid is as-
sumed to be isothermal, which may be justified when the
substrate has a good thermal conductivity and is main-
tained at room temperature. Such a situation is common,
e.g. in the case of slow drying of liquid sessile drops. The
contact line is assumed pinned, with a source/sink of liquid
at x = ∞ that compensates the evaporation/condensation
mass flux (the problem of contact line motion under sat-
uration conditions has been solved in our preceding work
[26]). The model considers the vapor diffusion in the gas
phase, as well as the kinetic interfacial resistance.

First, some assumptions about the characteristic scale
hierarchy need to be made. One can identify a macroscopic
length scale L that concerns the liquid phase. It is re-
lated to the macroscopic-level interface curvature, e.g. the
interface curvature radius. Another macroscopic length
scale concerns the gas phase description. It is the dif-
fusion boundary layer thickness Λ. It is millimetric (for
natural convection) or smaller, for forced convection. For
simplicity, in this work we consider the diffusion bound-
ary layer of homogeneous thickness (band-like). The idea
of our approach is to find a stationary solution for the va-
por diffusion that can be representative of real microscopic
situation. For this we assume that

L ≫ Λ ≫ h (1)

where h is the wedge thickness, see fig. 1a,b. It is evident
that the inequality (1) is violated far enough from the
wedge apex (contact line) for any wedge slope. However, if
the slope is small, the region of validity of such a geometry
is large.

At a distance Λ from the substrate, a deviation from
the concentration corresponding to saturation is imposed.
The main rationale of such a geometry is to decouple the
scaling related to the macroscopic scale L from dependen-
cies on other length scales that exist in this problem so
that our approach is applicable for different macroscopic
geometries (drop, film, bubble, etc.), provided that in-
equality (1) is verified. Consequently, the liquid domain
length L must be much larger than the boundary layer
thickness Λ. This excludes, for instance, the case of a ses-
sile drop evaporating in quiescent air (no convection) [7],
because in that case Λ ∼ L.

A hydrodynamic singularity that exists in our problem
is solved at the microscopic scale that we call ℓ which is
typically nanometric (fig. 1d). Because of the existence
of several characteristic lengths, intermediate regions (fig.
1c) are needed to match micro and macro regions. We will
see later that, generally, two intermediate regions need to
be introduced.

2.1 Liquid phase equations

Stokes equations (negligible inertia) are solved in lubrica-
tion approximation (small interface slopes) and neglect-

ing the gravity. With no-slip boundary condition at the
substrate and stress-free boundary condition at the inter-
face, the horizontal component of the liquid velocity for
0 < y < h, h being the liquid height, reads

vx(y) =
σ

µ
(hy − 1

2
y2)

dκ

dx
, (2)

where σ is the surface tension and κ = d2h/dx2 is the
local interface curvature, µ the liquid viscosity and the
coordinate system is shown in fig. 1d.

The fluid volume flux in the liquid layer vertical cross-
section, q(x), is

q(x) =

∫ h

0

vx(y)dy =
σh3

3µ

dκ

dx
. (3)

The governing equation in the liquid phase is obtained by
writing the mass conservation

ρ
dq

dx
= −j, (4)

where ρ is the liquid density and j is the interfacial mass
flux (j > 0 for evaporation). From eqs. (3-4) one deduces

d

dx

(

σh3

3µ

dκ

dx

)

= − j

ρ
. (5)

The interfacial mass flux is assumed to be controlled by
the vapor diffusion in the inert gas:

j = −Dg
∂c

∂y

∣

∣

∣

∣

y=0

, (6)

where c(x, y) is the vapor concentration (expressed in kg/m3)
and Dg is the vapor diffusion coefficient.

Boundary conditions for the liquid phase are the fol-
lowing:

– For x = 0 (contact line):

h = 0,
dh

dx
= θ, (7)

where θ is the equilibrium contact angle imposed by
intermolecular interactions at microscale.

– For x → ∞, the interface curvature vanishes,

κ = 0. (8)

2.2 Gas phase model

In the gas phase, the equation for vapor diffusion reads

∂2c

∂x2
+

∂2c

∂y2
= 0. (9)

In the framework of the small wedge slope approximation,
the liquid gas interface seen from the large scale of the gas
atmosphere is assumed to coincide with the line y = 0, x ≥
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0, as shown in fig. 1a. This assumption is valid for a liquid
height much lower than the boundary layer thickness, i.e.
for x ≪ Λ/θ. As θ is a small angle, the model is valid over
a distance to the contact line much larger than Λ.

The boundary conditions in partial wetting configura-
tion are:

– For y = Λ:
c(x,Λ) = ceq +∆c, (10)

where ceq is the vapor concentration at thermodynamic
equilibrium for a flat liquid-gas interface, ∆c is the de-
viation from the equilibrium vapor concentration (∆c <
0 corresponds to evaporation, while ∆c > 0 results in
condensation).

– For y = 0 and x < 0:

∂c

∂y
= 0. (11)

– The vapor concentration ci = c(x, y = 0) at the liquid-
gas interface can deviate from ceq because of two rea-
sons. First, the local equilibrium value ci,eq can be
different from ceq because of the interface curvature
(Kelvin effect). It will be considered later on. Second,
ci can differ from ci,eq because of the interfacial resis-
tance Ri, so that the following condition is valid for
x ≥ 0:

ci = ci,eq − jRi. (12)

The interfacial resistance appears because of the molecular-
kinetic effects and is given by the Hertz-Knudsen rela-
tion [28, 29],

Ri =
2− f

2f

√

2πM

RgT
, (13)

where f is the accommodation factor close to unity
[28], Rg the ideal gas constant, T the temperature,
and M the molar mass.

3 Hydrodynamic contact line singularity
related to the mass exchange

To analyze the contact line singularity due to the internal
flow, we drop temporarily the microscopic (Kelvin) effect
so that ci,eq = ceq in eq. (12).

First, consider the simplest case dominated by the ki-
netic resistance, where the concentration difference caused
by the diffusion in the gas phase is much smaller than the
kinetic resistance effect. The concentration gradient in the
gas is then negligibly small and the concentration ci at the
liquid interface is equal to the concentration at the upper
edge of the diffusion boundary layer y = Λ: ci = ceq +∆c;
ci is thus constant. As a consequence, the evaporation flux
j = ∆c/Ri is constant [cf. eq. (12)].

From eqs. (2-4), the tangential stress at the substrate
reads

µ
∂vx
∂y

∣

∣

∣

∣

y=0

= −3µjx

h2ρ
. (14)

Using h ∼ θx, it follows that the tangential stress at the
substrate scales as x−1 for the configuration dominated by
the kinetic resistance. It diverges at the contact line. The
integral, i.e. the force acting on the substrate, diverges as
ln(x), which is nonphysical. In reality, this quantity should
be finite. In addition, the curvature diverges as x−1, which
means that the resulting slope (=apparent contact angle,
the integral of curvature) is infinite, which is also non-
physical.

A similar analysis can be performed for the integral
viscous dissipation

µ

∫ h

0

(

∂vx
∂y

)2

dy =
3µ(jx)2

h3ρ2
, (15)

which diverges as x−1 like the tangential stress. This is
also nonphysical because it leads to the infinite energy
losses.

These non-integrable divergences both for the tangen-
tial stress and viscous dissipation are similar to those of
Huh and Scriven [12] in their seminal article about the
moving liquid wedge with no evaporation.

Consider now the opposite case, i.e. negligible kinetic
resistance and evaporation limited by diffusion in the gas
phase. The solution for such a 2D problem [equations (9-
12) with ci,eq = ceq] can be obtained by analogy with an
electrostatic problem, cf. Appendix A. From eq. (A.12)
[cf. its asymptotics (42) below], it follows that the evapora-
tion flux j(x) scales as x−1/2 in the vicinity of the contact
line, in agreement with the Deegan’s 3D axi-symmetric
solution [4] applied for the vanishing contact angle. Ac-
cordingly, the tangential stress at the substrate scales as
x−3/2 and the total force diverges as x−1/2. For the vis-
cous dissipation and its integral, the scalings are x−2 and
x−1, respectively. The curvature is non-integrable either
(scales like x−3/2).

We thus observe non-physical singularities in these two
limiting cases, similarly to classical moving contact line
problem. Note that the interfacial kinetic resistance alone
does not relax the singularity in the hydrodynamic prob-
lem. Saxton et al [30] showed that regularization can be
achieved by considering both interfacial resistance and hy-
drodynamic slip. In the present study, similarly to the
moving contact line problem considered in our preceding
work [26], the Kelvin effect is used to relax the contact
line singularity.

4 Kelvin effect and dimensionless formulation

The Kelvin effect consists in the dependence of the equilib-
rium interfacial vapor concentration ci,eq on the interface
curvature κ. In the first approximation this dependence
reads [10]

ci,eq − ceq = −Mceq
ρRgT

σκ. (16)

The microregion size ℓ (cf. fig. 1) for the case of the
singularity relaxation with the Kelvin effect can be ob-
tained with a scaling analysis [26]. For the purely diffusion



F. Doumenc et al.: Thin wedge evaporation/condensation controlled by the vapor dynamics in the atmosphere 5

regime (i.e. for Ri = 0) the characteristic size of a region
dominated by the Kelvin effect is

ℓ =
1

ρ

√

3µMceqDg

θ3RgT
. (17)

In fact the diffusion regime corresponds to Ri ≪ ℓ/Dg.
Note that in the opposite limit (that we call kinetic regime
hereafter) where R = RiDg/ℓ ≫ 1, the characteristic size
is

ℓR = ℓ/R =
3µMceq

θ3ρ2RgTRi
. (18)

Estimations given in Table 1 of our preceding article [26]
show that R varies strongly from one fluid to another and
with the contact angle. For example, R = 0.72 for ethanol
and θ = 1◦, while R = 166 for glycerol and θ = 5◦.

Throughout the rest of the paper, we choose ℓ to make
the equations dimensionless. The dimensionless abscissa
is then x̃ = x/ℓ and, accordingly to the wedge geometry,
the liquid height scales as H = h/(θℓ). The dimensionless
curvature is K = ℓκ/θ.

The characteristic scale J for the mass flux (j̃ = j/J) is
J = θ4σρ/(3µ) and the dimensionless lubrication equation
reads

d

dx̃

(

H3 dK
dx̃

)

= −j̃. (19)

Concentration deviation is reduced as c̃ = (c−ceq)/C, with

C =
ρσθ4ℓ

3µDg
, (20)

as obtained from eqs. (5-6). The dimensionless counterpart
of eq.(16) reads

c̃i,eq = −K. (21)

The two remaining dimensionless equations are the mass
flux and interfacial concentration expressions:

j̃ = − ∂c̃

∂ỹ

∣

∣

∣

∣

ỹ=0

, (22)

c̃(ỹ = 0) ≡ c̃i = −K − j̃R. (23)

They serve as boundary conditions for the diffusion prob-
lem.

5 Weak evaporation approximation

The weak evaporation approximation ∆c ≪ C is consid-
ered here. The variables are expanded in a regular pertur-
bation series in ǫ = ∆c/C. At the zero order corresponding
to thermodynamic equilibrium (ǫ = 0), K0 = 0, H0 = x̃,
j̃0 = 0 and c̃0 = 0, thus

K = ǫK1 + · · · ,
H = x̃+ ǫH1 + · · · ,
j̃ = ǫj̃1 + · · · ,
c̃ = ǫc̃1 + · · · .

Note that ǫ is negative during evaporation and positive
during condensation while j̃1, H1 and K1 are always neg-
ative.

With the scaling defined in sec. 4, the first order lubri-
cation equation reads

d

dx̃

(

x̃3 dK1

dx̃

)

= −j̃1, (24)

with the following boundary conditions:

– For x̃ = 0 : H1 = 0, H ′
1 = 0,

– For x̃ → ∞ : K1 = H ′′
1 = 0.

The first order problem for the diffusion in the gas phase
is

∂2c̃1
∂x̃2

+
∂2c̃1
∂ỹ2

= 0, (25)

with the boundary conditions

– For ỹ = Λ̃ ≡ Λ/ℓ:
c̃1 = 1. (26)

– For ỹ = 0 and x̃ < 0:

∂c̃1
∂ỹ

= 0. (27)

– For ỹ = 0 and x̃ ≥ 0:

j̃1 = −K1 + c̃i,1
R = −∂c̃1

∂ỹ

∣

∣

∣

∣

ỹ=0

. (28)

In the following sections we focus on two limit cases
corresponding to situations dominated either by kinetic
interfacial resistance (sec. 6) or by diffusion of vapor in
the gas (sec. 8). We are looking for a regular solution at
ỹ → 0, with no divergencies.

6 Kinetic regime (R → ∞): analytical solution

We first consider the mass exchange controlled by kinetic
resistance. In practice, this assumption applies for R ≫
Λ ≫ 1. These two inequalities ensure that c̃i,1 ≃ 1.

The problem defined in sec. 5 can be solved analyti-
cally in the kinetic regime. Equation (28) reduces to

K1 = −1−Rj̃1, (29)

and eq. (24) reads

d

dx̃

(

x̃3 dj̃1
dx̃

)

=
j̃1
R . (30)

With the boundary condition lim
x̃→∞

j̃1(x̃) = −1/R [stem-

ming from eq. (29)] and the condition of a regular solution
at x̃ → 0, the solution of eq. (30) is

j̃1 = − 2

R2x̃
K2

(

2√
Rx̃

)

, (31)
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Fig. 2: (Color online) Comparison of kinetic [eqs. (31,33)
with R = 100, in red] and diffusive regimes (R = 0 and

Λ̃ = 100); (a) flux curves and (b) slope curves. The dashed
lines are the asymptotes coming from eq. (34) for the ki-
netic regime, eqs. (47) and (48) for the first and second
intermediate subregions in the diffusive regime. In the lat-
ter case, panel (b) illustrates also the asymptotic matching
of the first and second intermediate subregions.

where Kn are the modified Bessel functions of the second
kind.

The curvature K1 is then obtained from relation (29),

K1 =
2

Rx̃
K2

(

2√
Rx̃

)

− 1, (32)

and the slope dH1/dx̃ by integration of K1,

dH1

dx̃
= 2

√

x̃

RK1

(

2√
Rx̃

)

− x̃. (33)

The asymptotic behavior of the slope at infinite x̃ (i.e. in
the intermediate region) is obtained from a series expan-

sion of eq. (33)

dH1

dx̃
≃ − 1

R ln

(

x̃

ξ

)

, (34)

where ξ = e2γ−1/R and γ ≃ 0.577216 is the Euler -
Mascheroni constant.

An illustration of the kinetic regime is given for R =
100 in figs. 2 both for the flux and slope. Kelvin effect reg-
ularizes the solution. The flux does not diverge any more
but drops over the dimensionless distance ∼ ξ from the
contact line (i.e. dimensional distance ∼ ℓR as expected
for the kinetic regime). We obtain an expression similar to
that of Cox-Voinov for the moving contact line [26]; the
spatial variation of curvature is also similar. The charac-
teristic length of the microscopic region is ℓRe

2γ−1. One
notes that:

– this length is exactly the same as the Voinov length
obtained for the moving contact line problem in the
R ≫ 1 limit [26] ;

– The dependence (34) is invariant of the microscale re-
laxation mechanism; only the expression for ξ depends
on it.

7 Numerical solution for arbitrary R
For a finiteR, there is no analytical solution and the prob-
lem is solved numerically. Assuming that x̃3dK1/dx̃ → 0
at x̃ → 0, integration of eq. (24) gives

x̃3 dK1

dx̃
= −

∫ x̃

0

j̃1dx̃. (35)

The interfacial concentration c̃i,1 can be expressed as a
function of the mass flux (see Appendix B):

c̃i,1(x̃) = 1−
∫ ∞

0

G0(x̃, x̃′)j̃1(x̃
′)dx̃′, (36)

with G0(x̃, x̃′) given by eq. (B.14). Equation (28) thus
reads

K1 = −1 +

∫ ∞

0

G0(x̃, x̃′)j̃1(x̃
′)dx̃′ −Rj̃1. (37)

By its substitution into eq. (35), one gets the governing
equation

x̃3

(

∫ ∞

0

∂G0(x̃, x̃′)

∂x̃
j̃1(x̃

′)dx̃′ −Rdj̃1
dx̃

)

= −
∫ x̃

0

j̃1(x̃
′)dx̃′

(38)
that can be solved only numerically. Details of the numer-
ical method are given in Appendix C. Once j̃1 is known,
concentration c̃i,1 and curvature K1 are obtained through
equations (36) and (37), see Appendix D; dH1/dx̃ and H1

are computed by successive integrations of K1.
This numerical approach is used in the following sec-

tion to study the situation dominated by diffusion of vapor
in the gas.
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8 Diffusion limited regime (R = 0)

We analyze in this section the influence of Λ̃ on the con-
tact line behavior, restricting the simulations to the purely
diffusive case that corresponds to a situation such that
R ≪ 1 ≪ Λ̃.

Because of the presence of the lengthscale Λ ≫ ℓ, one
identifies three asymptotic regions instead of two: the mi-
croregion dominated by the Kelvin effect and two inter-
mediate regions where this effect is negligible. The first
intermediate region ranges from 1 to Λ̃ in the dimension-
less units, while the second goes from Λ̃ to infinity (L̃ in
reality).

To describe both intermediate regions, the problem
defined in sec. 5 is solved neglecting the Kelvin effect,
which means c̃i,eq = 0. As mentioned in sec. 3, the solu-
tion (A.12) can be obtained by analogy with an electro-
static problem, cf. Appendix A. The asymptotic expres-
sions of this solution are obtained for both intermediate
regions, assuming that the boundary layer thickness Λ̃ is
much larger than the microregion size. The development
obtained for x̃ → 0 within the c̃eq,1 = 0 assumption de-

scribes the first intermediate region x̃ ≪ Λ̃, while the limit
x̃ → ∞ describes the second intermediate region such that
Λ̃ ≪ x̃. It is however impossible to solve the microregion
analytically so that numerical solution for all three regions
will be found. Some scaling proper to the microregion is
discussed.

8.1 Asymptotic solutions for curvature in two
intermediate regions

We begin with the second intermediate region x̃ ≫ Λ̃,
where the mass flux can be approximated by the expres-
sion stemming from eq. (A.12),

j̃1(x̃ ) ≃ − 1

Λ̃
. (39)

By using this expression in eq. (24), one obtains the cur-
vature

K1 = − 1

Λ̃x̃
+

α1

x̃2
+ α2, (40)

with α1 and α2 two integration constants. Vanishing cur-
vature at infinity imposes α2 = 0. Considering that eq.
(40) is an asymptotic solution for x̃ → ∞, we get

K1(x̃) ≃ − 1

Λ̃x̃
(41)

at a leading order.
We turn now to the first intermediate region x̃ ≪ Λ̃,

where the mass flux can be also obtained from eq. (A.12),

j̃1(x̃) ≃ − 1
√

πΛ̃x̃
. (42)

This scaling was obtained previously for the thin 3D ax-
isymmetric drop and infinite boundary layer [4]. However

the present solution is different because the geometry is
2D and the liquid film is semi-infinite. For these reasons,
the asymptotic solution for Λ → ∞ is always Λ-dependent
(see eq. (A.12) and the asymptotics (39,42), where j1 → 0
when Λ → ∞). Instead of Λ, the solution in ref. [4] con-
tains the drop diameter.

The flux diverges at the contact line, as expected: it
cannot describe the microregion dominated by the Kelvin
effect. One gets the curvature after two successive inte-
grations of eq. (24) where the expression (42) is used for
j̃1:

K1(x̃) ≃ −4

3

1
√

πΛ̃x̃3
+

α1

x̃2
+ α2, (43)

containing the integration constants α1 and α2. Before go-
ing further, we need to determine which term in the rhs
of eq. (43) is the leading order of the asymptotic develop-

ment in the subregion x̃ ≪ Λ̃. The leading term order of
magnitude estimated at the cross-over scale,

M ≡ max

(

1

Λ̃2
,
|α1|
Λ̃2

, |α2|
)

, (44)

should match the order of magnitude of the solution (41),
also estimated at the cross-over scale, i.e.

M ∼ 1

Λ̃2
for x̃ ∼ Λ̃. (45)

First, we show that α2 can be neglected in eq. (43).
The matching condition (45) cannot be satisfied if |α2| ≫
1/Λ̃2, since the definition (44) implies either M ∼ |α2| ≫
1
Λ̃2

or M ≫ |α2|. Indeed, the first case is contradictory

with eq. (45), which means |α2| . 1/Λ̃2. An immediate

consequence is α2 ≪ 1/
√

Λ̃x̃3 for x̃ ≪ Λ̃ (because, for

x̃ ≪ Λ̃, 1/Λ̃2 ≪ 1/
√

Λ̃x̃3). In other words, the first term
in the r.h.s. of eq. (43) prevails asymptotically over the
last which thus vanishes from the asymptotic solution.

Consider now the following asymptotic relation be-

tween the remaining two terms in eq. (43): 1/
√

Λ̃x̃3 ≪
|α1|/x̃2. In this case, eq. (43) leads to |K1(x̃)| ∼ |α1|/x̃2,
and the matching condition (45) imposes |α1| ∼ 1. We
get |K1(x̃)| ∼ 1/x̃2 at leading order. This alternative is

non-physical since the curvature is independent of Λ̃ when
Λ̃ → ∞ (see the remark above on this issue). The only al-

ternative is thus |α1|/x̃2 ≪ 1/
√

Λ̃x̃3, which implies the

condition α1 = 0 (we consider the subregion x̃ ≪ Λ̃). The
asymptotic solution for the curvature in the first interme-
diate region is thus

K1(x̃) ≃ −4

3

1
√

πΛ̃x̃3
. (46)

One can see that the curvature (i.e., pressure) divergence
is non-integrable at x̃ → 0 as expected for an intermediate
region.
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8.2 Asymptotic solutions for slope in the intermediate
regions

Integrating eq. (46) leads to the expression for the slope

in the first intermediate region (x̃ ≪ Λ̃),

dH1

dx̃
≃ 8

3

1
√

πΛ̃

(

1√
x̃
− 1√

η̃

)

, (47)

with η̃ an integration constant. It is worth noting that a
similar expression has been obtained by Berteloot et al [8].
However, both the “microscopic cut-off” length η̃ and the
prefactor imposed ad hoc in ref. [8] are obtained rigorously
within the present approach (see the next section for the
η̃ determination).

The slope in the second intermediate region (x̃ ≫ Λ̃)
is obtained by integration of relation (41):

dH1

dx̃
≃ − 1

Λ̃

[

ln

(

x̃

Λ̃

)

+ C

]

, (48)

with C = −Λ̃dH1

dx̃ (x̃ = Λ̃) an integration constant. When

Λ̃ ≫ η̃, the slopes (47) and (48) should match at the cross-

over x̃ ∼ Λ̃. This results in C = k
√

Λ̃/η̃ with k a positive

constant of the order unity. Both η̃ and C are determined
by matching to the microregion model in the next section.

Figures 2 shows the full numerical solution together
with both asymptotic solutions (47, 48) to illustrate their
validity.

8.3 Numerical determination of constants in the
asymptotic expressions

The microregion asymptotic solution cannot be obtained
analytically. Instead, the constants η̃ and C that enter
Eqs. (47, 48) are determined for R = 0 by solving numer-
ically eq. (38) valid in all (microscopic and both interme-
diate) regions. The procedure described in Appendix C is
used to solve such a complicated equation.

The slope perturbation dH1/dx̃ is zero at the contact
line since the contact angle is imposed at x̃ = 0. In the

microregion, dH1/dx̃ ∼ −x̃/
√

Λ̃ [see fig. 3b]. The Λ̃−1/2

scaling is important to match the asymptotics (47) coming
from the first intermediate region. The departure from the
linear behavior corresponds to the end of microregion. Its
size is of the order 1 in the dimensionless units (ℓ in the
dimensional), as expected.

The first intermediate region is described by eq. (47)
that involves a characteristic length η̃. It can be obtained
numerically by plotting the quantity

Γ = 3/8(πΛ̃)1/2
dH1

dx̃
− x̃−1/2 (49)

as a function of x̃. This quantity is derived from eq. (47)
and, according to it, is expected to be constant in the
first intermediate region. According to the numerical so-
lution (fig. 3a), this quantity shows the x̃-independent re-

gion (where Γ ≃ −1.37) only for Λ̃ ≫ 1. This is exactly

the criterion of existence of the first intermediate region,
cf. sec. 8. From the relation Γ = −η̃−1/2 that comes from
Eqs. (47,49), one gets η̃ ≃ 0.53, which is of the order of 1
as expected.

To analyze the large scale behavior (in the second in-
termediate region) one needs to renormalize the slope data
of fig. 3. It is done in fig. 4a. A logarithmic variation of
dH1/dx̃ is observed for x̃/Λ̃ > 1, as predicted by eq. (48).
The integration constant C is obtained by fitting eq. (48)
to the numerical results [see dashed lines in fig. 4a ] and
taking the intersection of each fit with the dash-dotted
line x̃ = Λ̃. The parameter C is given in fig. 4b as a func-

tion of Λ̃. For Λ̃ ≫ 1, we get C = β
√

Λ̃ with β ≃ 2 and

the law C = k
√

Λ̃/η̃ indeed holds, as expected (cf. sec.

8.2). By using η̃ ≃ 0.53 obtained above, we get k ≃ 1.46.

8.4 Apparent contact angle

It is interesting to analyze the behavior of the apparent
contact angle θapp, i.e. that observed at the macroscopic
length scale L. Strictly speaking, the slope depends on x so
that θapp can only be determined after asymptotic match-
ing to a particular macroscopic geometry (drop, bubble,
etc.). Such a procedure has been already performed, e.g.
for the capillary dewetting [31]. However, some useful in-
formation about the apparent contact angle can be ob-
tained from the present analysis. It can be taken from the
slope in the second intermediate region.

Indeed, in the case of the thin thermal boundary layer
and long film, x can be in the second intermediate region
Λ ≪ x ≪ L, where, from eq. (48), the slope varies loga-
rithmically:

dh

dx
≃ θ − 3µDg∆c

ρσθ3Λ

[

β

√

Λ

ℓ
+ ln

( x

Λ

)

]

. (50)

This expression means that the actual apparent contact
angle value will slightly depend on the curvature in the
macroscopic region, similarly to the moving contact line
problem [31]. Neglecting the weak logarithmic dependence
in eq. (50) yields an approximate expression of the appar-
ent contact angle,

θapp ≃ θ − 3β√
ℓ

µDg

ρσθ3
∆c√
Λ
. (51)

On the other hand, eq. (51) can also be obtained by tend-
ing x̃ → ∞ in eq. (47), i.e. within the first intermediate
region. In this case one gets instead of 3β ≃ 6 the coeffi-
cient 8/

√
πη̃ ≃ 6.2. Two values are very close, which is not

surprising because both intermediate regions are matched
(in the asymptotic sense) for x̃ → ∞ for the first and

x̃ → Λ̃ for the second. The agreement shows simply that
the matching has been performed correctly.

Note that eq. (51) is the result of the intermediate
regions where microscopic effects are negligible (see eqs.
(47)-(48)). Therefore, the form of eq. (51) is independent
of the microscopic singularity relaxation mechanism. The
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Fig. 3: Matching of microregion and first intermediate re-
gion. (a) Solid lines represent Γ (x̃) function obtained nu-
merically; dash-dotted line is the asymptotic value Γ ≃
−1.37 of the first intermediate region. (b) −Λ̃1/2dH1/dx̃;
solid lines: numerical results; dashed line: asymptotic mi-
croregion behavior. The arrows show the directions of the
Λ̃ increase.

microscopic details impact only the microregion length
scale ℓ. For instance, if the singularity was relaxed with
the hydrodynamic slip length ℓs, the characteristic length
3ℓs/eθ (where e = 2.71 . . . ) [32] would need to be used in-
stead of ℓ. If the singularity was relaxed with the precursor
film, ℓ would scale on the Israelachvili length (A/6πσ)1/2,
where A is the Hamaker constant.

Equation (51) is very close to the result of Berteloot
et al [8] (one needs to drop the independent Cox-Voinov
term in their eq. (13) to conform to the present problem
statement; in addition, it should be noted that the bound-
ary layer thickness Λ is included in their parameter J0).
There are however differences between our approach and
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Fig. 4: Matching of the first and second intermediate re-
gions. (a) Λ̃dH1/dx̃ for different values of Λ̃; solid lines:
numerical results; dashed lines: asymptotic equation (48);

vertical dash-dotted line: x̃ = Λ̃. Note that the microre-
gion behavior cannot be seen on these curves (the scale is

too large). (b) Integration constant C as a function of Λ̃.

that of ref. [8]. Berteloot et al introduced the microscopic
scale ℓ phenomenologically, and found the numerical pref-
actor 3β of the second term equal to 8. In our approach,
the scales are matched rigorously, and a more precise value
of 6 is obtained. In the work of Berteloot et al, only the
first intermediate region x ≪ Λ is considered. The slope
logarithmic variation in the second intermediate region is
thus implicitely neglected.

The last but not least, within our approach, the local
curvature and heat flux are obtained at all length scales
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including the microregion. Their behavior is discussed in
the next section.

8.5 Mass flux and curvature behavior

Figures 5 displays the mass flux and curvature for Λ̃ vary-
ing over several orders of magnitude. First, one can see
that both the mass flux and the curvature are regular at
the contact line due to the account of the Kelvin effect.

The microregion corresponds to the domain x̃ . 1,
where the Kelvin effect is dominant and regularizes the
singularity. Numerical results show that the flux j̃1 varies
in the microregion as x̃2Λ̃−1/2 [dash-dotted line in fig. 5a].

In the first intermediate region 1 . x̃ . Λ̃, −Λ̃1/2j̃1
and −Λ̃1/2K1 plotted as functions of x̃ gather on master
curves [see figs. 5]. Similarly to the slope, one can see that

the Λ̃−1/2 scaling of other microregion variables matches
that of their intermediate region counterparts [cf. equa-
tions (42) and (46)].

In the second intermediate region x̃ ≫ Λ̃, the flux goes
to the constant value −1/Λ̃ and the curvature behaves as

−1/(Λ̃x̃) (figs. 6). As predicted by equations (39) and (41),

the quantities −j̃1Λ̃ and −K1Λ̃
2 plotted as functions of

x̃/Λ̃ gather on master curves. A cross-over to this constant

flux regime occurs at a distance of about Λ̃ to the contact
line, as expected.

Finally, it is interesting to compare the behavior of
the flux and slope for the purely kinetic and purely diffu-
sive regimes, as depicted in figs. 2. The two parameters,
R = 100 and Λ̃ = 100, have been chosen in order to ob-
tain the same flux far from the contact line. First, the
behavior of the evaporative flux is different. Diffusion in
the gas induces a large peak close to the contact line, while
a monotonic decrease is observed for the kinetic case. At
large scale, both regimes show a logarithmic variation of
the slope, but the diffusive regime exhibits also an addi-
tional (the first) intermediate region that does not exist
for the kinetic regime.

9 Conclusions

Evaporation or condensation controlled by vapor diffusion
in the atmosphere causes a hydrodynamic singularity in
the vicinity of the edge of the liquid wedge, i.e. a non-
integrable divergence of the hydrodynamic stresses at the
contact line, just like in the contact line motion case. The
interfacial kinetic resistance does not lead to the singular-
ity relaxation (this was first shown in ref. [30]). Another
microscopic phenomenon thus needs to be introduced into
the modeling of such a phenomenon to relax the singular-
ity.

The singularity relaxation by Kelvin effect (a depen-
dence of saturation vapor concentration on the interface
curvature) is used to solve in a closed form a 2D prob-
lem of a thin liquid wedge in the atmosphere at given
super-saturation ∆c in the presence of diffusive boundary
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Fig. 5: Behavior of mass flux (a) and curvature (b) for

different values of Λ̃. The arrows show the directions of
the Λ̃ increase. The scaling is appropriate for microregion
and first intermediate region. Dashed line: first intermedi-
ate region asymptotics (42) (a) and (46) (b). Dash-dotted
lines: microregion behavior (fits to numerical curves).

layer of a finite thickness (the negative ∆c causes under-
saturation of the atmosphere and thus liquid evaporation).
We use the approximations of weak mass exchange, i.e.
small ∆c, and small wedge slope.

The numerical estimates for the size ℓ of the contact
line vicinity, in which the Kelvin effect is important (the
Kelvin length) can be found elsewhere [26]. They lead to
the same conclusion as for the moving contact line case:
for common fluids, the liquid height in the microregion is
never much larger than 1 nm, and much lower in some
cases, which is not consistent with the continuum hydro-
dynamic approach.
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Fig. 6: Behavior of mass flux (a) and curvature (b) for

different values of Λ̃. The arrows show directions of the
Λ̃ increase. The scaling is appropriate for the second in-
termediate region. Dashed lines: asymptotics (39) (a) and
(41) (b) for the second intermediate region. Vertical dash-

dotted lines correspond to x̃ = Λ̃.

The macroscopic scaling laws are independent of the
precise mechanism that ensures singularity relaxation. Due
to scale separation, the intermediate region scalings re-
main valid if the singularity is relaxed with another mi-
croscale effect like hydrodynamic slip [3] or flow in a thin
adsorbed liquid film adjacent to the wedge [10]; In the
asymptotic expressions, only ℓ value depends on the mi-
croscopic details.

We consider two limiting cases: the kinetic case where
the mass exchange rate is entirely controlled by the inter-
facial kinetic resistance (1 ≪ Λ̃ ≪ R), and the diffusive
case where it is entirely controlled by the diffusion in the
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Fig. A.1: Conformal mapping: (a) z domain, (b) w do-
main. The corresponding points A,B,C,D,E,F and areas
I,II,II,IV of the both domains are shown.

gas phase (R ≪ 1 ≪ Λ̃). The kinetic case is solved an-
alytically. The result is very similar to the Cox-Voinov
solution for the moving contact line case, with exactly the
same characteristic size ℓ of microscopic region.

In a general problem, there is another length scale: the
thickness Λ ≫ ℓ of the diffusion boundary layer. Because
of this, two intermediate regions can be identified. For the
first of them, ℓ ≪ x ≪ Λ. For the second, Λ ≪ x ≪ L,
where L is the macroscopic length scale (drop or bub-
ble size, capillary ridge width, etc.). The asymptotic scal-
ing laws describing the mass flux, curvature and inter-
face slope are derived for both intermediate regions. They
agree with the numerical solutions of general problem.

It is found that the apparent contact angle is close to
the value obtained by Berteloot et al. [8]. The prefactor in
their equation should be however corrected. The precise
value of the apparent contact angle depends weakly (log-
arithmically) on the macroscopic curvature (that of the
drop or curved meniscus).
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LaSIPS (ANR-10-LABX-0040-LaSIPS) managed by the
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A Vapor diffusion from thin liquid wedge to
the boundary layer

One aims at solving the 2D Laplace equation for the vapor
concentration c produced by the evaporating zero thick-
ness liquid wedge within the diffusive boundary layer, cf.
fig. 1(a). The geometrical setup of the reduced problem
is adapted to the already solved equivalent electrostatic
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problem where the potential is defined as ϕ = (c−ceq)/∆c.
The reduced coordinates are (u, v) and the problem

∆ϕ(u, v) = 0 , (A.1)

ϕ|v=π/2 = 1, (A.2)

∂ϕ

∂v

∣

∣

∣

∣

v=0, u>0

= 0, (A.3)

ϕ|v=0, u<0 = 0 (A.4)

is considered in the domain −∞ < u < ∞, 0 < v < π/2.
Unlike the initial problem statement, the wedge situates
to the left of the point u = 0 so that the relations between
the actual and reduced coordinates are x = −2uΛ/π and
y = 2vΛ/π. A symmetric equipotential plate can be added
at v = −π/2 and the domain can be extended to −∞ <
u < ∞, −π/2 < v < π/2, cf. figure A.1b. The boundary
conditions

ϕ|v=±π/2 = 1 (A.5)

replace the conditions (A.2, A.3) because the second of
them is satisfied trivially (because of symmetry).

Such a domain may be conformally mapped to a half-
band in the plane (a, b) shown in figure A.1a, where ϕ = 1
is imposed at the side a = 0, −π < b < π, and ϕ = 0
is at the sides b = ±π, 0 < a < ∞. The corresponding
conformal mapping function [33] is

z = ln coth
(w

2

)

≡ ln
ew + 1

ew − 1
, (A.6)

where z = a + ib and w = u + iv. It is noteworthy that
the inverse function is identical.

The solution

ϕ =
2

π
arctan

[

cos(b/2)

sinh(a/2)

]

(A.7)

of the Laplace problem for such half-band domain is known
[34] (§7.4, p. 47). From (A.6), one obtains

a =
1

2
ln

coshu+ cos v

coshu− cos v
, (A.8)

b = arctan(sinhu,− sin v), (A.9)

where the function arctan(x′, y′) gives the polar angle
−π ≤ α ≤ π of a point (x′, y′) (in programming languages
it is often called atan2).

The substitution of equations (A.8,A.9) into (A.7) re-
sults in the complete solution of the problem (A.1-A.4).

We are interested in the evaporative flux (i.e. in the
concentration gradient) at the liquid-gas interface v →
+0, u < 0 (line C-D in figure A.1b). Since both arguments
in eq. (A.9) are negative in this case, eq. (A.9) reduces to

b = −π − arctan

(

sin v

sinhu

)

, (A.10)

where arctan(x′) is now defined for −π/2 < x′ < π/2 as
usually. One can see now that b → −π when v → 0.

To find the derivative ∂ϕ/∂v|v→+0 at u < 0, one writes

∂ϕ

∂v
=

∂ϕ

∂a

∂a

∂v
+

∂ϕ

∂b

∂b

∂v

and then tends b → −π and v → 0. Equation (A.7) is
used to calculate ∂ϕ/∂a and ∂ϕ/∂b. The expression (A.10)
needs to be used to calculate ∂b/∂v. The result is

∂ϕ

∂v

∣

∣

∣

∣

liq

=
2

π

√

1− coth(u)

2
. (A.11)

In the notation of sec. 5, the flux j̃1 reads

j̃1(x̃) = − 1

Λ̃

√

1

2

[

1 + coth

(

πx̃

2Λ̃

)]

. (A.12)

For x̃ ≫ Λ̃, eq. (A.12) results in eq. (39), which is
simply a constant gradient solution for the boundary layer
of the thickness Λ̃. For x̃ ≪ Λ̃, one obtains eq. (42).

B Governing equation for the vapor
concentration field

The tilde denoting dimensionless quantities is omitted in
this appendix for clarity.

The starting point for the derivation is Green’s second
identity

∫

D

[ς(r)∆rG(r, r′)−G(r, r′)∆ς(r)]dr =

∮

L

[ς(r)∇rG(r, r′)−G(r, r′)∇ς(r)] · ndlr, (B.1)

where G is the Green function, ς = c1 − 1, and L is the
boundary of the domain D with the outward unit normal
n. The boundary consists of the x axis Lx and the line LΛ

defined by y = Λ (the integrals over the infinitely distant
vertical parts of the contour are zero, which can be eas-
ily checked with the Green function derived below). The
differentiation in all differential operators is assumed here-
after to be performed over the components of the vector
r rather than those of r′.The equation for ς is

∆ς = 0 (B.2)

with the boundary conditions

∂ς

∂y

∣

∣

∣

∣

y=0, x<0

= 0,

∂ς

∂y

∣

∣

∣

∣

y=0, x>0

= −j1(x),

(B.3)

ς|y=Λ = 0. (B.4)

The corresponding to this problem Green function G =
G(r, r′) satisfies the equation

∆G(r, r′) = δ(r − r
′). (B.5)



F. Doumenc et al.: Thin wedge evaporation/condensation controlled by the vapor dynamics in the atmosphere 13

x 

y=Λ

y 
z=x+iy 

y=0

G=0 G=0 

∑G/∑y =0 ∑G/∑y =0 

u 

v 
w=u+iv 

(u΄,v΄) 

(u΄,-v΄) (-u΄,-v΄) 

(-u΄,v΄) 

(a) (b)

Fig. B.1: Domain for the Green function problem in the z
plane (a) and its conformal map, the w plane (b).

Its general solution in 2D is

G(r, r′) =
1

2π
ln |r − r

′|+H(r, r′), (B.6)

where H satisfies the equation ∆H = 0 in D so it is non-
singular when r = r

′. It is determined from the boundary
conditions

(n · ∇)G|
r∈Lx

= 0, G|
r∈LΛ

= 0. (B.7)

Equation (B.6) can be easily derived from the divergence
(Gauss) theorem applied to G(|r − r

′|) inside a circle of
radius R centered at r′. It reduces to

1 = 2πR
dG(R)

dR
,

from which one obtains directly (B.6).
The Green Function can be built by using the con-

formal mapping defined by w = exp [πz/(2Λ)] with w =
u + iv and z = x + iy (i =

√
−1). In real variables, it is

expressed as

u = exp [πx/(2Λ)] cos [πy/(2Λ)], (B.8)

v = exp [πx/(2Λ)] sin [πy/(2Λ)]. (B.9)

This conformal mapping transforms the infinite long strip
D into the quarter of plane such that u ≥ 0 and v ≥ 0 (see
fig. B.1). The boundary y = 0 is mapped to the line v = 0,
u > 0, and the boundary y = Λ to the line u = 0, v > 0.
Therefore, eqs. (B.7) map to the boundary conditions

∂G

∂v

∣

∣

∣

∣

v=0, u>0

= 0, G|u=0, v>0 = 0. (B.10)

The solution is easy to construct by the mirror reflection
method, by placing two point sources at locations (u′, v′)
and (u′,−v′), and two point sinks at locations (−u′, v′)
and (−u′,−v′). One gets

G(u, v, u′, v′) =

1

4π
ln

[(u− u′)2 + (v − v′)2][(u− u′)2 + (v + v′)2]

[(u+ u′)2 + (v − v′)2][(u+ u′)2 + (v + v′)2]
.

(B.11)

The solution G(x, y, x′, y′) can be readily obtained by sub-
stitution of the relations (B.8, B.9).

ki+1k i

x
1

x
2

x
i

x
i+1

x
N

ki−1

x
i−1

c
L

1

O

iU (x)

Fig. C.1: Mesh and interpolation function Ui(x).

By using eqs. (B.5, B.2, B.4) and (B.7), eq. (B.1) in D
reduces to

ς(r′) =

∫

Lx

[ς(r)∇rG(r, r′)−G(r, r′)∇ς(r)] · ndlr.
(B.12)

To obtain the governing equation connecting the re-
duced vapor concentration at the interface and the mass
flux, one needs to consider the solution for y′ = 0, x′ > 0,

ς(x′, y′ = 0) = −
∫ ∞

0

G0(x, x
′)j1(x)dx, (B.13)

where

G0(x, x
′) = G(x, y = 0, x′, y′ = 0) =

1

π
ln

∣

∣

∣

∣

∣

exp πx
2Λ − exp πx′

2Λ

exp πx
2Λ + exp πx′

2Λ

∣

∣

∣

∣

∣

. (B.14)

By using the relation ς = c1 − 1, one obtains eq. (36).

C Solution method for the
integro-differential equation

The tilde denoting dimensionless quantities is omitted in
this appendix for clarity.

Equation (38) is solved numerically. The unknown func-
tion j1(x) is interpolated in the domain [0, Lc] with Lc an
arbitrary cut-off such that Lc ≫ Λ. The interpolation in
the domain [0, Lc] is performed by splitting this interval
into N subintervals of length ki (i = 1 to N), and by using
the interpolation functions Ui(x) = H(xi−ki/2)−H(xi+
ki/2), with H(x) the Heaviside function and xi the center
of the ith subinterval (see figure C.1).

The approximate expression for j1(x) then reads

j1(x) =

N
∑

i=1

j(i)Ui(x) +H(x− Lc)f(x). (C.1)

where f(x) is an asymptotic expansion of j1(x) at large
x, which can be obtained a priori. Indeed, at a large
x, the concentration field in the gas phase is such that
|∂c1/∂x| ≪ |∂c1/∂y|, which allows to consider a lubrication-
like approximation for the diffusion equation (a sufficient
condition for this approximation to be valid being x ≫ Λ).
The Laplace equation (25) thus reduces to ∂2c1/∂y

2 = 0
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and eq. (28) to j1 = (ci,1 − 1)/Λ. Using relation (28), one
gets K1 = −(Λ +R)j1 − 1. Combining this relation with
equation (24) leads to

d

dx

(

x3 dj1
dx

)

=
j1

(Λ+R)
, (C.2)

with the boundary condition lim
x→∞

j1(x) = −1/(Λ+R) that

corresponds to zero curvature at infinity. The truncation
of the solution for large x yields

f(x) = − 1

(Λ+R)
+

1

(Λ+R)2x
, (C.3)

to be used in equation C.1.

It is worthwhile to point out that the asymptotics (C.3)
is different from the asymptotics (39) for the second inter-
mediate region obtained from equation (A.12). Indeed, the
model developed in Appendix A ignores the microscale ef-
fects. They however are accounted for here. An important
consequence is that the numerical solution of the equation
(38) can describe the whole liquid wedge, i.e. from x = 0
to infinity. While the Kelvin effect declines outside the
microregion, the interfacial resistance persists and thus
contributes to the relation (C.3). One notes however that,
in reality, Λ ≫ R by many orders of magnitude.

There are N unknowns in the expression (C.1), thus
requiring N equations. The discretized version of equation
(38) is

x3
i

N
∑

m=1

Cimj(m)−Rx3
i

j(i+1) − j(i)

xi+1 − xi
+

i−1
∑

m=1

j(m)km+j(i)
ki
2

= x3
iDi for i = 1, 2, . . . N, (C.4)

with xN+1 = Lc and j(N+1) = −(Λ+R)−1+(Λ+R)−2L−1
c .

The coefficients Cim and Di are obtained with the expres-
sion (B.14) for the Green function:

Cim =

∫ xm+km/2

xm−km/2

∂G0

∂x
(xi, x

′)dx′, (C.5)

Di =
1

(Λ+R)

∫ ∞

Lc

∂G0

∂x
(xi, x

′)dx′

− 1

(Λ+R)2

∫ ∞

Lc

1

x′

∂G0

∂x
(xi, x

′)dx′. (C.6)

The integral in eq. (C.5) and the first integral in eq. (C.6)
are computed analytically. Due to the interchangeability
of x and x′ in the expression for G0 (B.14), the antideriva-
tive with respect of x′ of ∂G0/∂x is simply equal to −G0.
Note that the kernel of the integral (C.5) diverges when
x′ = xi, which happens when m = i. In this case, one can
easily check that the integral has a zero Cauchy Principal
Value, so Cii = 0. The last integral in eq. (C.6) is com-
puted numerically, by adding Na additional nodes in the

10
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3
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0

x

dH
1
/d
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3,10

4, 3×10
4

Fig. C.2: Convergence test for the numerical treatment
when increasing the cut-off Lc for Λ = 100 and R = 0.

domain [Lc, L∞], with L∞ such that Lc ≪ L∞:

∫ ∞

Lc

1

x′

∂G0

∂x
(xi, x

′)dx′ ≃
∫ L∞

Lc

1

x′

∂G0

∂x
(xi, x

′)dx′

≃
N+Na
∑

m=N+1

Cim

xm
. (C.7)

L∞ is increased until convergence is achieved.
The effect of the cut-off Lc on the slope dH1/dx is

presented in fig. C.2. It shows a good convergence for Lc >
3000.

D Numerical integration to get K1 from j1

The tilde denoting dimensionless quantities is omitted in
this appendix for clarity. Computing the curvature K1(xi)
from eq. (37) requires numerical evaluation of an integral
which involves the Green function G0(xi, x

′). Using the
discretization of j1 given by eq. (C.1), the integral is eval-
uated from

∫ ∞

0

G0(xi, x
′)j1(x

′)dx′ ≃

N
∑

m=1

j(m)

∫ xm+km/2

xm−km/2

G0(xi, x
′)dx′+α

∫ ∞

Lc

G0(xi, x
′)

x′p
dx′.

(D.1)

The second integral in the rhs of relation (D.1) is ap-
proximated by adding Na additional nodes in the range
[Lc, L∞] with Lc ≪ L∞, as already done in eq. (C.7):

∫ ∞

Lc

G0(xi, x
′)

x′p
dx′ ≃

∫ L∞

Lc

G0(xi, x
′)

x′p
dx′

≃
N+Na
∑

m=N+1

x−p
m

∫ xm+km/2

xm−km/2

G0(xi, x
′)dx′. (D.2)
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Because of the presence of an absolute value in eq. (B.14),
two cases must be considered when computing the an-
tiderivative of G0(xi, x

′) (defined as usually within a con-
stant). For x′ < xi,

∫

G0(xi, x
′)dx′ =

Λ

π2

(

− 4Li2

{

exp
[ π

2Λ
(x′ − xi)

]}

+

Li2

{

exp
[π

Λ
(x′ − xi)

]}

)

, (D.3)

where Li2 is the dilogarithm function. For xi < x′,

∫

G0(xi, x
′)dx′ =

− 2Λ

π2

(

Li2

{

1− exp
[ π

2Λ
(xi − x′)

]}

+ Li2

{

− exp
[ π

2Λ
(xi − x′)

]}

)

+
1

π
(x′ − xi) ln

{

1− exp
[ π

2Λ
(xi − x′)

]}

. (D.4)

Notice that G0(xi, x
′) diverges when x′ = xi, but the in-

tegral converges.
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