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Abstract In the neocortex, critical periods (CPs) of plasticity are closed following the

accumulation of perineuronal nets (PNNs) around parvalbumin (PV)-positive inhibitory interneurons.

However, how PNNs tune cortical function and plasticity is unknown. We found that PNNs

modulated the gain of visual responses and g-oscillations in the adult mouse visual cortex in vivo,

consistent with increased interneuron function. Removal of PNNs in adult V1 did not affect

GABAergic neurotransmission from PV cells, nor neuronal excitability in layer 4. Importantly, PNN

degradation coupled to sensory input potentiated glutamatergic thalamic synapses selectively onto

PV cells. In the absence of PNNs, increased thalamic PV-cell recruitment modulated feed-forward

inhibition differently on PV cells and pyramidal neurons. These effects depended on visual input, as

they were strongly attenuated by monocular deprivation in PNN-depleted adult mice. Thus, PNNs

control visual processing and plasticity by selectively setting the strength of thalamic recruitment of

PV cells.

DOI: https://doi.org/10.7554/eLife.41520.001

Introduction
During postnatal maturation, sensory processing goes through a critical period (CP), a developmen-

tal interval, in which neural circuits are shaped by sensory experience. After this time window, plas-

ticity declines significantly, and learning becomes more difficult (Hensch, 2005; Espinosa and

Stryker, 2012). In the visual cortex, the closure of the CP is paralleled by the structural maturation

of the extracellular matrix, and, in particular, of perineuronal nets (PNNs). These are composed by a

conglomeration of chondroitin sulphate proteoglycans, extracellular matrix and cell-adhesion mole-

cules that, in the neocortex, accumulates selectively around fast-spiking, PV basket cells

(Pizzorusso et al., 2002; Berardi et al., 2004; Bernard and Prochiantz, 2016). Importantly, chemi-

cal breakdown of PNNs reactivates ocular dominance plasticity in the adult visual cortex

(Pizzorusso et al., 2002), promotes juvenile forms of extinction of fear memories in the amygdala

(Gogolla et al., 2009) and functional recovery after brain injury (Bradbury et al., 2002;

Gherardini et al., 2015). Therefore, PNNs were proposed to act as a structural brake to experience-

dependent plasticity, restricting the extent to which a neural circuit can change during late postnatal

development (Berardi et al., 2004).

PV cells represent a major subtype of cortical GABAergic interneurons, specialized in providing

fast and reliable perisomatic inhibition to principal neurons (PNs), thereby controlling their output
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spiking properties and driving network oscillations in the b-g-frequency range (Freund and Katona,

2007; Isaacson and Scanziani, 2011; Buzsáki and Wang, 2012; Tremblay et al., 2016). In addition

to controlling cortical circuit activity (Hensch, 2005; Buzsáki and Wang, 2012), PV cells shape sen-

sory plasticity (Fagiolini et al., 2004; Hensch, 2005; Donato et al., 2013; Toyoizumi et al., 2013;

Kuhlman et al., 2013; Gogolla et al., 2014; Lensjø et al., 2017; Takesian et al., 2018). In particu-

lar, the strength of inhibition from PV cells was proposed to define the temporal window of the CP

of cortical plasticity: increasing GABAergic neurotransmission accelerates the onset of the CP,

whereas a reduction of inhibition delays the onset of plasticity (Fagiolini et al., 2004; Hensch, 2005;

Hensch and Fagiolini, 2005). Despite the mechanisms underlying the CP have been extensively

studied (Hensch, 2005; Hübener and Bonhoeffer, 2014), very little is known about how PNN accu-

mulation around PV cells changes the cellular and synaptic properties of these interneurons, thus

affecting cortical circuits and limiting plasticity. In this context, it is crucial to pinpoint the functional

mechanisms linking PNN accumulation around PV cells to its modulation of activity-dependent plas-

ticity. Indeed, accumulating evidence indicates that dysfunctions of cortical circuits involving PV cells

as well as PNN maturation are implicated in several psychiatric diseases including autism and schizo-

phrenia (Marı́n, 2012; Sorg et al., 2016).

Here, we describe how PNN removal in adult mice altered the gain of visual processing and the

power of g-oscillations in vivo; we reveal the underlying synaptic circuitry and its sensitivity to sensory

plasticity. In particular, we found that PNNs set the strength of thalamic inputs to PV cells selectively,

leaving neuronal excitability and unitary synaptic GABAergic transmission from these interneurons

intact. This resulted in a strong and differential modulation of feed-forward inhibition onto PNs and

eLife digest Our brains continue to develop after we are born. As sights, sounds and smells

flood our senses, networks of neurons go through periods of rapid rewiring. Known as ‘postnatal

critical periods’, the brain uses these periods to adapt to the signals supplied by our senses. For

example, a postnatal critical period exists where infants develop the ability to process what they can

see. If their vision is blocked until after the end of the critical period, they may not ever fully gain

normal vision.

In the outer layer of the brain, known as the cortex, neurons called parvalbumin basket cells

appear to help to regulate critical periods. The basket cells synchronize the activity of groups of

neurons, creating rhythmic patterns of neural impulses. In the visual cortex these patterns are the

brain’s way of representing incoming information from the eyes.

When a critical period ends, dense nets of protein and sugar start to form around the basket cells

in the neural circuit. Dissolving the nets in adult animals re-activates the ability of the circuit to

rewire its connections. How the nets limit this rewiring in the first place was not known.

Faini et al. have now investigated the role of the nets on the visual cortex of adult mice.

Monitoring the activity of neurons revealed that the nets around basket cells ‘muffle’ an important

circuit that forms part of the visual pathway. The nets reduce the strength of incoming signals from

the eyes before they reach the basket cells. Disrupting the nets allows the visual signals to get

through and enables the connections between neurons to respond in a similar way to their

behaviour during the postnatal critical period. However, these changes in neural activity were much

reduced in mice that had been prevented from seeing out of one eye. This emphasizes the

importance of sensory input for rewiring neural circuits.

Faini et al. propose that the build-up of nets helps to protect basket cells in the visual cortex

from being over-activated by sensory circuits. But this comes at the cost of reducing the ability of

the neurons to form new connections, hence making learning and acquiring new skills more difficult.

The brains of individuals with psychiatric conditions such as schizophrenia and some forms of

autism show disrupted nets around basket cells. Investigating the roles of these nets in more detail

could therefore help researchers to develop new treatments for such conditions. More widely,

understanding precisely how cortical circuits lose their ability to rewire themselves improves our

knowledge of how we learn and store memories.

DOI: https://doi.org/10.7554/eLife.41520.002
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other PV cells. Importantly, plasticity induced by short monocular deprivation (MD) strongly attenu-

ated these effects, indicating that PNN-mediated modulation of thalamic input onto PV cells

depends on visual activity. These results reveal the synaptic and circuit mechanisms by which PNNs

restrict sensory plasticity in the adult visual cortex.

Results

PNN removal in adult mice increases the contrast adaptation gain and
the power of g-oscillations
To test the effects of in vivo PNN removal on adult cortical circuit function, we stereotaxically

injected the primary visual cortex (V1) of adult mice (>P70) with the bacterial enzyme chondroitinase

ABC (ChABC), 2–3 days prior to electrophysiological experiments (see Materials and methods). This

is a standard procedure to effectively and locally disrupt PNNs, revealed by the absence of Wisteria

floribunda agglutinin staining (WFA, Figure 1A,B) (Pizzorusso et al., 2002; Lensjø et al., 2017).

Importantly, this approach was shown to re-open adult cortical plasticity (Pizzorusso et al., 2002;

de Vivo et al., 2013). We first measured gain adaptation of contrast perception, which is a funda-

mental computation performed by the primary visual cortex (Carandini and Ferster, 1997;

Anderson et al., 2000; Atallah et al., 2012). We recorded visually-evoked extracellular potentials

Figure 1. PNN removal in adult mice increases the contrast adaptation gain and the power of g-oscillation. (A) Representative micrograph of a sagittal

brain slice (thickness: 350 mm) from a control animal, whose visual cortex was injected with PBS (Sham). PNNs are stained with WFA (green) and are

present throughout the cortex, including V1 (delimited by dotted lines). The inset shows a magnified micrograph of a cell stained with an anti-PV

antibody (magenta), enwrapped by PNNs. (B) Same as in (A), but from a slice obtained from a ChABC-treated mouse. PNN disruption in V1 is indicated

by the absence of WFA staining. The inset illustrates a PV cell devoid of PNNs. Scale bar: 500 mm; inset: 20 mm C, Experimental setup. Visual evoked

potentials (VEPs) are recorded by a glass microelectrode in the primary visual cortex in the hemisphere injected with either Sham or ChABC. (D) Typical

recordings in Sham (black) and after PNN degradation (red). Each recording is the average of 20 sweeps. (E) Transfer function in Sham (black) and after

ChABC treatment (red). The two curves exhibit different slopes (*: p < 0.05; ANOVA, N = 5 and 6; ChABC and Sham, respectively). (F–G) Power spectra

recorded in resting state (F) and during visual stimulations (G) in control (black) and ChABC-treated (red) animals. Note the differences in the two

animal groups. (H–I) Box plots representation of LFP power bins in resting state (H; Two-Way ANOVA, post-hoc Holm Sidak, p < 0.001; N = 5 and 6;

ChABC and Sham, respectively) and during visual activity (I; Two-Way ANOVA, post-hoc Holm Sidak, p < 0.005; N = 5 and 6; ChABC and Sham,

respectively).

DOI: https://doi.org/10.7554/eLife.41520.003

The following source data is available for figure 1:

Source data 1. Source data for Figure 1E–I.

DOI: https://doi.org/10.7554/eLife.41520.004
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(VEPs) in V1 of adult mice in response to an alternating checkerboard of varying contrast presented

to the contralateral eye (Figure 1C,D). We found an enhancement of adaptation in ChABC-injected

animals, measured as a significant decrease of the slope of the transfer function (Figure 1E). More-

over, the spectral power of the local field potential during both resting state and visual activity was

increased by ChABC treatment in the high g-frequency band (40–80 Hz; Figure 1F–I) consistent with

a previous report (Lensjø et al., 2017). It should be pointed out that the power increment associ-

ated to the visual stimulation has a large bandwidth, consistent with the fact that the checkerboard

reversal is an intrinsically transient stimulus that produces a response of brief duration. More pro-

longed stimuli, like drifting gratings, cause a longer response associated to a stricter bandwidth of

the oscillations (Welle and Contreras, 2016; Veit et al., 2017). Importantly, PV cells are known to

strongly modulate the gain of contrast sensitivity (Atallah et al., 2012), and improve network syn-

chrony during g-oscillations (Cardin et al., 2009; Sohal et al., 2009; Isaacson and Scanziani, 2011;

Buzsáki and Wang, 2012). Therefore, our results suggest that the enzymatic disruption of PNNs

results in increased activity of inhibitory interneurons during visual stimulation.

Enhanced glutamatergic recruitment of PV cells by thalamocortical
fibers in the absence of PNNs is modulated by sensory deprivation
Increased perisomatic inhibitory activity in vivo could be explained by one or a combination of the

following causes: i) increased intrinsic excitability and/or spiking activity of inhibitory interneurons, ii)

alterations of the excitatory and/or inhibitory drive onto specific elements of the cortical networks

favoring the recruitment of local GABAergic interneurons. We tested all these possibilities in L4 of

V1, which is a prominent target of the visual thalamus and shows a stronger PNN enrichment around

PV cells, as compared to other cortical layers (Figure 2—figure supplement 1A,B,C). Moreover,

changes in the strength of thalamocortical connections were proposed to underlie visual cortical

plasticity (Coleman et al., 2010; Jaepel et al., 2017). Indeed, we found that the vast majority of

layer 4 PV cells in the adult is enwrapped by PNNs to some degree (Figure 2—figure supplement

1A,B,C), although in superficial and deep cortical layers (layer 2/3, deep layer 5 and layer 6) the

amount of PNNs is much lower (Figure 2—figure supplement 1A,B,C). We conclude that the prob-

ability of recording from PNN-free PV cells in layer 4 of sham-treated animals is very low.

We recorded from PV cells and PNs in acute brain slices from adult (>P70) mice, which underwent

PNN digestion in vivo, in the presence and absence of adult cortical plasticity, induced by short (2–3

days) monocular deprivation (MD; Materials and Methods and Figure 2—figure supplement 1D).

Interestingly, action potential waveform, firing dynamics and passive membrane properties of both

PV cells and PNs were unaffected by PNN digestion, in the presence and absence of MD (Figure 2—

figure supplement 2; Figure 2—figure supplement 3; Tables S1-2 in Supplementary file 1). These

results are in contrast with previous studies showing altered firing after acute PNN disruption in vitro

(Dityatev et al., 2007; Balmer, 2016), or when the PNN protein brevican was knocked out

(Favuzzi et al., 2017).

We then analyzed glutamatergic synaptic transmission on PV cells and PNs. Enzymatic disruption

of PNNs significantly increased amplitude and frequency of spontaneous excitatory postsynaptic cur-

rents (sEPSCs) onto PV cells (Figure 2A,B; Table S3 in Supplementary file 1). Conversely, glutama-

tergic transmission onto PNs was unaffected by ChABC treatment (Figure 2—figure supplement 4;

Table S3 in Supplementary file 1). Increased neurotransmission onto PV cells following PNN

removal was due to quantal synaptic transmission, and not increased slice excitability as revealed by

increased miniature (m)EPSC frequency in the presence of 1 mM tetrodotoxin (TTX; Figure 2C,D;

Table S3 in Supplementary file 1). Plasticity induced by MD (Pizzorusso et al., 2002; Berardi et al.,

2004; de Vivo et al., 2013) significantly counteracted the strong increase of sEPSC amplitude and

mEPSC frequency on PV cells in PNN-depleted mice (Figure 2E–H; Table S3 in Supplementary file

1; for ChABC-mediated effects on sEPSC amplitude and mEPSC frequency: p < 0.01 in control vs.

p > 0.05 in MD), although sEPSC frequency remained potentiated. These results indicate that the

increased synaptic recruitment of PV cells, induced by PNN degradation, is sensitive to visual input.

We then investigated if a specific glutamatergic pathway was involved. First, we studied intracort-

ical circuitry but, surprisingly, we found a very low yield of connected intracortical PN-PV cell pairs in

L4 of adult mice (5%, n = 104), as opposed to young animals (40%, n = 20; Figure 2—figure supple-

ment 5), likely because of re-routing of PN axons to L2/3 in adult mice. Therefore, we focused our

attention on the thalamocortical pathway, which carries sensory information. Using adeno-associated
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Figure 2. Enhanced glutamatergic recruitment of PV cells by thalamocortical fibers in the absence of PNNs is modulated by sensory deprivation. (A–B)

Example voltage-clamp traces (A) and summary plots (B) of sEPSCs recorded in PV cells in control animals (Sham, grey) and after ChABC treatment

(ChABC, red). (C–D) Same as in (A–B) but for mEPSCs recorded in the continuous presence of the sodium-channel blocker TTX. (E–H) Same as in (A–D),

but in mice subject to MD. (I) Representative micrograph illustrating a parasagittal brain slice obtained from an adult mouse, which was subject to

stereotaxic injection of AAVs to express ChR2- and mCherry in the dLGN. Red staining reflects mCherry expression. Note the extensive innervation of

cortical layers 4 and 6. Left: scheme of the AAV injection. (J) After 10 days, the same mouse was injected with ChABC in V1. Note the complete

depletion of PNNs in V1, as revealed with WFA staining (green). Left: scheme of ChABC injection, 48–72 hr prior to recordings. (K) Left: Representative

traces of optically evoked monosynaptic EPSCs recorded onto a PV cell from a control (Sham, top) and ChABC-injected (ChABC, bottom) animal.

Threshold responses: note the presence of failures in both cases. Recordings were done in the presence of TTX and 4-AP. Right: Population data of

light-evoked EPSCs (excluding failures) in control (Sham, grey) and ChABC-treated (ChABC, red) animals. Data are plotted in logarithmic scale. (L,)

Same as in (K) but in a mouse subject to MD. (M–N) Same as in (K–L), but for PNs. *: p < 0.05, **: p < 0.01, ***: p < 0.001. All values are in Tables S3

and 4.

DOI: https://doi.org/10.7554/eLife.41520.005

The following source data and figure supplements are available for figure 2:

Source data 1. Source data for Figure 2B,D,F,H,K,L,M,N.

DOI: https://doi.org/10.7554/eLife.41520.016

Figure supplement 1. PNNs surrounding PV cells are abundant in L4 of V1.

DOI: https://doi.org/10.7554/eLife.41520.006

Figure supplement 1—source data 1. Source data for Figure 2—figure supplement 1B.

DOI: https://doi.org/10.7554/eLife.41520.007

Figure supplement 2. Firing dynamics and passive properties are not altered by PNN removal in adult animals.

DOI: https://doi.org/10.7554/eLife.41520.008

Figure supplement 2—source data 1. Source data for Figure 2—figure supplement 2C–F.

DOI: https://doi.org/10.7554/eLife.41520.009

Figure supplement 3. Monocular deprivation does not affect firing dynamics and passive properties following PNN removal in adult animals.

DOI: https://doi.org/10.7554/eLife.41520.010

Figure supplement 3—source data 1. Source data for Figure 2—figure supplement 3C–F.

Figure 2 continued on next page
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viruses (AAVs), we expressed the light-sensitive opsin channelrhodospin 2 (ChR2) in the dorsolateral

geniculate visual thalamic nucleus (dLGN) of adult mice (Figure 2I; Figure 2—figure supplement 6;

see Materials and Methods). After 10–12 days, we injected either sham solution or ChABC in V1 of

the same mice (Figure 2J; Figure 2—figure supplement 6A), and, in some cases, MD was per-

formed at the time of ChABC/sham injection (Figure 2—figure supplement 6A). In the absence of

PNNs, PV cells exhibited larger light-evoked monosynaptic thalamocortical responses (in the pres-

ence of TTX and the K+ channel blocker 4-aminopyridine, 4-AP; see Materials and Methods) than in

control mice (Figure 2K, Table S4 in Supplementary file 1). We analyzed threshold responses to

reduce the risk of misinterpreting our results due to variable expression of ChR2 in different mice.

Threshold responses were obtained by setting the power of light stimuli yielding alternating synaptic

failures and responses (see Materials and Methods). Of note, light stimulation parameters used to

evoke threshold responses were overall similar across different animal groups in all conditions (Table

S4 in Supplementary file 1; p > 0.05). Importantly, plasticity induced by MD significantly attenuated

the potentiated recruitment of PV cells by thalamic afferents in the absence of PNNs (Figure 2L;

Table S4 in Supplementary file 1; size effect Glass’ delta: 2.11 vs. 1.75; control vs. MD, respectively,

see Materials and Methods). Similarly to spontaneous glutamatergic neurotransmission, PNN diges-

tion did not affect monosynaptic thalamocortical recruitment of PNs, both in the absence and pres-

ence of MD (Figure 2M,N; Table S4 in Supplementary file 1). AAVs can produce anterograde

infection (Zingg et al., 2017). However, in our hands, we never detected mCherry- (and thus ChR2-)

positive cell bodies in the neocortex (Figure 2—figure supplement 6C,D), thus excluding a possible

contamination of intracortical responses in our experiments.

These results indicate that PNN accumulation controls the strength of thalamic glutamatergic syn-

apses onto PV cells selectively, and this is forcibly modulated by visual activity.

PNNs do not directly affect GABAergic synapses to and from PV cells
Cortical plasticity is strongly modulated by inhibition (Fagiolini et al., 2004; Hensch, 2005;

Toyoizumi et al., 2013; Kuhlman et al., 2013). Accordingly, we found that removal of PNNs is con-

sistent with a more strongly inhibited cortical network (Figure 1) (Sohal et al., 2009; Cardin et al.,

2009; Atallah et al., 2012), and enhanced recruitment of PV cells (Figure 2). To test directly if PNN

disruption in adult mice changed inhibitory synapses onto PV cells and PNs, we pharmacologically

isolated spontaneous and miniature inhibitory postsynaptic currents (s- and mIPSCs), using a high-

chloride intracellular solution, in the continuous presence of glutamate receptor antagonists (see

Materials and Methods). We found that sIPSC amplitude and frequency onto PV cells were increased

upon removal of PNNs (Figure 3A,B; Table S5 in Supplementary file 1). Interestingly, however, AP-

independent quantal mIPSC transmission was not affected by PNN removal (Figure 3C,D; Table S5

in Supplementary file 1). These results indicate that spontaneous GABAergic transmission onto PV

cells was due to a network effect, rather than a direct synaptic alteration. Plasticity induced by sen-

sory deprivation prevented the ChABC-mediated increase of sIPSC amplitudes, whereas frequency

was still increased in PNN-depleted mice (Figure 3E–H; Table S5 in Supplementary file 1). Impor-

tantly, we did not find any change in sIPSCs in PNs following ChABC injection, both in the absence

and presence of MD (Figure 2—figure supplement 4E–H; Table S5 in Supplementary file 1). To

directly test whether local GABAergic synapses to and from PV cells were not affected by PNN

removal, we performed simultaneous recordings in PV-PV and PV-PN connected pairs, in the

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.41520.011

Figure supplement 4. Glutamatergic and GABAergic synaptic transmission onto PNs are unaffected by PNN degradation.

DOI: https://doi.org/10.7554/eLife.41520.012

Figure supplement 4—source data 1. Source data for Figure 2—figure supplement 4C,D,G,H.

DOI: https://doi.org/10.7554/eLife.41520.013

Figure supplement 5. Probability of L4 connected pairs in young and adult mouse V1.

DOI: https://doi.org/10.7554/eLife.41520.014

Figure supplement 6. In vivo expression of the light-sensitive opsin ChR2 in the dLGN to measure the strength of thalamocortical connections

impinging L4 neurons.

DOI: https://doi.org/10.7554/eLife.41520.015
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presence and absence of MD. In addition, PV-PV inhibitory connections were also examined as

autaptic self-inhibiting responses, which are highly common in neocortical PV cells (Deleuze et al.,

2014) (Figure 2—figure supplement 5). Overall, we found that PNN disruption did not alter unitary

GABAergic transmission from PV cells onto themselves, other PV cells and PNs, in terms of magni-

tude and short-term plasticity, both in the absence and presence of MD (Figure 3I–T; Table S6 in

Supplementary file 1).

Altogether, these results indicate that GABAergic synapses from PV cells onto PNs and other PV

cells are not altered by PNN removal in the adult mouse visual cortex. Rather, increased GABAergic

spontaneous activity results from increased AP-dependent activity of interneurons.

PNNs differently gate thalamocortical feed-forward inhibition on PV
cells and PNs in a visually dependent manner
The results of Figures 2 and 3 suggest a selective and experience-dependent increase of thalamic

excitatory neurotransmission onto PV cells in response to PNN removal, with no direct effect on

quantal and unitary GABAergic responses. Thalamic activation of PV cells is very potent in neocorti-

cal L4 (Gabernet et al., 2005; Sun et al., 2006; Cruikshank et al., 2010; Bagnall et al., 2011), gen-

erating strong feed-forward inhibition (FFI), which is responsible for sharpening contrast sensitivity

and controlling the temporal resolution of sensory integration (Gabernet et al., 2005). Importantly,

Figure 3. PNNs do not directly affect GABAergic synapses to and from PV cells. (A–B) Example voltage-clamp traces (A) and summary plots (B) of

sIPSCs recorded in PV cells in control animals (Sham, grey) and after ChABC treatment (ChABC, red). (C–D) Same as in (A–B) but for mIPSCs recorded

in the continuous presence of the sodium-channel blocker TTX. s- and mIPSCs were pharmacologically isolated in the continuous presence of DNQX.

(E–H) Same as in (A–D), but in mice subject to MD. (I–J) Example traces (average of 50 sweeps) of unitary autaptic IPSCs in PV cells from non-visually

deprived animals (I) and following MD (J), in control (Sham, grey) and ChABC-injected mice (ChABC, red). (K–N) Peak amplitude conductance (K, M)

and short-term plasticity (L, N) of unitary PV-PV synaptic (opened circles) and autaptic (filled circles) connections in control (Sham, grey) and in ChABC-

treated (ChABC, red) mice, in the absence (k,l) and presence (m,n) of MD. Train frequency was 50 Hz. Autaptic responses: filled lines; synaptic

responses: dotted lines. (O–T) Same as in (I–N), but for PV-PN uIPSCs. *: p < 0.05. All values are in Tables S5 and 6.

DOI: https://doi.org/10.7554/eLife.41520.017

The following source data is available for figure 3:

Source data 1. Source data for Figure 3B,D,F,H,K,L,M,N,Q,R,S,T.

DOI: https://doi.org/10.7554/eLife.41520.018
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PNN degradation affected contrast sensitivity (Figure 1) and AP-dependent sIPSCs onto PV cells

(Figure 3). We therefore tested whether increased thalamic recruitment of PV cells affects disynaptic

FFI in cortical L4. We isolated thalamic-induced FFI in both PV cells and PNs by activating ChR2-pos-

itive fibers at the reversal potential for glutamate-mediated responses, and in the absence of TTX

and 4-AP (Figure 4A,B; Table S7 in Supplementary file 1; see Materials and Methods). We found

that ChABC treatment strongly increased FFI in PV cells, elicited by threshold stimulations. Again,

MD strongly attenuated this effect (Figure 4A,B, shaded area; size effect Glass’ delta: 6.89 vs. 2.30;

control vs. MD, respectively). Surprisingly, we did not detect any change of FFI on PNs, when mea-

sured at threshold (Figure 4C,D). Importantly, however, at a higher stimulus intensity (1.5 x thresh-

old), FFI was significantly increased by ChABC treatment also in PNs, and sensory deprivation

prevented FFI potentiation onto PNs (Figure 4E,F).

Altogether, these results indicate a preferential gating of disynaptic, feed-forward inhibition in

L4. Indeed, compared to PNs, FFI on PV cells was more sensitive to modulation by PNN

Figure 4. PNNs differently gate thalamocortical feed-forward inhibition on PV cells and PNs in a visually-dependent manner. (A) Example voltage-

clamp traces of feed-forward inhibition (FFI) recorded in PV cells at threshold stimulation (note the presence of failures) in control (Sham, left) and

ChABC-treated (ChABC, right) animals, in absence (top) and presence (bottom, shaded area) of MD. Neurons were voltage-clamped at the reversal

potential for glutamate-mediated responses in order to isolate disynaptic inhibition. Vertical blue bars correspond to photostimulation. (B) Population

data of feed-forward IPSC amplitudes in control (sham, grey) and ChABC-treated (ChABC, red) animals, in the absence (left) and presence (right,

shaded area) of MD. (C–D) Same as in (A–B), but for PNs. (E–F) Same as in (C–D), but at 1.5 x threshold stimulation. *: p < 0.05; **: p < 0.01; ***:

p < 0.001. All values are in Table S7.

DOI: https://doi.org/10.7554/eLife.41520.019

The following source data is available for figure 4:

Source data 1. Source data for Figure 4B,D,H,F.

DOI: https://doi.org/10.7554/eLife.41520.020
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accumulation. In addition, the boost of FFI was strongly dependent on visual input, similarly to s-,

m-EPSCs and thalamocortical glutamatergic activation of PV cells.

Post-CP maturation coincides with a selective reduction of
glutamatergic neurotransmission onto PV cells
PNN accumulation in the visual system co-occurs with the end of the CP (P30-35) (Pizzorusso et al.,

2002). Importantly, PNN disruption in V1 of adult mice re-opens cortical plasticity (Pizzorusso et al.,

2002), and is associated to increased glutamatergic synaptic transmission selectively in PV cells (Fig-

ure 2). We therefore measured glutamatergic and GABAergic neurotransmission on PV cells and

PNs before (<P20), at the peak (P25-32) and after (P40-60 and >P70) the CP, to test if post-CP accu-

mulation of PNNs is associated to changes of the overall strength of glutamatergic neurotransmis-

sion onto PV cells. Interestingly, we found that the maturation of cortical circuits after the CP is

accompanied by a decrease of glutamatergic neurotransmission onto PV cells (both sEPSC ampli-

tudes and frequency; Figure 5A–C, Table S8 in Supplementary file 1), whereas GABAergic inhibi-

tion on PV cells was unchanged throughout development (Figure 5D–F, Table S8 in

Supplementary file 1). This developmental decrease of glutamatergic strength was selective for PV

cells, as both glutamatergic and GABAergic neurotransmissions on PNs were stable across pre- and

post-CP stages (Figure 5G–L, Table S8 in Supplementary file 1).

These results suggest that the accumulation of PNNs around PV cells during post-CP develop-

ment determines a change in the excitation-to-inhibition ratio in this interneuron type, and ChABC-

mediated disruption of PNNs in adult animals (Figure 2) recapitulates some juvenile features of

visual cortical circuits.

Discussion
In this study, we demonstrate that PNNs modulate the gain of contrast sensitivity and network syn-

chrony during cortical g-oscillations. This is associated to a selective increase of thalamic glutamater-

gic recruitment of PV interneurons in the absence of PNNs, without altering their excitability and the

quantal properties of their GABAergic synapses. Increased thalamic recruitment of PV cells in the

absence of PNNs strongly affects FFI differentially in PV cells and PNs (Figure 6A). All effects

depended on the presence of normal visual input after ChABC in vivo treatment, as they were

reduced or prevented by sensory plasticity induced by MD (Figure 6B). Interestingly, selective

decrease of glutamatergic neurotransmission onto PV cells is present during the post-CP develop-

ment, which is paralleled by accumulation of PNNs around these interneurons.

ChABC degrades chondroitin sulfate proteoglycans (CSPGs), the major PNN component, down

to their disaccharide building blocks. However, CSPGs are also diffusely present in the entire extra-

cellular environment. Thus, ChABC disrupts the entire extracellular matrix beyond PNNs, possibly

leading to compounding effects on PV cell circuits, unrelated to PNNs. For these reasons, in all our

experiments (both in control and MD), we have recorded from both PV cells and PNs. We did not

observe any change in PNs in any parameter we investigated (AP waveform, firing dynamics, sEPSCs,

sIPSCS, uIPSCs and thalamic glutamatergic activation), as opposed to PV cells. We thus conclude

that the effects that we report in the manuscript are due to PNN accumulation around these inter-

neurons. Importantly, our approach is known to re-open visual plasticity in adult animals

(Pizzorusso et al., 2002). Accordingly, it has been recently demonstrated that genetic ablation of

aggrecan (and thus PNN structure) in adult mice results in the re-opening of cortical plasticity

(Rowlands et al., 2018).

Reduced gain of contrast sensitivity and increased power of g-oscillations are consistent with

increased activity of PV interneurons. Indeed, optogenetic activation of PV cells was shown to have a

strong effect on the gain of visual contrast sensitivity (Atallah et al., 2012), and determine the level

of g-power and information transfer in the neocortex (Cardin et al., 2009; Sohal et al., 2009). There-

fore, the PNN-dependent effects shown here are consistent with either increased PV-cell excitability

and firing, and/or altered synaptic transmission to and from these cells. Indeed, it has been sug-

gested that removal of PNNs in the adult results in alterations of AP waveform and firing

(Dityatev et al., 2007; Balmer, 2016). In contrast, here we show that intrinsic excitability of PV cells

and PNs is not affected by in vivo enzymatic digestion of PNNs in the adult visual cortex. This dis-

crepancy could be due to different approaches used to remove or diminish the expression of PNNs:
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in vivo vs. in vitro digestion, or genetic downregulation. Indeed, acute in vitro digestion of PNNs

might not entirely recapitulate the actual remodeling of cortical networks induced by visual input. In

addition, genetic downregulation of brevican (Favuzzi et al., 2017), a key component of the extra-

cellular matrix, could be prone to developmental and/or homeostatic processes that we did not

induce here, due to the relatively short depletion of PNNs in adult animals, known to re-open visual

plasticity in adult animals (Pizzorusso et al., 2002). The enzymatic disruption of PNNs is advanta-

geous, because it relies on an acute degradation (2–3 days) at a mature developmental stage when

cortical circuits are fully developed. Compensatory effects are minimal during such a short time of

PNN degradation, thus allowing dissecting the exact mechanism underlying the re-opening of corti-

cal plasticity, without other developmental effects present when PNNs are removed genetically

(Favuzzi et al., 2017). These developmental studies are extremely important, but they address a

Figure 5. Post-CP maturation coincides with a selective reduction of glutamatergic neurotransmission onto PV

cells. (A) Example voltage-clamp traces of sEPSCs recorded in PV cells during development (<P20, P25-P32, P40-

P60 and >P70). (B–C) Plots of average sEPSC amplitude (B) and frequency (C) in PV cells. (D–F) Same as in (A–C)

but for sIPSCs, pharmacologically isolated in presence of the glutamate receptor antagonist DNQX. (G–L) Same as

in (A–F) but onto PNs. PV = parvalbumin positive interneuron. PN = principal neuron. *: p < 0.05, **: p < 0.01, ***:

p < 0.001, ****: p < 0.0001. All values are in Table S8.

DOI: https://doi.org/10.7554/eLife.41520.021

The following source data is available for figure 5:

Source data 1. Source data for Figure 5B,C,E,F,H,I,K,L.

DOI: https://doi.org/10.7554/eLife.41520.022
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different question, centered on the development of cortical circuits in the absence of PNNs. Interest-

ingly, recent evidence indicates a similar re-opening of cortical plasticity in a specific mouse model,

in which PNNs were genetically knocked out in PV cells from adult mice (Rowlands et al., 2018).

Another important mechanism by which PNNs might limit cortical plasticity could be attributed to

decreased inhibition from PV cells. A recent study suggest that reduced cortical GABAergic neuro-

transmission is responsible for unlocking juvenile plasticity in adult animals, although this was not

tested directly, but inferred by spiking activity (Lensjø et al., 2017). In fact, here we show that net-

work-induced FFI and AP-dependent spontaneous synaptic inhibitory neurotransmission were rather

enhanced by PNN removal, although quantal and unitary GABAergic neurotransmission were not

affected. These results strongly suggest that increased thalamic glutamatergic strength onto PV cells

increases network-dependent FFI (Figure 6A). The enhanced thalamic recruitment of PV cells and

the consequent network-driven increase of GABAergic transmission (Figure 4G–H) explain the

reduction of the gain of contrast adaptation and the enhancement of g-oscillations measured in vivo

(Figure 1), as they are both consistent with increased activity of PV cells (Sohal et al., 2009;

Cardin et al., 2009; Atallah et al., 2012).

Increased FFI onto PV cells and PNs was most likely due to a ChABC-mediated effect on PV-cell

recruitment and not on unitary GABAergic responses, as they were not affected by PNN depletion,

as shown in Figure 3. Interestingly, FFI on PV interneurons was much more sensitive to the presence

of PNNs than FFI on PNs. This well agrees with the PV cell-specific modulation of sIPSCs by PNNs.

The stronger sensitivity of FFI onto PV cells, could be due to the significantly stronger unitary PV-PV

connections, as compared to PV-PN synapses (p < 0.05). The preferential PNN-mediated alteration

of FFI onto PV cells might favor L4 circuit disinhibition (and thus paradoxical excitation) for visual

stimulations at low intensities, whereas FFI on PNs becomes more prominent at stronger visual stim-

uli, thus reducing the gain of the visual adaptation curve (Figure 1). Moreover, PNN-dependent

modulation of FFI in L4 might affect spike-timing precision of both PV cells and PNs, and change the

integration window during the initial steps of sensory processing (Gabernet et al., 2005).

The increased glutamatergic recruitment of PV cells induced by PNN degradation could result

from alterations induced in the pre- or postsynaptic site (or both). Our optogenetic approach does

not allow dissecting the precise synaptic site affected by PNN degradation. This is especially true for

the protocol used to isolate thalamocortical inputs onto PV cells and PNs, which is nonetheless use-

ful to prevent unwanted multi-synaptic activity, typical of these powerful synapses (Petreanu et al.,

2009), but it compromises the analysis of presynaptic release probability. The increase of mEPSC

frequency but not amplitude on PV cells, induced by PNN degradation, suggests a presynaptic

Figure 6. Schematic interpretation of the plastic synaptic and circuit effects induced by PNN removal and monocular deprivation in L4 of adult V1. (A)

In normal adult mice, PV neurons are enwrapped by PNNs (grey). Both PV cells and PNs are contacted by thalamic fibers (red) and form local

connections in L4 (green). ChABC injection (grey arrow) disrupts PNNs and induces a specific increase of the recruitment of PV cells by dLGN afferents,

schematized by larger synapses (illustrated in red). This primary direct effect leads to a secondary network effect, namely an increase of feed-forward

inhibition onto PV cells as well as onto PNs. Importantly, feed-forward inhibition onto PV cells is much stronger and more sensitive than on PNs, as

represented by the width of green arrows. Our results on spontaneous transmission suggest that the impact of PNN degradation might re-capitulate

younger stages (orange arrow). (B) Plasticity induced by sensory deprivation (MD) in PNN-depleted animals manifests itself as strong reduction (dotted

red lines) of the boost of PV-cell recruitment induced by PNN removal normalizing feed-forward inhibition onto PNs and reducing the increase of FFI

onto PV cells.

DOI: https://doi.org/10.7554/eLife.41520.023
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modulation. Yet, future experiments will be necessary to unequivocally determine whether the

absence of PNNs alters thalamic synapses via pre- or postsynaptic mechanisms.

Our MD results demonstrate that the potentiated thalamic recruitment in the absence of PNNs

depends on visual activity. A small, albeit significant, reduction of PV-cell and PN recruitment

induced by sensory deprivation in adult mice is present also in control conditions (p < 0.05; not

shown), suggesting that 2–3 days of MD are sufficient to slightly downregulate contralateral thalamic

input in the binocular cortex. However, in the absence of PNNs, MD effects are more pronounced.

Therefore, we conclude that the MD-dependent reduction of PV-cell recruitment is likely the mecha-

nism that is responsible for re-opening cortical plasticity following PNN degradation in adult animals

(Pizzorusso et al., 2002; Rowlands et al., 2018). Interestingly, this effect is similar to that occurring

in young animals during the CP, in which sensory deprivation reduces the firing rate of PV cells due

to a decrease of synaptic excitatory drive onto these interneurons (Kuhlman et al., 2013). Accord-

ingly, we found a significant reduction of glutamatergic synaptic strength selectively on PV cells, dur-

ing a post-CP maturation window that is paralleled by enrichment of PNNs around PV cells. The lack

of changes of the inhibitory strength during the post-CP development suggest that the accumulation

of PNNs is associated to a change in the excitatory-to-inhibitory ratio only onto PV cells, and that

might be responsible for the closure of cortical plasticity in the adult.

Importantly, visual cortical plasticity during CP results from overall decreased inhibition

(Hensch, 2005). Accordingly, we also detect a decrease of action potential-dependent inhibition

(both on PV cells and PNs), when we induce plasticity with MD. In order to induce plasticity in the

adult, however, glutamatergic recruitment of PV cells (and consequently their inhibitory activity) has

to increase (as it happens during the CP; Figure 5 and Kuhlman et al., 2013). When PNNs are

removed, glutamatergic synapses are enhanced, AP-dependent inhibition too, and this boost is sub-

ject to sensory-dependent plasticity that we measured as a decreased level of inhibition.

We conclude that PNN accumulation during post-CP development might exert a protective role,

selectively dampening thalamic excitation of PV cells (and thus excessive cortical circuit inhibition) at

the expense of reducing cortical plasticity. Age-dependent reduction of plasticity of thalamic synap-

ses onto PV cells might be thus instrumental for correct mature sensory representation. Accordingly,

deficits in PNN formation during development have been associated with brain diseases involving

altered sensory perception, such as schizophrenia and autism (Sorg et al., 2016).

Materials and methods

Animals
Experimental procedures followed National and European guidelines, and have been approved by

the authors’ institutional review boards (French Ministry of Research and Innovation and Italian Minis-

try of Health). In order to identify PV interneurons we used PvalbCre mice (Jackson Laboratory Stock

Number 008069). To selectively express EGFP in PV-positive cells, we bred PvalbCre mice with mice

harboring the R26R CAG-boosted EGFP (RCE) reporter allele with a loxP-flanked STOP cassette

upstream of the enhanced green fluorescent protein (EGFP) gene (RCE mice, kindly provided by

Gordon Fishell, New York University), obtaining PvalbCre::RCE mice. Male mice of different postnatal

age groups were used, recapitulating developmental stages and accumulation of PNNs around PV

cells: <P20 (before the CP), P25-P32 (CP), P40-P60 (maturation of PNNs) and >P70 (adult). In vivo

experiments were performed on adult C57BL/6J mice older than P70 (Jackson Laboratory stock

number 000664). All mice used in the study were reared in a 12 hr light/dark cycle with food ad

libitum.

In vivo enzymatic degradation of PNNs in V1
To disrupt PNNs locally in V1, adult mice underwent a stereotaxic injection of the bacterial enzyme

chondroitinase ABC (ChABC) from Proteus vulgaris (Sigma) or of the phosphate-buffered saline solu-

tion (PBS - control). ChABC was prepared beforehand: the powder was reconstituted in 0.01%

bovine serum albumin aqueous solution for a final concentration of 100 mU/mL. Before each injec-

tion, reconstituted ChABC was diluted in a second buffer containing 50 mM Tris, 60 mM sodium ace-

tate and 0.02% bovine serum albumin (pH = 8.0) in order to obtain a final concentration of 40 U/mL.

Adult mice were placed in an anesthesia induction cage (3% isoflurane Iso-Vet; 250 mL air) until
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insensitive to nociceptive stimuli (tail pinch) and then fixed on a stereotaxic apparatus with a mouth

mask constantly delivering isoflurane (2–2.5% isoflurane; 200 mL air). The analgesic buprenorphine

(0.1 mg/kg - Buprecare) was intraperitoneally injected and an ophthalmic ointment was applied on

the eyes. Body temperature was constantly controlled and maintained to 37.5˚ using a heating pad.

An incision was done in the skin (the local anesthetic bupivacaine was applied before the incision;

0.25% in NaCl 0.9%) and a small hole was drilled in one hemisphere at 2.9 mm lateral from Lambda.

Small glass capillaries (external diameter of 40 mm; internal diameter of 60 mm), beveled in order to

ensure a better penetration into the tissue and therefore produce less damages, were filled with 1

mL ChABC or PBS. Two injections of 350 nL each (with a rate of 100 nL/min) were realized at a depth

of 800 mm and then 400 mm, with 5 min of interval. The skin was sutured with a non-absorbable 3/0

filament (Ethicon), an antiseptic (betadine) was applied on the skin and the mouse gently removed

from the frame and kept at 37˚C in a heated chamber until full recovery. In vivo experiments or brain

slices for electrophysiology were prepared 2–3 days post-injection.

In vivo expression of the light-sensitive channel ChR2 in the dLGN
The thalamocortical (TC) pathway was studied by an optogenetic approach: the light-sensitive opsin

channelrodopsin-2 (ChR2) was expressed on the membrane of glutamatergic neurons in thalamic

dorsolateral geniculate nucleus (dLGN) of adult mice. ChR2 was transduced by stereotaxic injections

of an adeno-associated (AAV) virus, expressing ChR2 under the promoter of the calcium/calmodulin

dependent protein kinase II (CaMKII) (AAV9.CaMKIIa.hChR2(H134R)-mCherry.WPRE.hGH; Addg-

ene#: 20297, Penn Vector Core, University of Pennsylvania). Viral particles were injected in the hemi-

sphere, in which PNNs were subsequently degraded. The procedure was similar to the ChABC/PBS

injections (see section above) except for the following points: i) we used a rigid needle (Hamilton,

33-gauge, 13 mm, pst4-20˚), which is more appropriate to target deep structures such as the dLGN;

ii) the coordinates of injection site were 2.06 mm posterior to Bregma – 2 mm lateral to midline –

3.2 mm deep from the surface of the skull; iii) one 50 nL injection was performed at a rate of 50 nL/

min (viral titer: 2.5 � 1013 particles/mL, diluted at a factor five in fresh PBS). After 10–12 days, suffi-

cient for an adequate expression of ChR2, mice were treated with the ChABC or PBS injections. In

some cases, mice were monocularly deprived as described below. AAVs can produce anterograde

infection (Zingg et al., 2017). However, in our hands, we never detected mCherry- (and thus ChR2)-

positive cell bodies in the neocortex (Figure 2, Figure 2—figure supplement 6), thus excluding a

possible contamination of intracortical responses in our experiments. Occasionally, AAVs spread to

the lateral posterior (LP) nucleus of the thalamus, which also projects to V1. However, the axons orig-

inating from this thalamic nucleus do not innervate cortical layer 4, but mainly layers 1 and 5b

(Roth et al., 2016). Therefore, it is unlikely that we activated axons from LP in our experiments.

Sensory deprivation in adult mice by monocular deprivation
In some experiments, following the injection of ChABC/PBS, the eyelid of the left eye (contralateral

to the injected hemisphere) was sutured shut. The anti-inflammatory Diprosone (0.05% ointment)

was applied on the eye and the superior and inferior eyelids were gently removed with fine scissors.

Four stitches were realized with non-absorbable 6/0 filament (Ethicon). 1–2 drops of the anti-inflam-

matory Tobradex were put in the sutured-eye and the mouse was removed from the frame and kept

at 37˚C in a heated chamber until full recovery. Mice were killed when signs of infection were

observed or if the sutured eye re-opened. Brain slices for electrophysiology were prepared 48 to 72

hr post treatment and surgery.

In vivo recordings
During surgery and recordings, body temperature was maintained constant through a heating pad

and respiration and heartbeat were monitored (heart rate range 420–580 bpm). Oxygen-enriched air

was administered through all procedures. All necessary efforts were made to minimize the stress of

the animals.

Mice were anesthetized by intraperitoneal injection of urethane (0.8 ml/kg in 0.9% NaCl; Sigma)

and head restrained during the duration of the recordings. The depth of anesthesia was evaluated

by monitoring the pinch withdrawal reflex and other physical signs (respiratory and heart rate). Addi-

tional doses (10% of initial dose) were intraperitoneally administered to maintain the level of
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anesthesia if necessary. As an additional indication, we carefully monitored the electrophysiological

signature of urethane induced deep sleep: up/down states frequency, duration and amplitude were

similar in the two experimental groups during the recordings (data not shown). A portion of the skull

overlying the visual cortex (0.0 mm anteroposterior and 2.9 mm lateral to the lambda suture) was

drilled and the dura mater was left intact. A chamber was created with a thin layer of a dental

cement around the edges of the craniotomy. Cortex was maintained constantly wet with ACSF con-

taining (in mM): 120 NaCl, 3.2 KCl, 2 CaCl2, 1 MgCl2, 1 K2HPO4, 10 HEPES, 26NaHCO3, (pH = 7.4).

Animals deeply anesthetized under urethane were sacrificed by cervical dislocation without regain-

ing consciousness at the end of the experiment. Local field potentials (LFPs) and visually evoked

potentials (VEPs) were recorded by a glass micropipette (impedance ~ 2 MW, filled with ACSF solu-

tion) positioned into the visual cortex at a depth of 250–300 mm. A common reference Ag-AgCl elec-

trode was placed on the cortical surface in the ACSF bath. Electrophysiological signals were

amplified 1000-fold (EXT-02F, NPI), band pass filtered (0.1–1000 Hz), and sampled at 2 kHz. Visual

stimuli were generated on a LCD display (mean luminance at maximum contrast, 3 cd/m2) by a MAT-

LAB custom program that exploits the Psychophysics Toolbox, and the luminance of the stimuli was

calibrated by means of a radiometer (Konica Minolta). Transient VEPs were recorded in response to

the reversal of a checkerboard every 2 s (spatial frequency 0.04 c/deg). The response to a blank stim-

ulus (0% contrast) was also recorded to estimate noise.

Preparation of acute slices for electrophysiology
In order to record intrinsic and synaptic properties of L4 neurons of V1, we prepared acute cortical

slices from mice at different postnatal (P) ages (<P20; P25-P32; P40-P60 and >P70), and adult (>P70)

mice previously injected with either PBS (sham) or ChABC. For these experiments, we used slices cut

in the sagittal plane (350 mm thick). In experiments from deprived-animals as well as in which thala-

mocortical neurons expressed ChR2, we cut slices in the coronal plane (350 mm thick), to localize the

binocular zone of V1 (V1b). Animals older than 25 days were subject to intracardial perfusion of ice-

cold cutting solution (see below) before extracting the brain. This procedure improved the quality of

slices and preserved the integrity of the tissue significantly. Animals were deeply anesthetized with

pentobarbital (50 mg/kg - Euthasol Vet) and 100 mL of Choay heparine was injected in the left ventri-

cle of the heart before perfusion. Animals were then perfused through the heart with a choline-

based cutting solution containing the following (in mM): 126 choline chloride, 16 glucose, 26

NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 7 MgSO4, 0.5 CaCl2, cooled to 4˚C and equilibrated with 95% O2/

5% CO2. The brain was then quickly removed (for groups of mice aged <P20, this procedure started

right after deep anesthesia) and immersed in the same cutting choline-based solution (4˚C, equili-
brated with 95% O2/5% CO2). Slices were cut with a vibratome (Leica VT1200S) in cutting solution

and then incubated in oxygenated artificial cerebrospinal fluid (aSCF) composed of (in mM): 126

NaCl, 20 glucose, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1 MgSO4, 2 CaCl2 (pH 7.35, 310-320mOsm/

L), initially at 34˚C for 30 min, and subsequently at room temperature, before being transferred to

the recording chamber where recordings were obtained at 30–32˚C.

Slice electrophysiology and optogenetic stimulation
Whole-cell patch-clamp recordings were performed in L4 of the primary visual cortex neurons V1. In

MD animals, cells were patched in the binocular portion V1b. Inhibitory PV-expressing interneurons,

labeled with GFP, were identified using LED illumination (OptoLED, blue, l = 470 nm, Cairn

Research, Faversham, UK) and by their typical fast-spiking firing behavior in response to depolarizing

DC current steps. Excitatory principal neurons (PNs) were visually identified using infrared video

microscopy by their relatively small size round cell body and no apical dendrites. Accordingly, when

depolarized with DC current pulses PNs exhibited a typical firing pattern of regular-spiking cells. We

used different intracellular solutions depending on the type of experiment and the nature of the

responses we wanted to assess. To study intrinsic excitability, AP waveform and glutamatergic spon-

taneous transmission, electrodes were filled with an intracellular solution containing (in mM): 127

K-gluconate, 6 KCl, 10 Hepes, 1 EGTA, 2 MgCl2, 4 Mg-ATP, 0.3 Na-GTP; pH adjusted to 7.3 with

KOH; 290–300 mOsm. The estimated reversal potential for chloride (ECl) was approximately �69 mV

based on the Nernst equation. To measure GABAergic currents (both sIPSCs and uIPSCs in paired

recordings), neurons were recorded using an intracellular solution containing (in mM): 65
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K-gluconate, 70 KCl, 10 Hepes, 1 EGTA, 2 MgCl2, 4 Mg-ATP, 0.3 Na-GTP; pH adjusted to 7.3 with

KOH; 290–300 mOsm. The estimated ECl was approximately �16 mV based on the Nernst equation.

Under these recording conditions, activation of GABAA receptors resulted in inward currents at a

holding potential (Vh) of �70 mV. Experiments using optical stimulation of ChR2-positive thalamo-

cortical fibers were done with a cesium-based intracellular solution containing (in mM): 125

CsMeSO3, 3 CsCl, 10 Hepes, 5 EGTA, 2 MgCl2, 4 Mg-ATP, 0.3 Na-GTP, 5 QX314-Cl; pH adjusted to

7.3 with CsOH; 290–300 mOsm. This solution allowed voltage-clamping neurons at various mem-

brane potentials. ECl- was approximately �63 mV based on the Nernst equation. Voltage values

were not corrected for liquid junction potential. Patch electrodes were pulled from borosilicate glass

capillaries and had a typical tip resistance of 2–3 MW. Signals were amplified with a Multiclamp 700B

patch-clamp amplifier (Molecular Devices), sampled at 20–50 KHz and filtered at 4 KHz (for voltage-

clamp experiments) and 10 KHz (for current-clamp experiments). Signals were digitized with a Digi-

data 1440A and acquired, using the pClamp 10 software package (Molecular Devices).

For intrinsic excitability experiments, neurons were recorded in current-clamp mode. In order to

avoid any contribution of differences and variations in the membrane resistance (Rm) on the fre-

quency-current curves, the injected current was adjusted in each cell as a function of Rm. This value

was determined by the Ohm’s law (I= DV/Rm): we injected an amount of current (I) to obtain a DV

of ~10 mV, depending on the actual Rm of each cell, and increasing the amount of depolarizing cur-

rent to obtain a DV of 5 mV, for a total of 15 current steps.

Single AP were obtained by injecting brief (2 ms) current steps of increasing amplitude from a Vm

of ~ �70 mV in order to determine the minimal current intensity required to elicit a spike in each

cell. This current was then injected 20 times and we averaged the trials for each cell from which we

calculated the first derivative of the Vm and constructed planar phase plots to extract AP threshold

values.

Synaptic events were recorded in voltage clamp mode for at least 2–3 min. EPSCs (spontaneous

and miniatures) were isolated by clamping the cells at �70 mV, using an intracellular solution con-

taining [Cl-] yielding a ECl- ~ �69 mV. In some experiments, we applied the glutamate receptor

antagonist DNQX at the end of the recording and we could not detect any residual response (not

shown). GABAAR-mediated currents where pharmacologically isolated by applying 10 mM of DNQX

while recorded neurons at �70 mV, using an intracellular solution with a [Cl-] yielding a calculated

ECl- of ~ �16 mV.

For paired recordings, unitary synaptic responses were elicited in voltage-clamp mode by brief

somatic depolarizing steps evoking action currents in presynaptic cells. We used a high-chloride

intracellular solution (ECl ~ �16 mV), which allowed us measuring glutamatergic (PN-PV) and

GABAergic synaptic responses (PV-PN, PV-PV and autapses) simultaneously. Neurons were held at

�80 mV and a train of 5 presynaptic spikes at 50 Hz was applied to infer short-term plasticity of syn-

aptic responses.

Optical stimulation: ChR2 activation was obtained by brief (0.3 and 1.0 ms) light flashes on corti-

cal slices, using a blue LED (l = 470 nm; Thorlab) collimated and coupled to the epifluorescence

path of an Olympus BX51 microscope mounting a 60 X water immersion objective (1.0 NA). Light

intensity was controlled by the analog output of an A/D card (Digidata 1440A) via a power supply

(Thorlabs, LEDD1), and calibrated with a photodiode and a power meter. Light power ranged

between 0.053 and 1.12 mW, over a spot of 0.28 mm of diameter. Although thalamocortical axons

innervating cortical L4 were severed from their cell bodies, activation of ChR2-expressing fibers gen-

erated robust responses onto postsynaptic neurons (Kloc and Maffei, 2014). Light-evoked

responses were recorded in voltage clamp mode in L4 PV cells and PNs. Direct recruitment of corti-

cal neurons was examined in ACSF containing 1 mM of TTX, to remove polysynaptic activity, and 100

mM of the K+-channel antagonist 4-aminopyridine (4-AP), to enhance axonal depolarization. This

approach ensures monosynaptic transmission from thalamocortical afferents selectively, without con-

tamination of polysynaptic activity (Petreanu et al., 2009). Yet, in the presence of TTX and 4AP, the

depolarization of presynaptic terminals differs from an action potential, as it is likely slower and

broader. Consequently, glutamate released by ChR2-positive thalamic fibers is temporally dispersed

due to a strong asynchronous release component. We therefore measured charge transfer of thala-

mocortical synaptic responses on both PV cells and PNs. Disynaptic inhibition was measured in regu-

lar ACSF and IPSCs were isolated by holding neurons at the reversal potential for glutamate-
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mediated responses (between + 10 and+15 mV, taking into account the liquid junction potential and

series resistance).

In order to minimize response variability due to potential different level of expression of ChR2

across animals and slices, we performed optical stimulations at a light intensity inducing detectable

responses with occasional failures. This light intensity was refereed as threshold stimulation

(Gabernet et al., 2005; Bagnall et al., 2011). The duration of light stimulations were 0.3 ms for

feed-forward (FFI), and 1 ms for thalamocortical glutamatergic activation. The stimulus duration was

longer in the latter case, due to the presence of TTX and 4-AP. With these constant pulse durations

and by varying illumination intensity, the threshold stimulation was determined for each cell.

For all experiments, neurons were discarded from the analysis if the access resistance was >30

MW. All drugs were obtained from Tocris Cookson (Bristol, UK) or Sigma-Aldrich (St-Louis, USA).

Immunohistochemistry
Thick slices used for electrophysiology experiments (350 mm) were fixed overnight in 4% paraformal-

dehyde in phosphate buffer (PB, pH 7.4) at 4˚C. Slices were then rinsed three times at room temper-

ature (10 min each time) in PBS and pre-incubated 1 hr at room temperature in a blocking solution

of PBS with 0.3% Triton and 10% bovine serum albumin. Slices were then incubated 3.5 hr at room

temperature in PBS with 0.3% Triton and Fluorescein Wisteria floribunda lectin (WFA-FITC; Vector

Laboratories) which binds to the N-acetylgalactosamime of PNNs. Slices were then rinsed three

times in PBS (10 min each) at room temperature, coverslipped in mounting medium and stored at

4˚C. Immunofluorescence was then observed with an epifluorescence macroscope (Nikon AZ100)

and images were acquired. This post-hoc staining was used to check PNN degradation. Experiments

were discarded if a clear disruption of the extracellular matrix was not evident.

Parvalbumin staining was realized on 40 mm-thick slices. Slices were fixed overnight in 4% parafor-

maldehyde in phosphate buffer (PB, pH 7.4) at 4˚C and rinsed (10 min each time) in PBS. A pre-incu-

bation in a blocking solution of PBT with 0.2% Triton and 3% bovine serum albumin was done at

room temperature for 1 hr. Slices were incubated overnight (4˚C) in the same blocking solution con-

taining the primary rabbit ant-PV antibody (1:1000; Thermo Scientific). Slices were then rinsed three

times in PBS (10 min each) at room temperature and incubated with Cy-2-anti-rabbit antibody

(1:400; Jackson IR) for 3.5 hr at room temperature. Slices were then rinsed three times in PBS (10

min each) at room temperature and coverslipped in mounting medium. Immunofluorescence was

then observed with a confocal microscope (Olympus, FV-1000) or a slide scanner (Zeiss, Axio Scan.

Z1) and images were acquired.

Data analysis
The in vivo recordings were analyzed by a custom program written in MATLAB (Source Code 1).

Experiments on firing dynamics and unitary paired recordings in slice were analyzed with Clampfit

(Molecular Devices), Origin (Microcal) and custom-made scripts in MATLAB (Mathworks;

Source Code 2). Firing frequencies were averaged across three trials. Failures of unitary synaptic

responses were included in the analysis.

Spontaneous and miniatures synaptic events were detected using custom written software (Wde-

tecta, courtesy J. R. Huguenard, Stanford University; https://hlab.stanford.edu/wdetecta.php) based

on an algorithm that calculate the derivative of the current trace to find events that cross a certain

defined threshold. Amplitude and frequencies of the events were then binned and sorted, using

other custom-written routines (courtesy J. R. Huguenard, Stanford University; https://huguenard-lab.

stanford.edu/public/; Ulrich and Huguenard, 1996; Manseau et al., 2010).

AP waveforms were investigated using a phase plot analysis based on a routine developed with

MATLAB (courtesy J. Simonnet; Source Code 2) to measure AP threshold, peak and width. Passive

properties as well as optical stimulation experiments were analyzed with Clampfit. Light-induced

EPSCs were averaged across at least 20 trials and failures were removed from the analysis (threshold

stimulation).

Data were acquired as a long continuous session together with a synch signal generated by the

visual stimulator. Average VEPs were obtained by phase locking the trial averaging on the synch sig-

nal. Spectral analysis was performed within the same software package using the Chronux toolbox

for multitaper spectral analysis.
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Statistical tests
Different treatments (ChABC vs. sham) or experimental conditions (MD vs. control) or age groups

were allocated randomly across mice.

All statistical analysis were performed in Prism (GraphPad Software, Inc.). Normality of the data

was systematically assessed (D’Agostino and Pearson omnibus normality test). Normal distributions

were statistically compared using paired t test two-tailed or One-way ANOVA followed by Bonferro-

ni’s Multiple Comparison post hoc test for more than two independent groups. When data distribu-

tions were not normal or n was small, non-parametric tests were performed (Mann Whitney test and

Kruskal-Wallis test followed by Dunn’s multiple comparison test for more than two groups, respec-

tively). For the comparison of firing dynamics and short-term plasticity, Two-way repeated-measures

ANOVAs were used followed by post-hoc Holm Sidak and Bonferroni’s multiple comparison tests for

in vivo and in vitro experiments, respectively. Differences were considered significant if p < 0.05

(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Values are presented as mean ± SEM of n

experiments.

To measure if MD effectively changed ChABC-mediated effects on synaptic transmission, we

used a variation of Cohen’s d (Cohen, 1988; Lakens, 2013), Glass’ D, which uses only the standard

deviation of the control group (Glass et al., 1981; Lakens, 2013), when each group has a different

standard deviation.

Glass
0D¼ ðM2�M1Þ=SD1

Where M1 and M2 are the mean values for control and MD animals, and SD1 is the standard devi-

ation of the control animals.
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