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Abstract

The purpose of this study is to predict the electrical conductivity of some weak
electrolytes used in buffer solutions. The acid-base reactions occurring between
the different species in solution are evaluated taking into account the activity co-
efficients. The deviations from ideality necessary to describe the equilibrium and
transport properties are estimated within the mean spherical approximation (MSA).
Results from theoretical expressions of the conductivity of electrolyte mixtures are
compared with experimental results from the literature in the case of acetate, car-
bonate and bicarbonate solutions. In order to characterize all the ions that may be
present, we also studied the ability of our theory to describe some strong alkaline
or acid solutions.

1 Introduction

Electroanalytical methods such as conductivity, zetametry or capillary electrophoresis
(CE) are very useful to characterize the charge and size of particles in solution. They
may also provide information on the titration and complexation of charged species stud-
ied in the presence of various ligands. In particular, capillary electrophoresis has found
applications for speciation studies [1–5]. As examples, CE has shown its capability to
study the inorganic speciation of Al3+ with F− and C2O

2−
4 [6], of mono-, di- and trivalent

cations with SO2−
4 [7], of UO2+

2 with IO−

3 [8] by U.V. detection, and also to determine
thermodynamic parameters. These solutions can, by their origin, be naturally concen-
trated [9–11]. On the other hand, in order to improve the resolution of electrophoresis
peaks, the measurements are often performed in the presence of a concentrated supporting
electrolyte solution. The position of the electrophoresis peaks can be strongly affected by
the presence of this supporting electrolyte. Furthermore, the stability or conformational
changes of certain molecules such as proteins are strongly dependent on the pH of the
solution. Buffer solutions are often used for this purpose.

Theoretical models currently used to describe electrophoresis (in this field) (Debye-
Hückel or extended Debye-Onsager-Bjerrum models) are limited to the 0.01 M to 0.1 M
range, by the non idealities in transport, despite the fact that empirical models for the
non ideality in thermodynamics (activity coefficients) can be used [12–15]. However some
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progress in the transport theories, have been made in the last decades. They have been
successfully applied to the description of various quantities such as self-diffusion of ions
[16–20], mutual diffusion coefficients of electrolytes [21,22] or the electrical conductivity of
ionic solutions [23–31]. These models allow one to describe quantitatively the evolution
of the transport coefficients for concentrations of the range of 1 to 2 M for electrolyte
mixtures containing small ions [32–35]. The description of the electrophoretic mobility of
charged tracers in solutions of binary electrolyte has been also carried out [36]. However,
in these works, the solutions studied contained only simple salts such as alkali or alkaline
earth halides.

On the other hand, the characterization of charged molecules in solution requires
taking into account the formation of different chemical complexes of the molecules with
ions or between the various ions in solution. In particular when the charge and the
conformation of the molecules is pH-dependent, a buffer solution is generally used in the
supporting electrolyte.

Other experimental measurements such as zetametry and conductimetric titration
may require the use of solutions of rather high ionic strength. Thus, in order to better
separate the effects due to various acid-base sites present on a molecule, it may be useful
to increase the concentration of supporting electrolyte to screen the interactions between
neighboring sites on the molecules.

Moreover, the analysis of molecules of biological origin requires keeping their solution
at a controlled pH in order to not modify their structure or their properties. In the case
of proteins, it may also be necessary to maintain the ionic composition of the natural
solution in order to be as close as possible to real conditions. These solutions do not
contain exclusively alkali or alkaline earth halides but also salts of weak acids.

It would therefore be desirable to better characterize the transport properties of ions
involved in acid-base reactions. Obviously, the study of the conductivity of these ions in
solution gives us information about their migration under the action of an electric field.
For a long time many experimental studies of the conductivity of weak acids or of salts
of these acids have been carried out in dilute solutions [37–44]. Nowadays, the conduc-
tivity of dilute aqueous solutions of this type of salt still gives rise to many experimental
studies [45–49]. These solutions often contain a mixture of more than two types of ions.
Expressions developed by Onsager, Fuoss and Pitts [50–52] for binary electrolytes are
not applicable here. When these solutions are diluted enough, their conductivity can
be described using the expressions established for mixtures with any number of ionic
species [53–55].

On the other hand, the understanding of the conductivity of these electrolytes in
concentrated solution is much less well known. The expressions used previously to describe
the conductivity of concentrated electrolyte mixtures [34,35] must be able to account for
the variations observed for these salts of weak acids. We therefore propose to apply these
expressions to this type of electrolyte in concentrated solution.

In addition, when the concentration of the supporting electrolyte is high, deviations
from ideality (activity coefficients) must be taken into account in order to quantitatively
describe chemical equilibria between the complexes formed and the dissociated ions. For
high concentrations, progress has been made in the description of deviations from ideal-
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ity since the time of Debye or Pitzer. Applications of the mean spherical approximation
(MSA) theory [56, 57] have allowed to describe osmotic and activity coefficients of real
electrolyte solutions for concentrations of the order of 1 or 2 M [58–60]. It is then pos-
sible to consider the modelling of ionic mobilities in solutions with both transport and
equilibrium non idealities, as well as speciation phenomena (complex formation).

In this work, in a first approach we have chosen to describe sodium acetate solutions.
It is a simple salt, containing a rather small anion and coming from a monoacid. It
is relatively common and appears in the composition of buffer solutions. In addition,
experimental conductivity data at high concentrations are available for this salt. There-
after, we were interested in carbonate and bicarbonate solutions. The characterization
of transport properties of charged species in aqueous solutions containing carbonate and
bicarbonate ions gave rise to several studies previously [11, 61, 62]. More generally, the
salts such as Na2CO3 and NaHCO3 are used also to make basic buffers. The properties
of carbonate and bicarbonate ions are important to take into account the dissolution of
CO2 in aqueous solutions [63, 64]. Description of the transport properties of carbonate
and bicarbonate solutions is also important to analyse electrical conductance measure-
ments used in the assessment of natural water quality [65–68]. Then we have chosen to
describe the conductivity in solutions containing KHCO3 and Na2CO3. All the solutions
studied so far are alkaline. Sometimes in order to limit the hydrolysis of charged species
studied, the latter can be dissolved in an acid solution. It is interesting to characterize
these solutions as well. Studies of the conductivity of weak acid solutions, such as acetic
acid, have been conducted for a long time. Thus, in view of its dissociation constant, the
decay of the conductivity of acetic acid takes place essentially for concentrations below
0.2 M. Many studies already describe this acid and the salts obtained by its neutraliza-
tion [37, 46, 49, 69, 70]. In this article we wanted to evaluate the ability of our transport
model to describe concentrated acidic solutions. In order to overcome the speciation
problems specific to weak acids we are interested in an acid which is considered to be
completely dissociated, namely HCl in water.

The chemical equilibria linking the different species in solution are evaluated taking
into account the activity coefficients. The deviations from ideality necessary to describe
the equilibrium and transport properties are determined using the MSA theory. In the
next section we present the theoretical model used to describe both the activity coefficients
and the conductivity in an arbitrary mixture of electrolytes. In the following section, this
theoretical model is applied to the description of the different binary salts and mixtures
thereof which make up the supporting electrolyte selected.

2 Theory

2.1 Description of the speciation

In our model the solvent is seen as a continuum only characterized by its dielectric constant
and viscosity. The ions i are represented as charged hard spheres, of charge zie and
diameter σi (with zi the valence of the ion i and e the charge of the proton). In order to
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calculate the various deviations from ideality occurring in the equilibrium and transport
processes in solution, the distribution functions between the ions are deduced from the
mean spherical approximation. The salts studied can be seen as the product of the
reaction of a weak acid with a strong base, NaOH or KOH depending on the nature of the
cation of the salt (Na+ or K+). The speciation is estimated by describing the dissociation
equilibrium acids with the following equations

AH ⇀↽ H+ + A− (K1) (1)

in which the dissociation constant K1 is given by

K1 =
[H+][A−]

[AH ]
Y1 (2)

where Y1 is the quotient of the activity coefficients γj,

Y1 =
γH+γA−

γAH

(3)

for a monoacid such as acetic acid. In the case of carbonate and bicarbonate solutions
the following two equilibria have been taken into account

AH2
⇀↽ H+ + AH− (K2) (4)

AH− ⇀↽ H+ + A2− (K3) (5)

The equilibrium constants K2 and K3 are given in a way similar to eqs. (2) and (3). One
has,

Y2 =
γH+γAH−

γAH2

and Y3 =
γH+γA2−

γAH−

(6)

Moreover, in the case of sodium carbonate solutions, in a second step we took also into
account an association reaction between the cation Na+ and the bivalent carbonate anion

Na+ + A2− ⇀↽ NaA− (KA) (7)

In the same way, YA = γNaA−/(γNa+γA2−). Our approach is similar to that used by
Apelblat to describe the speciation of organic acids and their salts in dilute solutions
[70], except that the individual activity coefficients have been calculated within the MSA
theory. The expressions used to calculate these activity coefficients can be found in the
appendix of a previous article [71]. The chemical equilibria were solved by iterations. In a
first step, the activity coefficients are neglected. An initial estimate of the concentrations
of the various species is obtained and a first estimate of the activity coefficients is deduced
from these concentrations. Then, these activity coefficients are used to evaluate the
quotients Y1 and Y2. A new estimate of the concentrations of the various species is
obtained by taking into account these quotients in the chemical equilibria. Then, a new
estimate of the activity coefficients can be deduced, etc . The iterative calculation is
stopped when the accuracy of the concentrations values is estimated sufficient.
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2.2 Description of the conductivity in non-dilute solutions

The theoretical description of the electrical conductivity used here is based on Onsager’s
continuity equations [50]. The specific conductivity of the solution is given by the following
formula:

χ =
103e2NA

kBT

∑

i

ciz
2

iDi

(

1 +
δki
ki

)(

1 +
δveli
voi

)

(8)

where ci is the molar concentration of component i, NA is Avogadro number, kB the Boltz-
mann constant, T the temperature, zi the valency of ion i and Di its diffusion coefficient at
infinite dilution. In this calculation two contributions are responsible for deviations from
ideality : δki is the relaxation correction on the electric force ki = zieE acting on species
i and δveli /vi is the relative hydrodynamic or electrophoretic correction. We have used
an electrophoretic correction deduced previously from the distribution functions given by
the MSA theory for ions of different radii [72]. Initially, the relaxation contribution was
calculated, for binary electrolyte only, from the Fuoss-Onsager continuity equations, using
also the ion distribution function at equilibrium given by the MSA [24, 25, 28]. For an
electrolyte containing more than two types of ions the Fuoss-Onsager continuity equation
system is more complicated to solve. Onsager and Kim gave a general mathematical
method for solving these equations for any number of charged species. They deduced a
limiting law (in the square root of the concentrations) [73]. Extended laws, applicable
to less diluted solutions, have been also developed [53–55]. By introducing the MSA in-
stead of the Debye and Hückel equilibrium distribution functions, in the Onsager-Kim
formalism, an expression of the relaxation contribution applicable to mixtures at higher
concentrations was obtained [34]. Subsequently simplified expressions derived from this
work was succesfully used to describe simple electrolyte mixtures [35].

We have used here the same expressions as in this latter article. For convenience the
equivalent conductivity Λe was used for a binary electrolyte. It is defined by the specific
conductivity χ divided by the equivalent concentration ceq = c1|z1| = c2|z2|.

Λe = λ1 + λ2 with λi =
103e2NA

kBT
|zi|Di

(

1 +
δki
ki

)(

1 +
δveli
voi

)

(9)

In a dissociated binary electrolyte the relative relaxation forces are equal (δk1/k1 =
δk2/k2) [50]. Thus, for dissociated binary electrolytes, the contributions λ1 and λ2 to
the conductivity due to cations and anions can be easily calculated. As a result, the
transport number ti = λi/Λ

e turn out to be independent of the relaxation forces. For
symmetric binary electrolyte the molar conductivity Λ was also used. It is defined by the
specific conductivity divided by the total molar concentration C : Λ = χ/C.

On the other hand, when the electrolyte contains more than 2 types of ions, the relative
relaxation forces are no longer equal. Then, individual contributions to the conductivity
are more difficult to evaluate. As all of our conductivity calculations are done by associat-
ing the MSA theory with Fuoss-Onsager transport theory, the result of these calculations
will be called ’MSA-Transport’ calculation in the figures of the article.
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3 Description of the supporting electrolyte

3.1 Sodium acetate and NaOH solutions

We first study the chemical equilibria and conductivity of sodium acetate in solution. To
correctly describe the proportion of the various species, it is necessary to take into account
the acid-base reaction which controls the dissociation of acetic acid. Sodium acetate can
be seen as resulting from the reaction of acetic acid with sodium hydroxide. The amount
of hydroxide ion is related to the amount of hydronium ion.

The solution of the chemical equilibria leads to the concentration of the various chem-
ical species present. For this electrolyte, in the range studied (10−4 - 1 M), the amount
of hydronium ions is negligible. Then, the conductivity may be calculated by considering
only the contributions of the sodium, acetate and hydroxide ions. To do this, we used
the literature values for the limiting conductivity at infinite dilution λo for these ions [74].
Moreover, one needs to assign a size to each of these ions in the MSA-transport calcula-
tion. In the case of the sodium ion, its size has been previously determined in order to best
describe the conductivity of NaCl solution. The size of the hydroxide ion was assessed
by describing the conductivity of NaOH solution. It was noted that the adjustment of
the measured conductivity of NaOH is better when the size of the OH− ion is very small.
However, the question arises as to what is the smallest size that remains realistic. For
simple ions like halide, alkali and alkaline earth ions, it is generally assumed that the
smallest size they can have is their crystallographic radius. Unfortunately, for molecular
ions, i.e. composed of different atoms linked together, it is more difficult to assign to each
of these ions a crystallographic radius. Thus, in order to have an element of comparison,
we have also studied the variation of conductivity in aqueous solutions of NaF at 25 C.
Assuming that this salt is totally dissociated and neglecting the hydrolysis of fluoride ions,
it was found that by taking for the ion F− a radius R = 1.36 Å, we obtain a reasonable
agreement between the calculation and the experimental data. This value is precisely its
crystallographic radius found in literature [74]. Then, for comparison, we evaluated the
value of the conductivity of NaOH as a function of its concentration, considering that the
OH− ion has a radius equal to either that of the Cl− ion (R = 1.81 Å), or to that of the
F− ion. The agreement is better with the smaller radius. As a result, the study of the
conductivity of sodium acetate solution leads us to assign a size to the acetate ion. Since
the hydroxide and acetate ions are sometimes deemed to be complexing ions, we wanted
to know if the profile of the observed conductivities, reflected an association between
these ions and the sodium cations. For comparison, we also described the conductivity
of sodium perchlorate solution. The perchlorate ion is considered to be non-complexing
with simple monovalent cations and solutions of this ion are often used to adjust the ionic
strength in an electrophoresis experiment. In the same way, the size of the perchlorate
ion was determined in order to best describe the observed evolution of the conductivity of
these solutions. The set of limiting conductivities λo and ion sizes used in this study are
collected in Table 1. The calculated and experimental conductivities of these solutions
are presented in Figure 1. Our model describes quite well the conductivities of perchlo-
rate and sodium acetate solutions. However, for sodium acetate, the experimental points
deviate slightly more from the calculated curve for concentrations of the order of 1 M.
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Our model describes well the experimental conductivity of sodium hydroxide at low con-
centrations (less than 0.1 M). On the other hand, the agreement between the calculated
and observed values is not as good at high concentrations.

This can be expected in view of the fact that the conductivity of the hydroxide ion
(in the same way as that of the hydronium ion) is not mainly due to a simple migration
process, as for the other ions, but rather to a mechanism of charge transfer between the
molecules without moving molecules. Our model, like the models of Debye and Onsager,
considers ions as Brownian particles. It is therefore not adapted to describe the migration
of these particular ions. Nevertheless, it allows to describe the conductivity of solutions
containing these ions at low concentrations. Therefore, when the pH is not too high,
a quantitative description of the conductivity of solution containing salts of weak acids
seems possible.

It results from the determination of the quantities of the various species in equilibrium
that the major species are only the acetate and sodium ions, as soon as the concentration
is greater than 10−3 M. These ions mainly determine the conductivity. Thus, at high
concentration, this solution is very similar to a binary electrolyte. The complexation
equilibria involved in describing this solution appear simple in comparison with those
governing the proportion of the various charged species in most buffer solutions usually
used. Indeed, in many buffer solutions several acid-base equilibria exist. Consequently,
the number of different charged species are more important. When more than two ionic
species contribute significantly to the conductivity, the use of the expressions devoted
to any mixtures become essential. Then, as a second example of the application of our
theoretical approach, we now describe the solutions of alkali hydrogen carbonate and
carbonate ions. In this example the number of species contributing to the conductivity is
greater. This salt does not behave like a binary electrolyte.

3.2 Carbonate and hydrogen carbonate salts solutions

Next we have studied the conductivities of binary salts in which the carbonate and bicar-
bonate ions are present. As explained in the theoretical part on speciation, in the cases
of the carbonate and bicarbonate ions we need to consider the chemical equilibria linking
these ions with the pH and the quantity of carbonic acid present in the solution.

We have tried in a first step to describe two types of solutions of hydrogen carbon-
ate, namely NaHCO3 and KHCO3. For these solutions the calculation of the proportions
of the various species leads to a greater amount of HCO−

3 than CO2−
3 ions. When the

solution is concentrated the Na+ and HCO−

3 ions mainly contribute to the conductivity.
Unlike acetate solutions, the conductivity of hydrogen carbonate solutions seems to have
been less measured. At low concentrations the conductivity of NaHCO3 was measured
by Kendall [63] and that of KHCO3 by MacInnes and Shedlovsky [37]. These last mea-
surements made it possible to determine the dissociation constant of acetic acid and the
limiting conductivity of the bicarbonate ion. In our calculations the value of the limiting
conductivity of the bicarbonate ion determined by these authors was used. On the other
hand, extrapolation to low concentrations of the measured conductivity of the NaHCO3

solutions leads unfortunately to a larger value of the limiting conductivity of the HCO−

3

ion. So, we did not continue the study of the conductivity of NaHCO3. Again, to describe
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the conductivity of KHCO3, we have used the value for the diameter of the potassium ion
obtained previously in the fitting of the conductivities of KCl and KBr [35]. Then, we
have determined an effective radius for the hydrogen carbonate ion which best describes
the data for the conductivity of KHCO3 solutions. The conductivity of this salt is shown
in Figure 1. The evolution of the conductivity of this salt with concentration is similar
to that observed for sodium acetate. Likewise, the experimental points deviate slightly
from the calculated curve for concentrations of the order of 1 M.

Next, we tried to describe Na2CO3 solutions. For these solutions both the carbonate
ions and the hydrogen carbonate ions contribute to the conductivity. The amount of hy-
droxide ion is also greater. At low concentrations the amount of HCO−

3 ions is larger than
that of CO2−

3 ions. At high concentrations the amount of CO2−
3 ions becomes greater than

that of HCO−

3 ions. Consequently, at low concentrations, it is found that the OH− and
HCO−

3 ions are the anions that contribute most to the conductivity. Eq. (8) allows us to
calculate the specific conductivity χ of Na2CO3 solutions from the individual contributions
of the predominant ions: Na+, CO2−

3 , HCO−

3 and OH−. The equivalent conductivity Λe

of the solution was calculated by dividing the specific conductivity χ by the concentration
of Na+ ions. As noted by Monk [41], this conductivity can be decomposed into the sum
of the of partial conductivities of three salts: Na2CO3, NaHCO3 and NaOH, multiplied
by the proportion of each salt as,

Λe =
[OH−]

[Na+]
(λNa + λOH) +

[HCO−

3 ]

[Na+]
(λNa + λHCO3

) +
2[CO2−

3 ]

[Na+]
(λNa + λCO3

) (10)

In addition, Monk assumed that each of the partial conductivities, (λNa+λOH) for NaOH,
(λNa + λHCO3

) for NaHCO3 and (λNa + λCO3
) for Na2CO3, could be represented by the

theoretical expression accounting for the corresponding binary salt. With this approxi-
mation the partial contributions of these salts to the equivalent conductivity Λe could be
calculated. Furthermore, when the conductivity of the binary electrolyte is represented
by an expansion in powers of the square root of the salt concentration, Monk assumed
that the partial conductivities involved in the mixture can be represented by the same
expansion but replacing the salt concentration with the ionic strength I of the solution
(I = 1/2

∑

i ciz
2
i ). With this approximation, the calculated contributions of NaOH and

NaHCO3 can be subtracted from the equivalent conductivity Λe given by eq. (10). One
then obtains the partial contribution (λNa + λCO3

) of the salt Na2CO3. The limiting
conductivity of the CO2−

3 ion was determined previously using this method.
We note that this approximate expression does not satisfy the limiting law in the

square root of the concentration given by Onsager [50, 73]. In our study we did not use
this approximation. We computed the set of individual contributions from expressions
established using the Onsager and Kim formalism for ionic mixtures [35]. At low con-
centrations, these expressions tend toward the limiting law in square root of the concen-
tration. The conductivity calculated using this formalism is compared with experimental
data [41, 75] in Figure 2. Taking into account that the previous determination of the
limiting conductivity of the CO2−

3 ion was made with an approximate law, we again de-
termined the value of this limiting conductivity in order to obtain the best agreement
between the calculated curve and the experimental data at low concentrations. We found
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λ(CO2−
3 ) = 6.83 mS m2 mol−1 instead of 6.93 mS m2 mol−1 previously determined. Since

the conductivity depends on the proportion of the various ions present, it is interesting
to study their relative contributions. As the solution is neutral overall, we have chosen
to represent the contribution of the various species in term of the three intervening salts
of eq. (10). Then, we have also shown in Figure 2 the relative contributions to the con-
ductivity of the NaOH, NaHCO3 and Na2CO3 couples (the dashed or dotted blue, green
and red curves, respectively). When the concentration tends to zero, the contributions of
NaOH and NaHCO3 appear larger than the contribution of Na2CO3. At low concentra-
tions the three couples of ions contribute to the observed equivalent conductivity. When
the concentration is increased, the contributions of NaOH and NaHCO3 become less and
less important. Our model correctly describes the measured conductivity, especially at
low concentrations.

It may be noticed that in order to inprove the agreement between the measurements
and the calculated curve, the size of the CO2−

3 ion could be lowered, which would have
decreased the calculated values. However, the radius chosen for this ion already seems
rather small. As an alternative, it can be assumed that the reduction of the conductivity
at high concentrations may be due to the formation of complexes between anions and
the Na+ cations. For simplicity we considered only one type of complex, namely the ion
NaCO−

3 . The CO2−
3 ion being the most charged anion, it was assumed that only this

ion forms complexes in this solution. To describe the influence of the NaCO−

3 ion, it
was assumed that its limiting conductivity and its size were equals to that of HCO−

3 ,
to limit the number of additional parameters. Only the association constant remains to
be determined in order to evaluate the theoretical conductivity. Taking an association
constant KA = 1.5 L mol−1 we obtain the curve represented in Figure. 2. The value
obtained for the association constant is rather low in comparison with those quoted in the
literature [76]. As expected, it is observed that the decay of the calculated conductivity
is more important than that obtained without association. As a result, the agreement
between the calculated curve and the experimental data is better at high concentrations.

3.3 A dissociated acid in solution : HCl

The solutions we have described so far are all either basic or neutral. A satisfactory
description of the conductivity of NaOH solutions has been obtained for concentrations
below 0.1 M. Otherwise, in order to minimize hydrolysis phenomena it is sometimes useful
to dissolve some electrolytes in acidic solutions. Dissolution may also lead to acidification
of the solution. It is therefore interesting to study also the ability of our theory to
describe somewhat concentrated acidic solutions. For this purpose, we have examined the
conductivity of hydrochloric acid solutions. In our previous study, we considered various
solutions of alkali chloride ions. The size of the chloride ion was deduced by adjusting
the conductivities of these salts. It is therefore this acid that we have chosen to describe,
insofar as the only parameter yet to be described is the effective size of the hydronium
ion. Moreover, many experimental data are available. In addition, the ionic transport
numbers have also been determined experimentally for these solutions. So we calculated
the total conductivity and the individual conductivities of the cations and anions in these
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solutions.
A comparison between experimental and theoretical variations is given in the upper

curve of Figure 3. It is found that the effective size of the proton must be extremely
small to increase the agreement between calculated and measured conductivities. In
order to keep a realistic size parameter for this ion, we chose to assign it the same size
as the lithium ion determined in the previous study. As a result, a good description of
the total conductivity is obtained up to a concentration of the order of 0.2 M. Beyond
this concentration, the experimental conductivity decreases faster than the calculated
one. The other two curves represent the conductivity due to the proton (in red) and
that due to the chloride ion (in blue). It is noted that the latter is well represented
up to 1 M, whereas that due to the proton ceases to be well described by our model
beyond 0.2 M. The limitation observed for the conductivity due to protons is consistent
with what we could expect considering the evolution observed for the total calculated
conductivity. The fact that the conductivity due to chloride ions remains well described
at higher concentrations is very promising. Despite the intrinsic inadequacy of our model
to account for the evolution of the value of proton mobility with concentration, this
suggests that the variation in anion mobility remains well depicted.

Despite the peculiar nature of proton conduction, it is questionable whether the various
ways of improving the description of the solutions presented earlier in this article are
suitable to give rise an improvement in the description of acidic solutions. In the previous
section we considered two different ways to inprove the agreement between the theoretical
description and the experimental conductivity data:

• For fully dissociated electrolytes, the only adjustable parameter wass the size of the
cation. When the value of the ion size used in the model decreases, the calculated
conductivity decreases.

• On the other hand, when the ions of a symmetrical electrolyte can associate to form
neutral pairs, the amount of charge carriers (non-associated ions) decreases and the
conductivity decreases.

In the case of HCl solution, we have already taken a small size for the proton. Choosing to
further decrease the size of the proton might seem unrealistic. So, although this electrolyte
is considered to be completely dissociated, one could consider an association between the
Cl− anions and the H+ cations to further decrease the calculated conductivity. Thus, if
the fraction of cation or free anion is denoted by α, the equivalent conductivity is given
by

Λe = α(λ1 + λ2) (11)

with λ1 and λ2, functions of α and the concentration. When the electrolyte is associated,
α is less than 1 and the conductivity decreases. The sharp decrease in the conductivity of
acetic acid can be explained by taking into account such an association. However in the
case of HCl solution, besides the fact that there is no experimental fact which indicates
that this electrolyte is associated (at least in this range of concentration), the fact of
taking into account such an association would also modify the individual conductivities
of the two types of ions. However, without association the conductivity due to chloride
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ions remains well described at high concentrations. Taking into account an association
would improve probably the description of the conductivity due to the protons but would
at the same time impair the description of the conductivity due to chlorides. A similar
impaired description of the individual conductivities should be expected also for solutions
obtained by dissolving an electrolyte containing Cl− anions in a solution of HCl. As a
result, considering an association between anions and cations is not suitable to describe
the observed decrease in the conductivity of acids such HCl in solution. Finally, the joint
modeling of the total conductivity but also of the individual conductivities (using the
transport numbers), provides a better understanding of the solutions studied.

4 Conclusion

Generally the theoretical conductivity models are applied only to aqueous solutions of
small monoatomic ions such as alkali or alkaline earths halides. Then, this has been
done previously for binary salts and mixtures with the model used here. Considering
only interactions of hard spheres at short distances and coulombic interactions at great
distances the transport properties of these simple salts are well described by our model.
However, all the solutions are not so simple. The alkaline halides salts appear to be
partially dissociated in organic solution. Similarly, 2-2 electrolytes such as MgSO4 would
form ion pairs in aqueous solution. This association seems to be mainly of electrostatic
nature and can be calculated using an association constant deduced from the Bjerrum
theory or its extensions.

Often other interactions need to be considered. Associations of a chemical nature
such as those leading to acid-base equilibria should be considered to properly describe the
properties of the solutions presented in this article. For sodium acetate and potassium
bicarbonate solutions we have assumed that there is no additional anion-cation association
so as not to complicate the model further. In the same way, in a first step, we did not
consider this type of association to describe the conductivity of Na2CO3 solution. Knowing
the limiting conductivities the only parameters of the model are the sizes of the anions
(the radii of the cations having been determined in previous studies). A satisfactory
description of the experimental conductivities has thus been obtained for these solutions.
In the case of Na2CO3 solutions the limiting equivalent conductivity of the CO2−

3 ion was
previously determined from the analysis of the experimental data at low concentrations
using an approximate expression of the theoretical conductivity. However, this expression
does not satisfy Onsager’s limiting law. We have therefore more precisely determined this
limiting conductivity with the help of our model which tends towards the limiting law
of Onsager at low concentrations. The limiting conductivity determined in this way is a
little bit lower than that previously determined using the less rigorous approach. As noted
previously, the contributions of OH− and HCO−

3 ions are important at low concentrations.
Contrary to what one would have if Na2CO3 was totally dissociated, extrapolation to low
concentrations does not simply lead to to the sum of infinite dilution conductivities of
Na+ and CO2−

3 . This clearly highlights the need to use a theory that satisfies the limiting
law for electrolyte mixtures. In a second step, in order to improve the agreement between
the theory and the experimental data of the Na2CO3 solution conductivity, we took into
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account the formation of the NaCO−

3 species. For simplicity, we assumed that the species
NaCO−

3 had the same limiting conductivity and the same size as the HCO−

3 ion. These
two quantities could be determined together with the value of the association constant,
which would certainly improve the agreement between modeling and experimental data.
However it must be noted that there is very few experimental data at high concentrations.
Often a single set of data for a given salt. It is therefore difficult to judge the accuracy
of these data. As a result, given the fairly good description of the data already obtained,
we have not sought to further refine the determination of the parameters related to the
complexes formed.

In order to characterize all the ions that may be present, we have also studied the
ability of our theory to describe some strong alkaline or acid solutions. Our model correctly
describes the experimental conductivity of NaOH and HCl solutions at low concentrations
(less than 0.1 M). The range of reliability is narrower than that of simple electrolyte
solutions. Nevertheless we have shown for HCl solutions that the conductivity of the Cl−

counterions remains well described. This is encouraging for future applications of our
model to describe simple electrolytes dissolved in acidic solutions.

In order to extend this study, other electrolyte solutions could be considered. First,
having characterized solutions of sodium acetate or carbonate, for which the complexation
between cations and anions appear to play a minor role, then we may be interested in
solutions containing more charged cations, such as magnesium, for which the association
with the anions may have a greater influence on the conductivity of the solution. On
the other hand, other ionic solutions used as buffers can be considered with the same
approach. For example it would be interesting to be able to describe the variation of
the conductivity of concentrated solutions of salts containing phosphate or citrate anions.
Finally, the description of acidic solutions that we presented, may be useful during the
analysis of the conductivity of salts, possibly containing divalent or trivalent cations,
dissolved in acidic solutions.
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[49] A. Apelblat and M. Bešter-Rogač, J. Mol. Liq., 247 (2017) 397-402.

[50] L. Onsager and R. M. Fuoss, J. Phys. Chem., 36 (1932) 2689-2778

[51] R. M. Fuoss and L. Onsager, J Phys. Chem., 61 (1957) 668-682.

[52] E. Pitts, Proc. Roy. Soc. A., 217 (1953) 43-70.

[53] J. Quint and A. Viallard, J. Solution Chem., 7 (1978) 533-548

[54] W. H. Lee and R. J. Wheaton, J. Chem. Soc. Faraday Trans. 2, 75 (1979) 1128-1145

[55] H. Bianchi and R. Fernandez-Prini, J. Solution Chem., 22 (1993) 557-570

[56] E. Waisman and J. L. Lebowitz, J. Chem. Phys., 52 (1970) 4307 ; J. Chem. Phys. 56
(1972) 3086-3092 ; J. Chem. Phys., 56 (1972) 3093 .

[57] L. Blum, Mol. Phys., 30 (1975) 1529. L. Blum and J. S. Høye, J. Phys. Chem., 81
(1977) 1311. K. Hiroike, Mol.Phys., 33 (1977) 1195 .

[58] R. Triolo, J. R.Grigera and L. Blum, J. Phys. Chem., 80 (1976) 1858-1861

[59] S. Watanasiri, M. R. Brule and L. L. Lee, J. Phys. Chem., 86 (1982) 292-294

[60] H. R. Corti, J. Phys. Chem., 91 (1987) 686-689

[61] V. Philippini, T. Vercouter, J. Aupiais, S. Topin, C. Ambard, A. Chaussé and P.
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Na+ K+ H+ ClO−

4 Acetate OH− HCO−

3 CO2−
3

Radius (Å) 1.17 1.70 0.80 1.81 1.81 1.81/1.36 1.81 1.81
109 D (m2s−1) 1.33 1.96 9.32 1.79 1.09 5.30 1.18 0.909
λo (mSm2mol−1) 5.01a 7.35a 34.98a 6.74a 4.09a 19.92a 4.45a 6.83
aRef. [74].

Table 1: Values of the Radii, Diffusion Coefficients and Limiting Equivalent Conductivities
of Each Species. The Na+ and K+ radii are those previously determined in [35]. The two
values of the radius of OH− are those used in Figure 1 (see explanation in the text). The
value of limiting equivalent conductivity for CO2−

3 was redetermined in this work.
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Figure 1: Molar conductivities of solutions at 298.15 K. Upper curve: NaOH solutions;
Experimental data ( [80], [81], diamonds), Calculated curve with ROH− = 1.81 Å (long
dash green line) or with ROH− = 1.36 Å (double dot and dashed blue line); The small dots
connecting the diamonds are only a guide for the eyes. Second curve: NaClO4 solutions,
shifted upwards by 20 S.cm2.mol−1; Experimental data ( [78], [79], star), Calculated
curve (solid violet line). Third curve: KHCO3 solutions; Experimental data ( [38],
squares) and ( [68], circles), Calculated curve (dashed and dotted red line); Lower curve:

NaAcetate solutions; Experimental data ( [37], [82], [83], triangles), Calculated curve
(dashed black line).
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Figure 2: Equivalent conductivity of Na2CO3 solutions at 298.15 K: Experimental data
( [41], [75]) (squares and diamonds); MSA-Transport calculations : Contribution from
NaHCO3 to the total conductivity (dashed and dotted green line), Contribution from
NaOH to the total conductivity (dotted blue line), Contribution from Na2CO3 to the
total conductivity (dashed red line), Total conductivity of the solutions (solid blue line),
Total conductivity of the solution with an association between Na+ and CO2−

3 (double
dotted and dashed black line).
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Figure 3: Upper curve : Molar conductivity of HCl solutions at 298.15 K: Experimental
data ( [77] squares), Calculated curve(solid line); Second curve : Contribution of the H+

ions to this molar electrical conductivity : Experimental data ( [77] circles), Calculated
curve (dashed and dotted red line); Lower curve : Contribution of the Cl− ions to this
molar electrical conductivity : Experimental data ( [77] diamonds), Calculated curve
(dashed blue line). Note that the small dots connecting the symbols (squares, circles,
diamonds) are only a guide for the eyes.
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