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Invariant elliptic curves as attractors in the

projective plane
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Abstract

Let f be a rational self-map of P2 which leaves invariant an elliptic

curve C with strictly negative transverse Lyapunov exponent. We show

that C is an attractor, i.e. it possesses a dense orbit and its basin has

strictly positive measure.
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1 Introduction

Let f be a rational self-map of P2 of algebraic degree d ≥ 2 which leaves
invariant an elliptic curve C (i.e. an algebraic curve of genus one). We assume
that C does not contain indeterminacy points. In [BDM], Bonifant, Dabija
and Milnor study such maps and give several examples. They associate to f,
a canonical ergodic measure µC, supported on C, which possesses a strictly
positive Lyapunov exponent χ1 = (log d)/2 in the tangent direction of C. The
transverse exponent corresponds to the second Lyapunov exponent χ2 of µC,
see section 3 for the de�nition.

An invariant compact set A = f(A) will be called an attractor if A
possesses a dense orbit and if the basin of A de�ned by

B(A) = {x ∈ P2 | d(fn(x), A)→ 0 as n→∞},

has strictly positive Lebesgue measure. Here, d(., .) denotes the distance in
P2 with respect to a �xed Riemanian metric. The purpose of this article is
to establish the following theorem which was expected by Bonifant, Dabija
and Milnor.
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Theorem 1.1 Let f , C and µC be as above. Assume that the transverse
exponent χ2 of µC is strictly negative. Then C is an attractor.

A sketch of proof is given in [AKYY] using the absolute continuity of the
stable foliation. Our strategy is to study the stable manifolds associated to
µC, and then apply the following local result.

Lemma 1.2 Let E be a subset of the unit disk ∆ with strictly positive
Lebesgue measure. Suppose {Dx}x∈E is a measurable family of disjoint holo-
morphic disks given by ρx : ∆ → ∆2, transverse to {0} × ∆ and such that
ρx(0) = (0, x). Then the union ∪x∈EDx has strictly positive Lebesgue measure
in ∆2.

The proof of this lemma is based on holomorphic motions and quasi-conformal
mappings. Under the assumptions of Theorem 1.1, µC is a saddle measure,
see [deT], [Di] for the construction of such measures in a similar context and
[Si], [DS] for the basics on complex dynamics.

Recall that a rational self-map f of P2 of algebraic degree d is given in
homogeneous coordinates [z] = [z0 : z1 : z2], by f [z] = [F0(z) : F1(z) : F2(z)]
where F0, F1, F2 are three homogeneous polynomials in z of degree d with no
common factor. In the sequel, we always assume that d ≥ 2. The common
zeros in P2 of F0, F1, and F2 form the indeterminacy set I(f) which is �nite.
Let C ⊂ P2 be an elliptic curve. Then, there exists a lattice Γ of C and a
desingularization

Ψ : C/Γ→ P2,

with Ψ(C/Γ) = C. Moreover, if S denotes the singular locus of C, the map

Ψ : (C/Γ) \Ψ−1(S)→ C \ S

is a biholomorphism.
We say that C is f -invariant if C∩I(f) = ∅ and f(C) = C. In this case, the

restriction f|C lifts to a holomorphic self-map f̃ of C/Γ. Even if C is singular,
f inherits several properties of f̃ . Like all holomorphic self-maps of C/Γ,
f̃ is necessarily of the form t 7→ at + b and leaves invariant the normalized
Lebesgue measure µ̃C on C/Γ. So, the topological degree of f̃ , i.e. the number
of points in a �ber, is equal to |a|2. It is not di�cult to check that this degree
is equal to d, see [BD]. Therefore, |a|2 = d ≥ 2. Then, by a classical theorem

on ergodicity on compact abelian groups, µ̃C is f̃ -ergodic, i.e. is extremal in
the cone of invariant positive measures. Its push-forward µC is an f -ergodic
measure supported on C. Moreover, generic orbits of f|C are dense in C. On
the other hand, f|C inherits the repulsive behavior of f̃ and µC possesses a
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strictly positive Lyapunov exponent equal to χ1 = log |a| = (log d)/2 in the
tangent direction of C. By Oseledec's theorem, see Section 3 below, we have

χ1 + χ2 =
1

2
〈µC, log(Jac(f))〉

where Jac(f) denotes the Jacobian of f with respect of the Lebesgue measure
of P2. So, the hypothesis in Theorem 1.1 is equivalent to

〈µC, log(Jac(f))〉 < log d.

Some examples in [BDM] satisfy this condition and give the �rst attractors
in P2 with non-open basins.

Acknowledgements. I would like to thank Tien-Cuong Dinh for drawing
my attention to the subjet and for his invaluable help.

2 Holomorphic motion

We brie�y introduce the notion of holomorphic motion. For a more complete
account cf. [GJW]. For r > 0, we denote by ∆r the disk centered at the
origin in C with radius r. If E is a subset of P1, a holomorphic motion of E
parametrized by ∆ is a map

h : ∆× E → P1

such that:

i) h(0, z) = z for all z ∈ E,

ii) ∀ c ∈ ∆, z 7→ h(c, z) is injective,

iii) ∀ z ∈ E, c 7→ h(c, z) is holomorphic on ∆.

By the works of Mañé, Sad, Sullivan, Thurston and Slodkowski (see [MSS],
[ST] and [Slo]), any holomorphic motion h of E can be extended to a holo-

morphic motion h̃ of P1. Furthermore, even if no continuity in z is assumed,
h̃ is continuous on ∆× P1. More precisely, we have the following result.

Theorem 2.1 Let h be a holomorphic motion of a set E ⊂ P1 parametrized
by ∆. Then there is a continuous holomorphic motion h̃ : ∆ × P1 → P1

which extends h. Moreover, for any �xed c ∈ ∆, h̃(c, .) : P1 → P1 is a
quasi-conformal homeomorphism.
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We refer to [Ahl] for quasi-conformal mappings. The following property is
crucial in our proof.

Proposition 2.2 A quasi-conformal mapping sends sets of Lebesgue mea-
sure 0 to sets of Lebesgue measure 0.

We shall need the following Lemma in the proof of Lemma 1.2.

Lemma 2.3 Let h be a holomorphic motion of a Borel set E ⊂ P1 of strictly
positive measure. Then ∪c∈∆{c} × h(c, E) has strictly positive measure in
∆× P1.

Proof. By Theorem 2.1, h can be extended to a holomorphic motion h̃ :
∆ × P1 → P1 such that, for any �xed c ∈ ∆, h̃(c, .) : P1 → P1 is a quasi-
conformal homeomorphism. So, by Proposition 2.2 Leb(h(c, E)) > 0 and
Fubini's theorem implies that ∪c∈∆{c} × h(c, E) has strictly positive mea-
sure. �

Proof of Lemma 1.2. From the family of disks, we will construct a holo-
morphic motion. Denote by π1 and π2 the canonical projections of ∆2. Let
x ∈ E. Since Dx is transverse to {0} × ∆, there exists r(x) > 0 such that
ρ1
x = π1 ◦ ρx is a biholomorphism between a neighbourhood of 0 and ∆r(x).
The measurability of {Dx}x∈E implies that x 7→ r(x) is also measurable. As
Leb(E) > 0, there exists a > 0 and a subset Ea of E such that Leb(Ea) > 0
and r(x) > a for each point x ∈ Ea. De�ne

h : ∆a × Ea → ∆

(c, z) 7→ ρ2
z ◦ (ρ1

z)
−1(c),

where ρ2
x = π2 ◦ ρx. By construction, h is well de�ned and c 7→ h(c, z) is

holomorphic on ∆a. Since the disks are pair-wise disjoint, the map z 7→
h(c, z) is injective for each c ∈ ∆a. Therefore, h is a holomorphic motion of
Ea parametrized by ∆a and by Lemma 2.3 ∪c∈∆a{c} × h(c, Ea) ⊂ ∪x∈EDx

has strictly positive Lebesgue measure in ∆2. �

3 Hyperbolic dynamics

Suppose that g is a holomorphic self-map of a complex manifoldM of dimen-
sion m. The following Oseledec's multiplicative ergodic theorem (cf. [KH]
and [Wa]) gives information on the growth rate of ‖Dxg

n(v)‖, v ∈ TxM as
n→ +∞. Here, Dxg

n denotes the di�erential of gn at x. Oseledec's theorem
holds also when g is only de�ned in a neighbourhood of supp(ν).
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Theorem 3.1 Let g be as above and let ν be an ergodic probability with
compact support in M . Assume that log+ Jac(g) is in L1(ν). Then there
exist integers k, m1, . . . ,mk, real numbers λ1 > · · · > λk (λk may be −∞)
and a subset Λ ⊂M such that g(Λ) = Λ, ν(Λ) = 1 and for each x ∈ Λ, TxM
admits a measurable splitting

TxM =
k⊕
i=1

Ei
x

such that dimC(Ei
x) = mi, Dxg(Ei

x) ⊂ Ei
g(x) and

lim
n→+∞

1

n
log ‖Dxg

n(v)‖ = λi

locally uniformly on v ∈ Ei
x \ {0}. Moreover, for S ⊂ N := {1, ..., k} and

ES
x = ⊕i∈SEi

x, the angle between ES
gn(x) and E

N\S
gn(x) satis�es

lim
n→+∞

1

n
log sin |∠(ES

gn(x), E
N\S
gn(x))| = 0.

The constants λi are the Lyapunov exponents of g with respect to ν. It is not
di�cult to deduce that

2
k∑
i=1

miλi =

∫
log Jac(g)dν.

If all Lyapunov exponents are non-zero, we say that ν is hyperbolic. In this
case, let λ > 0 such that λ < |λi| for all 1 ≤ i ≤ k and let

Es
x =

⊕
λi<0

Ei
x, E

u
x =

⊕
λi>0

Ei
x.

Then, for each point x in Λ and δ > 0 we de�ne the stable manifolds at x by

W s
δ (x) = {y ∈M | d(gn(x), gn(y)) < δe−λn ∀n ≥ 0}.

From Pesin's theory, we have the following fundamental result, see [BP], [PS],
[RS] and [Pol] for more details.

Theorem 3.2 There exists a strictly positive measurable function δ on Λ
such that if x ∈ Λ then

i) W s
δ(x)(x) is an immersed manifold in M ,

ii) TxW
s
δ(x)(x) = Es

x,

iii) W s
δ(x)(x) depends measurably of x.
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4 Basin of an attracting curve

Since the support of µC does not contain indeterminacy points, we have
log+ Jac(f) ∈ L1(µC). We assume that µC has a strictly negative transverse
exponent χ2. Then, there exists a hyperbolic set Λ ⊂ C such that µC(Λ) = 1
and Eu

x = TxC for all x ∈ Λ.
The �rst step to apply Lemma 1.2 is to �nd, for some p ∈ Λ, an open

neighbourhood where the stable manifolds are pair-wise disjoint. To this end,
we prove that the restriction f|C inherits the repulsive behavior of f̃ . Recall

that d(. , .) is the distance on P2 and denote by d̃(. , .) the standard distance
on C/Γ.

Lemma 4.1 There is a constant β > 0 such that for each p ∈ C \ S we can
�nd α > 0 with the property that, if x, y ∈ C are distinct points in the ball
B(p, α) of radius α centered at p, then d(fn(x), fn(y)) > β for some n ≥ 0.

Proof. As Ψ is one-to-one except on �nitely many points, we can �nd a
�nite open covering {Uj}j∈J of C/Γ such that Ψ is injective on each Uj. Let
z1, z2 ∈ C/Γ. We denote by ε > 0 a Lebesgue number of this covering, i.e. if

d̃(z1, z2) < ε then, there exists j ∈ J such that z1 and z2 are in Uj. Recall

that one can choose r > 0 such that if d̃(z1, z2) < r then d̃(f̃(z1), f̃(z2)) =

|a|d̃(z1, z2). We can assume that ε < r. Let α̃ > 0 such that 2|a|α̃ ≤ ε. If

0 < d̃(z1, z2) < α̃ then there exists n ≥ 0 such that

α̃ < d̃(f̃n(z1), f̃n(z2)) ≤ |a|α̃.

Therefore, we can �nd j ∈ J such that f̃n(z1) and f̃n(z2) are in Uj. So

d(fn(Ψ(z1)), fn(Ψ(z2))) > β,

where
β = min

j∈J
inf

x1,x2∈Ujed(x1,x2)>eα
d(Ψ(x1),Ψ(x2)) > 0.

Finally, for each p ∈ C\S we can choose α > 0 such that if x, y ∈ B(p, α)∩C,
there are preimages x̃ and ỹ of x and y by Ψ which satisfy d̃(x̃, ỹ) < α̃. Then,
d(fn(x), fn(y)) > β for some n ≥ 0. �

Lemma 4.2 Let p ∈ Λ. There exist δ0 > 0 and an open neighbourhood U of
p such that if δ < δ0, x, y ∈ U ∩ Λ, x 6= y then W s

δ (x) ∩W s
δ (y) = ∅.

6



Proof. By Lemma 4.1, we can choose for U the ball of radius α centered at
p and δ0 ≤ β/2. If there exist x, y ∈ U ∩Λ, x 6= y, with W s

δ (x)∩W s
δ (y) 6= ∅,

then for z ∈ W s
δ (x) ∩W s

δ (y),

d(fn(x), fn(y)) ≤ d(fn(x), fn(z)) + d(fn(z), fn(y)) ≤ 2δe−λn ≤ 2δ,

for every n, which contradicts Lemma 4.1. �

Proof of Theorem 1.1. Let p ∈ Λ be a regular point of C. Choosing suitable
local coordinates at p, we can assume that p ∈ ∆2 and C∩∆2 = {0}×∆. Let
x ∈ Λ∩∆2. By the stable manifold theorem, there exists δ(x) > 0 such that
W s
δ(x)(x) ∩∆2 is an immersed manifold in ∆2. So, there exists a measurable

family of embedded holomorphic disks ρx : ∆ → U with ρx(0) = x and
ρx(∆) ⊂ W s

δ(x)(x) ∩ U.
First, by Lemma 4.2, possibly after replacing ∆2 by a smaller polydisk,

we can choose δ(x) < δ0 for all x ∈ Λ ∩ ∆2. The stable manifolds W s
δ(x)(x)

are then pair-wise disjoint.
Since W s

δ(x)(x) is tangent to Es
x in x, the family of disks is transverse

to {0} × ∆. Then, by Lemma 1.2 the union of stable manifolds, which is
included in the basin of C, has strictly positive measure. �

Remark 4.3 By Hurwitz's formula, if C is an invariant curve then C is
rational or elliptic. If C is rational and f|C is a Lattès map, i.e a map which is
semi-conjugated to an endomorphism of a torus, then its equilibrium measure
is absolutely continuous with the respect to the Lebesgue measure. We obtain
in the same way that its basin has strictly positive measure.
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