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Let f be a rational self-map of P 2 which leaves invariant an elliptic curve C with strictly negative transverse Lyapunov exponent. We show that C is an attractor, i.e. it possesses a dense orbit and its basin has strictly positive measure.

Introduction

Let f be a rational self-map of P 2 of algebraic degree d ≥ 2 which leaves invariant an elliptic curve C (i.e. an algebraic curve of genus one). We assume that C does not contain indeterminacy points. In [BDM], Bonifant, Dabija and Milnor study such maps and give several examples. They associate to f, a canonical ergodic measure µ C , supported on C, which possesses a strictly positive Lyapunov exponent χ 1 = (log d)/2 in the tangent direction of C. The transverse exponent corresponds to the second Lyapunov exponent χ 2 of µ C , see section 3 for the denition.

An invariant compact set A = f (A) will be called an attractor if A possesses a dense orbit and if the basin of A dened by

B(A) = {x ∈ P 2 | d(f n (x), A) → 0 as n → ∞},
has strictly positive Lebesgue measure. Here, d(., .) denotes the distance in P 2 with respect to a xed Riemanian metric. The purpose of this article is to establish the following theorem which was expected by Bonifant,Dabija and Milnor. 1 Theorem 1.1 Let f , C and µ C be as above. Assume that the transverse exponent χ 2 of µ C is strictly negative. Then C is an attractor.

A sketch of proof is given in [AKYY] using the absolute continuity of the stable foliation. Our strategy is to study the stable manifolds associated to µ C , and then apply the following local result.

Lemma 1.2 Let E be a subset of the unit disk ∆ with strictly positive Lebesgue measure. Suppose {D x } x∈E is a measurable family of disjoint holomorphic disks given by ρ x : ∆ → ∆ 2 , transverse to {0} × ∆ and such that ρ x (0) = (0, x). Then the union ∪ x∈E D x has strictly positive Lebesgue measure in ∆ 2 . The proof of this lemma is based on holomorphic motions and quasi-conformal mappings. Under the assumptions of Theorem 1.1, µ C is a saddle measure, see [deT], [Di] for the construction of such measures in a similar context and [Si], [DS] for the basics on complex dynamics.

Recall that a rational self-map f of P 2 of algebraic degree d is given in homogeneous coordinates

[z] = [z 0 : z 1 : z 2 ], by f [z] = [F 0 (z) : F 1 (z) : F 2 (z)]
where F 0 , F 1 , F 2 are three homogeneous polynomials in z of degree d with no common factor. In the sequel, we always assume that d ≥ 2. The common zeros in P 2 of F 0 , F 1 , and F 2 form the indeterminacy set I(f ) which is nite. Let C ⊂ P 2 be an elliptic curve. Then, there exists a lattice Γ of C and a desingularization

Ψ : C/Γ → P 2 ,
with Ψ(C/Γ) = C. Moreover, if S denotes the singular locus of C, the map

Ψ : (C/Γ) \ Ψ -1 (S) → C \ S is a biholomorphism. We say that C is f -invariant if C∩I(f ) = ∅ and f (C) = C.
In this case, the restriction f |C lifts to a holomorphic self-map f of C/Γ. Even if C is singular, f inherits several properties of f . Like all holomorphic self-maps of C/Γ, f is necessarily of the form t → at + b and leaves invariant the normalized Lebesgue measure µ C on C/Γ. So, the topological degree of f , i.e. the number of points in a ber, is equal to |a| 2 . It is not dicult to check that this degree is equal to d, see [BD]. Therefore, |a| 2 = d ≥ 2. Then, by a classical theorem on ergodicity on compact abelian groups, µ C is f -ergodic, i.e. is extremal in the cone of invariant positive measures. Its push-forward µ C is an f -ergodic measure supported on C. Moreover, generic orbits of f |C are dense in C. On the other hand, f |C inherits the repulsive behavior of f and µ C possesses a strictly positive Lyapunov exponent equal to χ 1 = log |a| = (log d)/2 in the tangent direction of C. By Oseledec's theorem, see Section 3 below, we have

χ 1 + χ 2 = 1 2 µ C , log(Jac(f ))
where Jac(f) denotes the Jacobian of f with respect of the Lebesgue measure of P 2 . So, the hypothesis in Theorem 1.1 is equivalent to

µ C , log(Jac(f )) < log d.
Some examples in [BDM] satisfy this condition and give the rst attractors in P 2 with non-open basins.
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Holomorphic motion

We briey introduce the notion of holomorphic motion. For a more complete account cf. [GJW]. For r > 0, we denote by ∆ r the disk centered at the origin in C with radius r. If E is a subset of P 1 , a holomorphic motion of E parametrized by ∆ is a map

h : ∆ × E → P 1 such that: i) h(0, z) = z for all z ∈ E, ii) ∀ c ∈ ∆, z → h(c, z) is injective, iii) ∀ z ∈ E, c → h(c, z) is holomorphic on ∆.
By the works of Mañé, Sad, Sullivan, Thurston and Slodkowski (see [MSS], [ST] and [Slo]), any holomorphic motion h of E can be extended to a holomorphic motion h of P 1 . Furthermore, even if no continuity in z is assumed, h is continuous on ∆ × P 1 . More precisely, we have the following result.

Theorem 2.1 Let h be a holomorphic motion of a set E ⊂ P 1 parametrized by ∆. Then there is a continuous holomorphic motion h : ∆ × P 1 → P 1 which extends h. Moreover, for any xed c ∈ ∆, h(c, .) :

P 1 → P 1 is a quasi-conformal homeomorphism.
We refer to [Ahl] for quasi-conformal mappings. The following property is crucial in our proof.

Proposition 2.2 A quasi-conformal mapping sends sets of Lebesgue measure 0 to sets of Lebesgue measure 0.

We shall need the following Lemma in the proof of Lemma 1.2.

Lemma 2.3 Let h be a holomorphic motion of a Borel set Proof of Lemma 1.2. From the family of disks, we will construct a holomorphic motion. Denote by π 1 and π 2 the canonical projections of ∆ 2 . Let

x ∈ E. Since D x is transverse to {0} × ∆, there exists r(x) > 0 such that

ρ 1 x = π 1 • ρ x is a biholomorphism between a neighbourhood of 0 and ∆ r(x) .
The measurability of {D x } x∈E implies that x → r(x) is also measurable. As Leb(E) > 0, there exists a > 0 and a subset E a of E such that Leb(E a ) > 0 and r(x) > a for each point x ∈ E a . Dene

h : ∆ a × E a → ∆ (c, z) → ρ 2 z • (ρ 1 z ) -1 (c),
where ρ 2 x = π 2 • ρ x . By construction, h is well dened and c → h(c, z) is holomorphic on ∆ a . Since the disks are pair-wise disjoint, the map z → h(c, z) is injective for each c ∈ ∆ a . Therefore, h is a holomorphic motion of E a parametrized by ∆ a and by Lemma 2.3

∪ c∈∆a {c} × h(c, E a ) ⊂ ∪ x∈E D x has strictly positive Lebesgue measure in ∆ 2 .
3 Hyperbolic dynamics Suppose that g is a holomorphic self-map of a complex manifold M of dimension m. The following Oseledec's multiplicative ergodic theorem (cf. [KH] and [Wa]) gives information on the growth rate of D x g n (v) , v ∈ T x M as n → +∞. Here, D x g n denotes the dierential of g n at x. Oseledec's theorem holds also when g is only dened in a neighbourhood of supp(ν).

Theorem 3.1 Let g be as above and let ν be an ergodic probability with compact support in M . Assume that log + Jac(g) is in L 1 (ν). Then there exist integers k, m 1 , . . . , m k , real numbers

λ 1 > • • • > λ k (λ k may be -∞)
and a subset Λ ⊂ M such that g(Λ) = Λ, ν(Λ) = 1 and for each x ∈ Λ, T x M admits a measurable splitting

T x M = k i=1 E i x such that dim C (E i x ) = m i , D x g(E i x ) ⊂ E i g(x)
and

lim n→+∞ 1 n log D x g n (v) = λ i locally uniformly on v ∈ E i x \ {0}.
Moreover, for S ⊂ N := {1, ..., k} and

E S x = ⊕ i∈S E i
x , the angle between E S g n (x) and

E N \S g n (x) satises lim n→+∞ 1 n log sin |∠(E S g n (x) , E N \S g n (x) )| = 0.
The constants λ i are the Lyapunov exponents of g with respect to ν. It is not dicult to deduce that

2 k i=1 m i λ i = log Jac(g)dν.
If all Lyapunov exponents are non-zero, we say that ν is hyperbolic. In this case, let λ > 0 such that λ < |λ i | for all 1 ≤ i ≤ k and let

E s x = λ i <0 E i x , E u x = λ i >0 E i x .
Then, for each point x in Λ and δ > 0 we dene the stable manifolds at x by

W s δ (x) = {y ∈ M | d(g n (x), g n (y)) < δe -λn ∀n ≥ 0}.
From Pesin's theory, we have the following fundamental result, see [BP], [PS], [RS] and [Pol] for more details.

Theorem 3.2 There exists a strictly positive measurable function

δ on Λ such that if x ∈ Λ then i) W s δ(x) (x) is an immersed manifold in M , ii) T x W s δ(x) (x) = E s x , iii) W s δ(x) (x) depends measurably of x.

Basin of an attracting curve

Since the support of µ C does not contain indeterminacy points, we have log + Jac(f) ∈ L 1 (µ C ). We assume that µ C has a strictly negative transverse exponent χ 2 . Then, there exists a hyperbolic set Λ ⊂ C such that µ C (Λ) = 1 and E u x = T x C for all x ∈ Λ. The rst step to apply Lemma 1.2 is to nd, for some p ∈ Λ, an open neighbourhood where the stable manifolds are pair-wise disjoint. To this end, we prove that the restriction f |C inherits the repulsive behavior of f . Recall that d(. , .) is the distance on P 2 and denote by d(. , .) the standard distance on C/Γ. Lemma 4.1 There is a constant β > 0 such that for each p ∈ C \ S we can nd α > 0 with the property that, if x, y ∈ C are distinct points in the ball B(p, α) of radius α centered at p, then d(f n (x), f n (y)) > β for some n ≥ 0.

Proof. As Ψ is one-to-one except on nitely many points, we can nd a nite open covering {U j } j∈J of C/Γ such that Ψ is injective on each U j . Let z 1 , z 2 ∈ C/Γ. We denote by > 0 a Lebesgue number of this covering, i.e. if d(z 1 , z 2 ) < then, there exists j ∈ J such that z 1 and z 2 are in U j . Recall that one can choose r > 0 such that if d(z 1 , z 2 ) < r then d( f (z 1 ), f (z 2 )) = |a| d(z 1 , z 2 ). We can assume that < r. Let α > 0 such that 2|a| α ≤ . If 0 < d(z 1 , z 2 ) < α then there exists n ≥ 0 such that

α < d( f n (z 1 ), f n (z 2 )) ≤ |a| α.
Therefore, we can nd j ∈ J such that f n (z 1 ) and

f n (z 2 ) are in U j . So d(f n (Ψ(z 1 )), f n (Ψ(z 2 ))) > β, where β = min j∈J inf x 1 ,x 2 ∈U j e d(x 1 ,x 2 )>e α d(Ψ(x 1 ), Ψ(x 2 )) > 0.
Finally, for each p ∈ C \ S we can choose α > 0 such that if x, y ∈ B(p, α) ∩ C, there are preimages x and y of x and y by Ψ which satisfy d( x, y) < α. Then, d(f n (x), f n (y)) > β for some n ≥ 0. 

such that if δ < δ 0 , x, y ∈ U ∩ Λ, x = y then W s δ (x) ∩ W s δ (y) = ∅.
Proof. By Lemma 4.1, we can choose for U the ball of radius α centered at p and δ 0 ≤ β/2. If there exist

x, y ∈ U ∩ Λ, x = y, with W s δ (x) ∩ W s δ (y) = ∅, then for z ∈ W s δ (x) ∩ W s δ (y), d(f n (x), f n (y)) ≤ d(f n (x), f n (z)) + d(f n (z), f n (y)) ≤ 2δe -λn ≤ 2δ,
for every n, which contradicts Lemma 4.1.

Proof of Theorem 1.1. Let p ∈ Λ be a regular point of C. Choosing suitable local coordinates at p, we can assume that p ∈ ∆ 2 and C ∩ ∆ 2 = {0} × ∆. Let x ∈ Λ ∩ ∆ 2 . By the stable manifold theorem, there exists δ(x) > 0 such that W s δ(x) (x) ∩ ∆ 2 is an immersed manifold in ∆ 2 . So, there exists a measurable family of embedded holomorphic disks ρ x : ∆ → U with ρ x (0) = x and

ρ x (∆) ⊂ W s δ(x) (x) ∩ U.
First, by Lemma 4.2, possibly after replacing ∆ 2 by a smaller polydisk, we can choose δ(x) < δ 0 for all x ∈ Λ ∩ ∆ 2 . The stable manifolds W s δ(x) (x) are then pair-wise disjoint.

Since W s δ(x) (x) is tangent to E s x in x, the family of disks is transverse to {0} × ∆. Then, by Lemma 1.2 the union of stable manifolds, which is included in the basin of C, has strictly positive measure.

Remark 4.3 By Hurwitz's formula, if C is an invariant curve then C is rational or elliptic. If C is rational and f |C is a Lattès map, i.e a map which is semi-conjugated to an endomorphism of a torus, then its equilibrium measure is absolutely continuous with the respect to the Lebesgue measure. We obtain in the same way that its basin has strictly positive measure.

  Lemma 4.2 Let p ∈ Λ. There exist δ 0 > 0 and an open neighbourhood U of p

  E ⊂ P 1 of strictly positive measure. Then ∪ c∈∆ {c} × h(c, E) has strictly positive measure in ∆ × P 1 .Proof. By Theorem 2.1, h can be extended to a holomorphic motion h : ∆ × P 1 → P 1 such that, for any xed c ∈ ∆, h(c, .) : P 1 → P 1 is a quasiconformal homeomorphism. So, by Proposition 2.2 Leb(h(c, E)) > 0 and Fubini's theorem implies that ∪ c∈∆ {c} × h(c, E) has strictly positive measure.