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SINGULAR HOCHSCHILD COHOMOLOGY VIA THE

SINGULARITY CATEGORY

BERNHARD KELLER

Abstract. We show that the singular Hochschild cohomology (=Tate–Hochschild coho-
mology) of an algebra A is isomorphic, as a graded algebra, to the Hochschild cohomology
of the differential graded enhancement of the singularity category of A. The existence of
such an isomorphism is suggested by recent work of Zhengfang Wang.

1. Introduction

Let k be a commutative ring. We write ⊗ for ⊗k. Let A be a right noetherian (non com-
mutative) k-algebra projective over k. The stable derived category or singularity category
of A is defined as the Verdier quotient

Sg(A) = Db(modA)/ per(A)

of the bounded derived category of finitely generated (right) A-modules by the perfect
derived category per(A), i.e. the full subcategory of complexes quasi-isomorphic to bounded
complexes of finitely generated projective modules. It was introduced by Buchweitz in an
unpublished manuscript [4] in 1986 and rediscovered, in its scheme-theoretic variant, by
Orlov in 2003 [24]. Notice that it vanishes when A is of finite global dimension and thus
measures the degree to which A is ‘singular’, a view confirmed by the results of [24].

Let us suppose that the enveloping algebra Ae = A ⊗ Aop is also right noetherian. In
analogy with Hochschild cohomology, in view of Buchweitz’ theory, it is natural to define
the Tate–Hochschild cohomology or singular Hochschild cohomology of A to be the graded
algebra with components

HHn
sg(A,A) = HomSg(Ae)(A,Σ

nA) , n ∈ Z ,

where Σ denotes the suspension (=shift) functor. It was studied for example in [10, 2, 23]
and more recently in [31, 32, 30, 33, 29, 5]. Wang showed in [31] that, like Hochschild coho-
mology [11], singular Hochschild cohomology carries a structure of Gerstenhaber algebra.
Now recall that the Gerstenhaber algebra structure on Hochschild cohomology is a small
part of much richer higher structure on the Hochschild cochain complex C(A,A) itself,
namely the structure of a B∞-algebra in the sense of Getzler–Jones [12, 5.2] given by the
brace operations [1, 16]. In [29], Wang improves on [31] by defining a singular Hochschild
cochain complex Csg(A,A) and endowing it with a B∞-structure which in particular yields
the Gerstenhaber algebra structure on HH∗sg(A,A).

Using [17] Lowen–Van den Bergh showed in [21, Theorem 4.4.1] that the Hochschild
cohomology of A is isomorphic to the Hochschild cohomology of the canonical differential
graded (=dg) enhancement of the (bounded or unbounded) derived category of A and
that the isomorphism lifts to the B∞-level (cf. Corollary 7.6 of [26] for a related state-
ment). Together with the complete structural analogy between Hochschild and singular
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Hochschild cohomology described above, this suggests the question whether the singular
Hochschild cohomology of A is isomorphic to the Hochschild cohomology of the canonical
dg enhancement Sgdg(A) of the singularity category Sg(A) (note that such an enhancement
exists by the construction of Sg(A) as a Verdier quotient [19, 6]). Chen–Li–Wang show in
[5] that this does hold at the level of Gerstenhaber algebras when A is the radical square
zero algebra associated with a finite quiver without sources or sinks. Our main result is
the following.

Theorem 1.1. There is a canonical isomorphism of graded algebras between the singular
Hochschild cohomology of A and the Hochschild cohomology of the dg singularity category
Sgdg(A).

Conjecture 1.2. The isomorphism of the theorem lifts to an isomorphism

Csg(A,A) ∼−→ C(Sgdg(A),Sgdg(A))

in the homotopy category of B∞-algebras.

Notice that the B∞-structure on Hochschild cohomology of dg categories is preserved
(up to quasi-isomorphism) under Morita equivalences, cf. [17].

Let us mention an application of Theorem 1.1 obtained in joint work with Zheng Hua.
Suppose that k is algebraically closed of characteristic 0 and let P the power series algebra
k[[x1, . . . , xn]].

Theorem 1.3 ([15]). Suppose that Q ∈ P has an isolated singularity at the origin and A =
P/(Q). Then A is determined up to isomorphism by its dimension and the dg singularity
category Sgdg(A).

In [8, Theorem 8.1], Efimov proves a related but different reconstruction theorem: He
shows that if Q is a polynomial, it is determined, up to a formal change of variables, by
the differential Z/2-graded endomorphism algebra E of the residue field in the differential
Z/2-graded singularity category together with a fixed isomorphism between H∗B and the
exterior algebra Λ(kn).

In section 2, we generalize Theorem 1.1 to the non noetherian setting and prove the
generalized statement. We comment on a possible lift of this proof to the B∞-level in
section 3. We prove Theorem 1.3 in section 4.

2. Generalization and proof

2.1. Generalization to the non noetherian case. We assume that A is an arbitrary
k-algebra projective as a k-module. Its singularity category Sg(A) is defined as the Verdier
quotient H−,b(projA)/Hb(projA) of the homotopy category of right bounded complexes of
finitely generated projective A-modules by its full subcategory of bounded complexes of
finitely generated projective A-modules. Notice that when A is right noetherian, this is
equivalent to the definition given in the introduction.

The (partially) completed singularity category Ŝg(A) is defined as the Verdier quotient
of the bounded derived category Db(ModA) of all right A-modules by its full subcategory
consisting of all complexes quasi-isomorphic to bounded complexes of arbitrary projective
modules.

Lemma 2.2. The canonical functor Sg(A)→ Ŝg(A) is fully faithful.

Proof. Let M be a right bounded complex of finitely generated projective modules with
bounded homology and P a bounded complex of arbitrary projective modules. Since the
components of M are finitely generated, each morphism M → P in the derived category
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factors through a bounded complex P ′ with finitely generated projective components. This
yields the claim.

√

Since we do not assume that Ae is noetherian, the A-bimodule A will not, in general,
belong to the singularity category Sg(Ae). But it always belongs to the completed sin-

gularity category Ŝg(Ae). We define the singular Hochschild cohomology of A to be the
graded algebra with components

HHn
sg(A,A) = Hom

Ŝg(Ae)
(A,ΣnA) , n ∈ Z.

Theorem 2.3. Even if Ae is non noetherian, there is a canonical isomorphism of graded
algebras between the singular Hochschild cohomology of A and the Hochschild cohomology
of the dg singularity category Sgdg(A).

Let P be a right bounded complex of projective Ae-modules. For q ∈ Z, let σ>qP and
σ≤qP denote its stupid truncations:

σ>qP : . . . // 0 // P q+1 // P q+1 // . . .

σ≤qP : . . . // P q−1 // P q // 0 // . . .

so that we have a triangle

σ>qP // P // σ≤qP // Σσ>qP.

We have a direct system

P = σ≤0P // σ≤−1P // σ≤−2P // . . . // P≤q // . . . .

Lemma 2.4. Let L ∈ Db(ModAe). We have a canonical isomorphism

colimHomDAe(L, σ≤qP ) ∼−→ Hom
Ŝg(Ae)

(L,P ).

In particular, if P is a projective resolution of A over Ae, we have

colimHomDAe(A,Σnσ≤qP ) ∼−→ Hom
Ŝg(Ae)

(A,ΣnA) , n ∈ Z.

Proof. Clearly, if Q is a bounded complex of projective modules, each morphism Q→ P in
the derived category DAe factors through σ>qP → P for some q � 0. This shows that the
morphisms P → σ≤qP form a cofinal subcategory in the category of morphisms P → P ′

whose cylinder is a bounded complex of projective modules. Whence the claim.
√

2.5. Proof of Theorem 2.3. We refer to [18, 20, 27] for foundational material on dg
categories. We will follow the terminology of [20] and use the model category structure
on the category of dg categories constructed in [25]. For a dg category A, denote by
X 7→ Y (X) the dg Yoneda functor and by DA the derived category. We write Ae for the

enveloping dg category A
L
⊗k A

op and IA for the identity bimodule

IA : (X,Y ) 7→ A(X,Y ).

By definition, the Hochschild cohomology of A is the graded endomorphism algebra of IA
in the derived category D(Ae). In the case of the algebra A, the identity bimodule is the
A-bimodule A. Recall that if F : A → B is a fully faithful dg functor, the restriction
F∗ : DB → DA is a localization functor admitting fully faithful left and right adjoint
functors F ∗ and F ! given respectively by

F ∗ : M 7→M
L
⊗A FB and F ! : N 7→ RHomA(BF , N) ,

where FB = B(?, F−) and BF = B(F?,−).
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Let M0 = C
−,b
dg (projA) denote the dg category of right bounded complexes of finitely

generated projective A-modules with bounded homology. Notice that the morphism com-
plexes of M0 have terms which involve infinite products of projective A-modules so that
in general, the morphism complexes of M0 will not be cofibrant over k. Let M→M0 be a
cofibrant resolution of M0. We assume, as we may, that the quasi-equivalence M→M0 is
the identity on objects. Notice that the morphism complexes of M are cofibrant over k so

that we have M
L
⊗k M

op ∼−→M⊗Mop. Let P ⊂M be the full dg subcategory of M formed
by the bounded complexes of finitely generated projective A-modules. Let S denote the
dg quotient M/P. We assume, as we may, that S is cofibrant. In the homotopy category
of dg categories, we have an isomorphism between Sgdg(A) and S = M/P. Let B be the
dg endomorphism algebra of A considered as an object of P ⊂ M. Notice that we have a
quasi-isomorphism B → A and that both B and A are cofibrant over k. We view B as
a dg category with one object whose endomorphism algebra is B. We have the obvious
inclusion and projection dg functors

B
i // M

p
// S.

Consider the fully faithful dg functors

B ⊗Bop 1⊗i
// B ⊗Mop i⊗1

// M⊗Mop .

The restriction along G = 1⊗ i admits the left adjoint G∗ given by

G∗ : X 7→Mi

L
⊗B X ,

and the restriction along F = i⊗ 1 admits the fully faithful left and right adjoints F ∗ and
F ! given by

F ∗ : Y 7→ Y
L
⊗B iM and F ! : Y 7→ RHomB(Mi, Y ).

Since F ∗ and F ! are the two adjoints of a localization functor, we have a canonical morphism
F ∗ → F !.

Lemma 2.6. If P is an arbitrary sum of copies of Be, the morphism

F ∗G∗(P )→ F !G∗(P )

is invertible.

Proof. Let P be the direct sum of copies of Be indexed by a set J . Since F ∗ and G∗

commute with (arbitrary) coproducts, the left hand side is the dg module⊕
J

M(i?,−)
L
⊗B (B ⊗B)

L
⊗B M(?, i−) =

⊕
J

M(B,−)⊗M(?, B),

The right hand side is the dg module

RHomB(Mi,Mi

L
⊗B (

⊕
J

B ⊗B)) = RHomB(Mi,
⊕
J

M(B,−)⊗B).

Let us evaluate the canonical morphism at (M,L) ∈ M ⊗Mop. We find the canonical
morphism ⊕

J

M(B,L)⊗M(M,B)→ RHomB(M(B,M),
⊕
j

M(B,L)⊗B).

We have quasi-isomorphisms

M(B,L)⊗M(M,B)→M0(A,L)⊗M(M,B)→ L⊗M(M,B)→ L⊗ HomA(M,A)
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because M(M,B) and L are cofibrant over k. Now the equivalence D(B) ∼−→ D(A) takes
M(B,L)⊗B to M(B,L)⊗A ∼−→ L⊗A. We have an quasi-isomorphism of dg B-modules
M(B,M) ∼−→M0(A,M) = M and so the equivalence D(B) ∼−→ D(A) takes M(B,M) to M .
Whence an isomorphism

RHomB(M(B,M),
⊕
J

M(B,L)⊗B) ∼−→ RHomA(M,
⊕
J

L⊗A) = HomA(M,
⊕
J

L⊗A).

Thus, we have to show that the canonical morphism⊕
J

L⊗ HomA(M,A)→ HomA(M,
⊕
J

L⊗A)

is a quasi-isomorphism. Recall that L and M are right bounded complexes of finitely gen-
erated projective modules with bounded homology. We fix M and consider the morphism
as a morphism of triangle functors with argument L ∈ Db(ModA). Then we are reduced
to the case where L is in ModA. In this case, the morphism becomes an isomorphism of
complexes because the components of M are finitely generated projective.

√

Let us put H = F !G∗ : D(Be) → D(Me). Let us compute the image of the identity
bimodule B under H. We have

H(B) = F !(Mi

L
⊗B B) = F !(Mi) = RHomB(Mi,Mi)

and when we evaluate at L, M in M, we find

H(B)(L,M) = RHomB(M(i?, L),M(i?,M)) = RHomB(M(B,L),M(B,M)).

We have seen in the above proof that the equivalence D(B) ∼−→ D(A) takes M(B,L) to L.
Whence quasi-isomorphisms

H(B)(L,M) = RHomB(M(B,L),M(B,M)) ∼−→ RHomA(L,M) = Hom(L,M)
∼←−M(L,M).

Thus, the functor H takes the identity bimodule B to the identity bimodule IM. Since F !

and G∗ are fully faithful so is H. Denote by N the image under the composition of H with
D(Ae) ∼−→ D(Be) of the closure of ProjAe under finite extensions. Then H yields a fully
faithful functor

Ŝg(Ae)→ D(Me)/N

taking the bimodule A to the identity bimodule IM. Now notice that we have a Morita
morphism of dg categories

Se
∼←− M⊗Mop

P⊗Mop + M⊗ Pop
.

The functor p∗ : D(Me)→ D(Se) induces the quotient functor

D(M⊗Mop)
N

// D(M⊗Mop)
D(P⊗Mop+M⊗Pop) = D(Se) .

Since p : M→ S is a localization, the image p∗(IM) is isomorphic to IS. It suffices to show
that p∗ induces bijections in the morphism spaces with target IM

HomD(Me)/N(?, IM) // HomD(Se)(p
∗(?), p∗(IM)) .

For this, it suffices to show that IM is right orthogonal in D(Me)/N on the images under
the Yoneda functor of the objects in P⊗Mop+M⊗Pop. To show that IM is right orthogonal
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on Y (M⊗Pop), it suffices to show that it is right orthogonal to an object Y (M,B), M ∈M.
Now a morphism in D(Me)/N is given by a diagram of D(Me) representing a left fraction

Y (M,B) // I ′M IMoo

where the cone over IM → I ′M lies in N. For each object X of DMe, we have canonical
isomorphisms

HomDMe(Y (M,B), X) = H0(X(M,B)) = HomDM(Y (M), X(?, B)).

Thus, the given fraction corresponds to a diagram in D(M) of the form

Y (M) // I ′M(?, B) IM(?, B) = M(?, B)oo ,

where the cone over IM(?, B) → I ′M(?, B) is the image under DA ∼−→ DB → DM of a
bounded complex with projective components. Thus, the object I ′M(?, B) is a direct factor
of a finite extension of shifts of arbitrary coproducts B. Since Y (M) is compact, the given
morphism Y (M) → I ′M(?,M) must then factor through Y (Q) for an object Q of P. This
means that the given morphism Y (M,B)→ I ′M factors through Y (Q,B), which lies in N.
Thus, the given fraction represents the zero morphism of D(Me)/N, as was to be shown.
The case of an object in Y (P ⊗Mop) is analogous. In summary, we have shown that the
maps

Ŝg(Ae)(A,ΣnA)
H // (D(Me)/N)(IM,Σ

nIM)
p∗
// D(Se)(IS,Σ

nIS)

are bijective, which implies the assertion on Hochschild cohomology.

3. Remark on a possible lift to the B∞-level

Let P → A be a resolution of A by projective A-A-bimodules. Let us assume for
simplicity that k is a field so that we can take M = M0 and B = A. The proof in section 2
produces in fact isomorphisms in the derived category of k-modules

colimRHomAe(A, σ≤qP )→ colimRHomMe(IM, Hσ≤qP )

→ colimRHomSe(IS, p
∗Hσ≤qP )

= RHomSe(IS, IS).

For the bar resolution P , the truncation σ≤−qP is canonically isomorphic to ΣqΩqA so that
the first complex carries a canonical B∞-structure constructed by Wang [29]. As explained
in the introduction, it is classical that the last complex carries a canonical B∞-structure.
It is not obvious to make the intermediate complexes explicit because the functor H, being
a composition of a right adjoint with a left adjoint to a restriction functor, does not take
cofibrant objects to cofibrant objects.

4. Proof of Theorem 1.3

By the Weierstrass preparation theorem, we may assume that Q is a polynomial. Let
P0 = k[x1, . . . , xn] and S = P0/(Q). Then S has isolated singularities but may have
singularities other than the origin. Let m be the maximal ideal of P0 generated by the xi
and let R be the localization of S at m. Now R is local with an isolated singularity at m

and A is isomorphic to the completion R̂. By Theorem 3.2.7 of [14], in sufficiently high
degrees r, the Hochschild cohomology of S is isomorphic to the homology in degree r of
the complex

k[u]⊗K(S, ∂1Q, . . . , ∂nQ) ,
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where u is of degree 2 and K denotes the Koszul complex. Now S is isomorphic to K(P0, Q)
and so K(S, ∂1Q, . . . , ∂nQ) is isomorphic to

K(P0, Q, ∂1Q, . . . , ∂nQ).

Since Q has isolated singularities, the ∂iQ form a regular sequence in P0. So

K(P0, Q, ∂1Q, . . . , ∂nQ)

is quasi-isomorphic to K(M,Q), where M = P0/(∂1Q, . . . , ∂nQ). Therefore, in high even
degrees 2r, the Hochschild cohomology of S is isomorphic to

T = k[x1, . . . , xn]/(Q, ∂1Q, . . . , ∂nQ)

as an S-module. Since S and Se are noetherian, this implies that the Hochschild coho-
mology of R in high even degrees is isomorphic to the localisation Tm. Since R ⊗ R is
noetherian and Gorenstein (cf. Theorem 1.6 of [28]), by Theorem 6.3.4 of [4], the singular
Hochschild cohomology of R coincides with Hochschild cohomology in sufficiently high de-
grees. By Theorem 1.1, the Hochschild cohomology of Sgdg(R) is isomorphic to the singular
Hochschild cohomology of R and thus isomorphic to Tm in high even degrees. Since R is
a hypersurface, the dg category Sgdg(R) is isomorphic, in the homotopy category of dg
categories, to the underlying differential Z-graded category of the differential Z/2-graded
category of matrix factorizations of Q, cf. [9], [24] and Theorem 2.49 of [3]. Thus, it
is 2-periodic and so is its Hochschild cohomology. It follows that the zeroth Hochschild

cohomology of Sgdg(R) is isomorphic to Tm as an algebra. The completion functor ?⊗R R̂
yields an embedding Sg(R)→ Sg(A) through which Sg(A) identifies with the idempotent
completion of the triangulated category Sg(R), cf. Theorem 5.7 of [7]. Therefore, the cor-
responding dg functor Sgdg(R)→ Sgdg(A) induces an equivalence in the derived categories
and an isomorphism in Hochschild cohomology. So we find an isomorphism

HH0(Sgdg(A),Sgdg(A)) ∼−→ Tm.

Since Q ∈ k[x1, . . . , xn]m has an isolated singularity at the origin, we have an isomorphism

Tm
∼−→ k[[x1, . . . , xn]]/(Q, ∂1Q, . . . , ∂nQ)

with the Tyurina algebra of A = P/(Q). Now by the Mather–Yau theorem [22], more
precisely by its formal version [13, Prop. 2.1], in a fixed dimension, the Tyurina algebra
determines A up to isomorphism.

Notice that the Hochschild cohomology of the dg category of matrix factorizations con-
sidered as a differential Z/2-graded category is different: As shown by Dyckerhoff [7], it
is isomorphic to the Milnor algebra P/(∂1Q, . . . , ∂nQ) in even degree and vanishes in odd
degree.
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