, CNRS, p.3664

F. Paris, UMR7242 Biotechnologie et signalisation cellulaire, 300 bd Sébastien Brant, 67412 Illkirch cedex, CNRS, vol.3664, issue.5, p.75005

D. T. Carrell, Epigenetics of the male gamete, Fertil Steril, vol.97, issue.2, pp.267-74, 2012.

W. W. Tang, T. Kobayashi, N. Irie, S. Dietmann, and M. A. Surani, Specification and epigenetic programming of the human germ line, Nat Rev Genet, vol.17, issue.10, pp.585-600, 2016.

C. Yao, Y. Liu, M. Sun, M. Niu, Q. Yuan et al., MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis, Reprod, vol.150, issue.1, pp.25-34, 2015.

J. Bao and M. T. Bedford, Epigenetic regulation of the histone-to-protamine transition during spermiogenesis, Reprod, vol.151, issue.5, pp.55-70, 2016.

J. R. Gannon, B. R. Emery, T. G. Jenkins, and D. T. Carrell, The sperm epigenome: implications for the embryo, Adv Exp Med Biol, vol.791, pp.53-66, 2014.

C. C. Boissonnas, P. Jouannet, and H. Jammes, Epigenetic disorders and male subfertility, Fertil Steril, vol.99, issue.3, pp.624-655, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001417

C. C. Boissonnas, H. E. Abdalaoui, V. Haelewyn, P. Fauque, J. M. Dupont et al., Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men, Eur J Human Genet : EJHG, vol.18, issue.1, pp.73-80, 2010.

L. Nanassy and D. T. Carrell, Abnormal methylation of the promoter of CREM is broadly associated with male factor infertility and poor sperm quality but is improved in sperm selected by density gradient centrifugation, Fertil Steril, vol.95, issue.7, pp.2310-2314, 2011.

R. Lambrot, C. Xu, S. Saint-phar, G. Chountalos, T. Cohen et al., Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes, Nat Commun, vol.4, p.2889, 2013.

D. Martinez, T. Pentinat, S. Ribo, C. Daviaud, V. W. Bloks et al., In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation, Cell Metab, vol.19, issue.6, pp.941-51, 2014.

E. J. Radford, M. Ito, H. Shi, J. A. Corish, K. Yamazawa et al., In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism, Sci, vol.345, issue.6198, p.1255903, 2014.

K. I. Aston, P. J. Uren, T. G. Jenkins, A. Horsager, B. R. Cairns et al., Aberrant sperm DNA methylation predicts male fertility status and embryo quality, Fertil Steril, 2015.

A. Salas-huetos, J. Blanco, F. Vidal, A. Godo, M. Grossmann et al., Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile, Fertil Steril, vol.104, issue.3, pp.591-601, 2015.

K. Ni, A. N. Spiess, H. C. Schuppe, and K. Steger, The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis, Androl, vol.4, issue.5, pp.789-99, 2016.

T. De-castro-barbosa, L. R. Ingerslev, P. S. Alm, S. Versteyhe, J. Massart et al., Highfat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring, Mol Metab, vol.5, issue.3, pp.184-97, 2016.

U. Sharma, C. C. Conine, J. M. Shea, A. Boskovic, A. G. Derr et al., Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals, Sci, vol.351, issue.6271, pp.391-397, 2016.

N. Kobayashi, N. Miyauchi, N. Tatsuta, A. Kitamura, H. Okae et al., Factors associated with aberrant imprint methylation and oligozoospermia, Sci Rep, vol.7, p.42336, 2017.

T. G. Jenkins, K. I. Aston, T. D. Meyer, J. M. Hotaling, M. B. Shamsi et al., Decreased fecundity and sperm DNA methylation patterns, Fertil Steril, 2016.

R. G. Urdinguio, G. F. Bayon, M. Dmitrijeva, E. G. Torano, C. Bravo et al., Methylation patterns of spermatozoa in men with unexplained infertility, Hum Reprod, vol.30, issue.5, pp.1014-1042, 2015.

D. Bourc'his and T. H. Bestor, Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L, Nat, vol.431, issue.7004, pp.96-105, 2004.

N. Song, D. Endo, B. Song, Y. Shibata, and T. Koji, 5-aza-2?-deoxycytidine impairs mouse spermatogenesis at multiple stages through different usage of DNA methyltransferases, Toxicol, pp.62-72, 2016.

J. Barau, A. Teissandier, N. Zamudio, S. Roy, V. Nalesso et al., Bourc'his D. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity, Sci, vol.354, issue.6314, pp.909-921, 2016.

F. Guo, B. Yang, Z. H. Ju, X. G. Wang, C. Qi et al., Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls, Reprod, vol.147, issue.2, pp.241-52, 2014.

S. C. Jena, S. Kumar, S. Rajput, B. Roy, A. Verma et al., Differential methylation status of IGF2-H19 locus does not affect the fertility of crossbred bulls but some of the CTCF binding sites could be potentially important, Mol Reprod Dev, vol.81, issue.4, pp.350-62, 2014.

W. Yao, Y. Li, B. Li, H. Luo, H. Xu et al., Epigenetic regulation of bovine spermatogenic cell-specific gene boule, PLoS One, vol.10, issue.6, p.128250, 2015.

A. Verma, S. Rajput, S. De, R. Kumar, A. K. Chakravarty et al., Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility, Theriogenology, vol.82, issue.5, pp.750-759, 2014.

J. Kropp, J. A. Carrillo, H. Namous, A. Daniels, S. M. Salih et al., Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos, BMC Genomics, vol.18, issue.1, p.280, 2017.

S. Saadi, H. A. , O. Doherty, A. M. Gagne, D. Fournier et al., An integrated platform for bovine DNA methylome analysis suitable for small samples, BMC Genomics, vol.15, p.451, 2014.

S. Bovine-genome, C. Analysis, C. G. Elsik, R. L. Tellam, K. C. Worley et al., The genome sequence of taurine cattle: a window to ruminant biology and evolution, Science, vol.324, issue.5926, pp.522-530, 2009.

F. Kader and M. Ghai, DNA methylation-based variation between human populations, Mol Genet Genomics : MGG, vol.292, issue.1, pp.5-35, 2017.

I. Ortiz, J. Dorado, L. Ramirez, J. M. Morrell, D. Acha et al., Effect of single layer centrifugation using Androcoll-E-large on the sperm quality parameters of cooled-stored donkey semen doses, Animal, vol.8, issue.2, pp.308-323, 2014.

H. Kiefer, Genome-wide analysis of methylation in bovine clones by methylated DNA immunoprecipitation (MeDIP), Methods Mol Biol, vol.1222, pp.267-80, 2015.

M. Karimi, S. Johansson, D. Stach, M. Corcoran, D. Grander et al., LUMA (LUminometric methylation assay)-a high throughput method to the analysis of genomic DNA methylation, Exp Cell Res, vol.312, issue.11, pp.1989-95, 2006.

L. Attig, A. Vige, A. Gabory, M. Karimi, A. Beauger et al., Dietary alleviation of maternal obesity and diabetes: increased resistance to diet-induced obesity transcriptional and epigenetic signatures, PLoS One, vol.8, issue.6, p.66816, 2013.
DOI : 10.1371/journal.pone.0066816

URL : https://hal.archives-ouvertes.fr/hal-01001414

H. Kiefer, L. Jouneau, E. Campion, D. Rousseau-ralliard, T. Larcher et al., Altered DNA methylation associated with an abnormal liver phenotype in a cattle model with a high incidence of perinatal pathologies, Sci Rep, vol.6, p.38869, 2016.

W. Huang-d, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc, vol.4, issue.1, pp.44-57, 2009.

H. Gu, Z. D. Smith, C. Bock, P. Boyle, A. Gnirke et al., Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling, Nat Protoc, vol.6, issue.4, pp.468-81, 2011.

G. Auclair, S. Guibert, A. Bender, and M. Weber, Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse, Genome Biol, vol.15, issue.12, p.545, 2014.

W. Bao, K. K. Kojima, and O. Kohany, Repbase update, a database of repetitive elements in eukaryotic genomes, Mob DNA, vol.6, p.11, 2015.

J. M. Dupont, J. Tost, H. Jammes, and I. G. Gut, De novo quantitative bisulfite sequencing using the pyrosequencing technology, Anal Biochem, vol.333, issue.1, pp.119-146, 2004.

L. C. Li and R. Dahiya, MethPrimer: designing primers for methylation PCRs, Bioinformatics, vol.18, issue.11, pp.1427-1458, 2002.
DOI : 10.1093/bioinformatics/18.11.1427

URL : https://academic.oup.com/bioinformatics/article-pdf/18/11/1427/426887/181427.pdf

A. Weyrich, Preparation of genomic DNA from mammalian sperm, Curr Protoc Mo Biol, vol.13, issue.2, pp.11-14, 2012.

D. Schubeler, ESCI award lecture: regulation, function and biomarker potential of DNA methylation, Eur J Clin Investig, vol.45, issue.3, pp.288-93, 2015.

M. Weber, J. J. Davies, D. Wittig, E. J. Oakeley, M. Haase et al., Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells, Nat Genet, vol.37, issue.8, pp.853-62, 2005.

M. Arribas-layton, J. Dennis, E. J. Bennett, C. K. Damgaard, and J. Lykke-andersen, The C-terminal RGG domain of human Lsm4 promotes processing body formation stimulated by arginine Dimethylation, Mol Cell Biol, vol.36, issue.17, pp.2226-2261, 2016.

T. Miyamoto, G. Minase, K. Okabe, H. Ueda, and K. Sengoku, Male infertility and its genetic causes, J Obstet Gynaecol Res, vol.41, issue.10, pp.1501-1506, 2015.
DOI : 10.1111/jog.12765

Y. S. Cheng, C. W. Lu, T. Y. Lin, P. Y. Lin, and Y. M. Lin, Causes and clinical features of infertile men with nonobstructive azoospermia and histopathologic diagnosis of Hypospermatogenesis, Urol, 2017.

A. Molaro, E. Hodges, F. Fang, Q. Song, W. R. Mccombie et al., Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates, Cell, vol.146, issue.6, pp.1029-1070, 2011.

C. Krausz, J. Sandoval, S. Sayols, C. Chianese, C. Giachini et al., Novel insights into DNA methylation features in spermatozoa: stability and peculiarities, PLoS One, vol.7, issue.10, p.44479, 2012.

S. S. Hammoud, D. H. Low, C. Yi, C. L. Lee, J. M. Oatley et al., Transcription and imprinting dynamics in developing postnatal male germline stem cells, Genes Dev, vol.29, issue.21, pp.2312-2336, 2015.
DOI : 10.1101/gad.261925.115

URL : http://genesdev.cshlp.org/content/29/21/2312.full.pdf

H. Heyn, H. J. Ferreira, L. Bassas, S. Bonache, S. Sayols et al., Epigenetic disruption of the PIWI pathway in human spermatogenic disorders, PLoS One, vol.7, issue.10, p.47892, 2012.

H. Royo, M. B. Stadler, and A. H. Peters, Alternative computational analysis shows no evidence for nucleosome enrichment at repetitive sequences in mammalian spermatozoa, Dev Cell, vol.37, issue.1, pp.98-104, 2016.

T. Dansranjavin and U. Schagdarsurengin, The rationale of the inevitable, or why is the consideration of repetitive DNA elements indispensable in studies of sperm nucleosomes, Dev Cell, vol.37, issue.1, pp.13-17, 2016.

R. L. Adams, R. H. Burdon, and J. Fulton, Methylation of satellite DNA, Biochem Biophys Res Commun, vol.113, issue.2, pp.695-702, 1983.

S. I. Feinstein, V. R. Racaniello, M. Ehrlich, C. W. Gehrke, D. A. Miller et al., Pattern of undermethylation of the major satellite DNA of mouse sperm, Nucleic Acids Res, vol.13, issue.11, pp.3969-78, 1985.

K. Yamagata, T. Yamazaki, H. Miki, N. Ogonuki, K. Inoue et al., Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages, Dev Biol, vol.312, issue.1, pp.419-445, 2007.
DOI : 10.1016/j.ydbio.2007.09.041

URL : https://doi.org/10.1016/j.ydbio.2007.09.041

G. Nishibuchi and J. Dejardin, The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals, Chromosom Res, vol.25, issue.1, pp.77-87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01488403

M. A. Biscotti, E. Olmo, and J. S. Heslop-harrison, Repetitive DNA in eukaryotic genomes, Chromosom Res, vol.23, issue.3, pp.415-435, 2015.
DOI : 10.1007/s10577-015-9499-z

A. V. Probst, I. Okamoto, M. Casanova, E. Marjou, F. et al., A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development, Dev Cell, vol.19, issue.4, pp.625-663, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00685732

M. Kaneda, S. Akagi, S. Watanabe, and T. Nagai, Comparison of DNA methylation levels of repetitive loci during bovine development, BMC Proc, vol.5, p.3, 2011.

Y. K. Kang, H. J. Lee, J. J. Shim, S. Yeo, S. H. Kim et al., Varied patterns of DNA methylation change between different satellite regions in bovine preimplantation development, Mol Reprod Dev, vol.71, issue.1, pp.29-35, 2005.

K. Yamanaka, M. Kaneda, Y. Inaba, K. Saito, K. Kubota et al., DNA methylation analysis on satellite I region in blastocysts obtained from somatic cell cloned cattle, Anim Sci J, vol.82, issue.4, pp.523-553, 2011.

K. Yamanaka, M. Sakatani, K. Kubota, A. Z. Balboula, K. Sawai et al., Effects of downregulating DNA methyltransferase 1 transcript by RNA interference on DNA methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos, J Reprod Dev, vol.57, issue.3, pp.393-402, 2011.

C. Couldrey and D. N. Wells, DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer, PLoS One, vol.8, issue.2, p.55153, 2013.

Y. Kato, M. Kaneda, K. Hata, K. Kumaki, M. Hisano et al., Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse, Hum Mol Genet, vol.16, pp.2272-80, 2007.

E. L. Walton, C. Francastel, and G. Velasco, Dnmt3b prefers germ line genes and Centromeric regions: lessons from the ICF syndrome and Cancer and implications for diseases, Biol, vol.3, issue.3, pp.578-605, 2014.

B. Samans, Y. Yang, S. Krebs, G. V. Sarode, H. Blum et al., Uniformity of nucleosome preservation pattern in mammalian sperm and its connection to repetitive DNA elements, Dev Cell, vol.30, issue.1, pp.23-35, 2014.

G. Sillaste, L. Kaplinski, R. Meier, U. Jaakma, E. Eriste et al., A novel hypothesis for histone-to-protamine transition in Bos taurus spermatozoa, Reprod, vol.153, issue.3, pp.241-51, 2017.

S. Erkek, M. Hisano, C. Y. Liang, M. Gill, R. Murr et al., Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa, Nat Struct Mol Biol, vol.20, issue.7, pp.868-75, 2013.

G. Macaya, J. Cortadas, and G. Bernardi, An analysis of the bovine genome by density-gradient centrifugation. Preparation of the dG+dC-rich DNA components, Eur J Biochem, vol.84, issue.1, pp.179-88, 1978.

M. Vozdova, H. Sebestova, S. Kubickova, H. Cernohorska, J. Vahala et al., A comparative study of meiotic recombination in cattle (Bos taurus) and three wildebeest species (Connochaetes gnou, C. Taurinus taurinus and C. t. Albojubatus), Cytogenet Genome Res, vol.140, issue.1, pp.36-45, 2013.

L. Ma, O. Connell, J. R. Vanraden, P. M. Shen, B. Padhi et al., Cattle sex-specific recombination and genetic control from a large pedigree analysis, PLoS Genet, vol.11, issue.11, p.1005387, 2015.
DOI : 10.1371/journal.pgen.1005387

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005387&type=printable

N. K. Kadri, C. Harland, P. Faux, N. Cambisano, L. Karim et al., Coding and noncoding variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B affect recombination rate in cattle, Genome Res, vol.26, issue.10, pp.1323-1355, 2016.

P. Termolino, G. Cremona, M. F. Consiglio, and C. Conicella, Insights into epigenetic landscape of recombination-free regions, Chromosoma, vol.125, issue.2, pp.301-309, 2016.

G. E. Liu, M. Ventura, A. Cellamare, L. Chen, Z. Cheng et al., Analysis of recent segmental duplications in the bovine genome, BMC Genomics, vol.10, p.571, 2009.

J. Fadista, B. Thomsen, L. E. Holm, and C. Bendixen, Copy number variation in the bovine genome, BMC Genomics, vol.11, p.284, 2010.

J. Li, R. A. Harris, S. W. Cheung, C. Coarfa, M. Jeong et al., Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome, PLoS Genet, vol.8, issue.5, p.1002692, 2012.