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ABSTRACT

In the mean field limit, isolated gravitational systems often evolve towards a steady state through a violent relaxation phase. One
question is to understand the nature of this relaxation phase, in particular the role of radial instabilities in the establishment/destruction
of the steady profile. Here, through a detailed phase-space analysis based both on a spherical Vlasov solver, a shell code and a N-body
code, we revisit the evolution of collisionless self-gravitating spherical systems with initial power-law density profiles ρ(r) ∝ rn,
0 ≤ n ≤ −1.5, and Gaussian velocity dispersion. Two sub-classes of models are considered, with initial virial ratios η = 0.5 (“warm”)
and η = 0.1 (“cool”). Thanks to the numerical techniques used and the high resolution of the simulations, our numerical analyses are
able, for the first time, to show the clear separation between two or three well known dynamical phases: (i) the establishment of a
spherical quasi-steady state through a violent relaxation phase during which the phase-space density displays a smooth spiral structure
presenting a morphology consistent with predictions from self-similar dynamics, (ii) a quasi-steady state phase during which radial
instabilities can take place at small scales and destroy the spiral structure but do not change quantitatively the properties of the phase-
space distribution at the coarse grained level and (iii) relaxation to non spherical state due to radial orbit instabilities for n ≤ −1 in the
cool case.
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1. Introduction

Dark matter in the Universe and stars in galaxies behave like a
self-gravitating collisionless fluid of which the dynamics can be
described by the Vlasov-Poisson system :

∂ f
∂t

+ v ·
∂ f
∂x
−
∂φ

∂x
·
∂ f
∂v

= 0, (1)

M φ = 4πGρ = 4πG
∫

f (x, v, t)dv, (2)

where f (x, v, t) is the phase-space density of the fluid at posi-
tion x, velocity v and time t, ρ is the mass density and φ is the
gravitational potential.

A major issue when considering the dynamics of gravita-
tional systems such as dark matter halos, elliptical galaxies or
star clusters in the non collisional regime is to understand the
main processes underlying the creation of the quasi-stationary
states that build up after a number of dynamical times, for
instance the universal profiles of dark matter halos (Navarro,
Frenk, & White 1996, 1997).

One way to relate initial to quasi-equilibrium state is to as-
sume that the system reaches some maximum entropy state af-
ter a violent relaxation phase with strong mixing (Lynden-Bell
1967). However, the maximum entropy approach is at best partly
successful (see, e.g. Yamashiro, Gouda & Sakagami 1992; Arad
& Johansson 2005; Arad & Lynden-Bell 2005; Yamaguchi 2008;
Joyce & Worrakitpoonpon 2011, and references therein) and

? E-mail:halle@iap.fr

the only way to improve the results is to introduce additional
constraints and ad hoc ingredients (see, e.g. Hjorth & Williams
2010; Pontzen & Governato 2013; Carron & Szapudi 2013). In-
deed, relaxation might be incomplete, or maximum entropy state
might not even exist, although one can generalize the concept of
entropy by introducing the more general concept of H-functions
(Tremaine, Hénon, & Lynden-Bell 1986), for which there exist
stationary points related to actual stable equilibria even if en-
tropy maximum does not exist.

Another popular alternative to try understanding the estab-
lishment of quasi-stationary profiles consists in investigating the
subspace of self-similar solutions (see, e.g., Fillmore & Goldre-
ich 1984; Bertschinger 1985; Henriksen & Widrow 1995; Sikivie
et al. 1997; Mohayaee & Shandarin 2006; Alard 2013, but this
list is far from exhaustive). While it is difficult to actually demon-
strate the onset of self-similarity, it seems to be a natural outcome
of gravitational dynamics, at least in the absence of any charac-
teristic scale. Although they exist as well in the warm case (see,
e.g. Henriksen & Widrow 1995), self-similar solutions have been
mostly studied in the cold case, for which the phase-space dis-
tribution function is of zero initial velocity dispersion. In this
configuration, a D-dimensional phase-space sheet evolves in 2D
phase-space and builds up a spiral pattern.

The above approaches, along with perturbation theory in
cosmological systems (see, e.g. Bernardeau et al. 2002), pro-
vide some partial analytical framework to study the Vlasov-
Poisson system. However, in general, these equations usually
require a numerical approach, which consists in decomposing
the phase-space distribution function on an ensemble of macro-
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particles interacting with one another with a softened gravita-
tional force (see, e.g. Hockney & Eastwood 1988; Bertschinger
1998; Colombi 2001; Dolag et al. 2008; Dehnen & Read 2011,
for reviews on the subject). An alternative way, easily tractable
in a small number of dimensions or for systems with a high level
of symmetry, consists in using direct Vlasov solvers where the
phase-space distribution function is generally sampled on a Eu-
lerian mesh. Most of the direct Vlasov solvers have been de-
veloped in plasma physics and are of semi-Lagrangian nature.
They exploit directly Liouville theorem, namely that the phase-
space density is constant along characteristics. In the standard
semi-Lagrangian scheme, a test particle is associated to each grid
site where f has to be calculated. This particle is followed back
in time during a time-step and the value of f is given by the
interpolation of the phase-space density at previous time-step
at the root of the trajectory. In the seminal implementation by
Cheng & Knorr (1976), this is performed in a split fashion be-
tween velocities and positions. Many improvements and modifi-
cations have been added over time to the splitting algorithm of
Cheng & Knorr (see, e.g., the extensive review in the introduc-
tion of Sousbie & Colombi 2016), mainly by plasma physicists.
The splitting scheme was first applied to astrophysical systems
by Fujiwara (1981), Nishida et al. (1981) and Watanabe et al.
(1981). In the classical implementation that we shall use below,
re-interpolation of the phase-space distribution function is per-
formed at each time-step using a third order spline.

In all the cases, validating the results obtained from numeri-
cal resolution of Vlasov-Poisson equations remains difficult, par-
ticularly if one aims to remain in the mean field limit. In particu-
lar, N-body results are often debated. For instance, the close N-
body encounters and collective effects due to particle shot noise
can have some dramatic, possibly cumulative effects (see, e.g.
Aarseth, Lin, & Papaloizou 1988; Kandrup & Smith 1991; Boily,
Athanassoula, & Kroupa 2002; Binney 2004; Joyce, Marcos, &
Sylos Labini 2009; Colombi et al. 2015; Beraldo e Silva et al.
2017; Romero & Ascasibar 2018), particularly when initial con-
ditions are cold or close to cold (see, e.g., Melott et al. 1997;
Melott 2007). While Vlasov codes do not use particles, they are
still subject to non trivial numerical effects, because a phase-
space grid still remains a discrete representation of the system
(see, e.g. Colombi et al. 2015, hereafter C15). But since the nu-
merical implementation is still different from N-body codes, a
comparison between Vlasov and N-body codes seems appropri-
ate and timely, especially when trying to analyse in detail the
quasi-stationary state reached in the fluid limit by gravitational
systems.

One question indeed remains open. What are the main pro-
cesses involved in the violent relaxation phase leading to a quasi-
stationary state? We propose here to approach this question by
studying the evolution of a number of initially spherical systems
with various initial density profiles and velocity dispersions, fo-
cusing on the phase-space structure. Spherical symmetry will al-
low us to compare high resolution Vlasov simulations to N-body
simulations. Our analyses will focus on the detailed structure of
the phase-space distribution function and comparisons with pre-
dictions from self-similarity.

The advantage of systems with initial spherical symmetry is
that they have been studied in great detail in the literature both
from the theoretical and the numerical points of view. One major
question for instance concerns the role of radial instabilities and
radial orbit instability in the establishment of the quasi-steady
state observed after violent relaxation. Some spherical equilibria
or quasi-steady states are known to be unstable to radial pertur-
bations (see, e.g. Hénon 1973; Henriksen & Widrow 1997) as

well as angular perturbations that translate into radial orbit in-
stability as well studied in the literature (see, e.g. Polyachenko
& Shukhman 1981; Merritt & Aguilar 1985; Barnes, Hut, &
Goodman 1986; Cannizzo & Hollister 1992; Barnes, Lanzel,
& Williams 2009; Maréchal & Perez 2011; Vogelsberger, Mo-
hayaee, & White 2011; Polyachenko & Shukhman 2015). These
perturbations are usually induced by shot noise due to the dis-
crete nature of the distribution of stars or particles in the system,
which directly relates to the discussion above about the validity
of numerical simulations. Here, it is interesting to see what hap-
pens in the mean field limit, or at least in a regime that tries to
approach it by using a direct Vlasov code and N-body simula-
tions with a very large number of particles.

More specifically, assuming G = 1 and following the foot-
steps of Burkert (1990), Hozumi, Fujiwara, & Kan-Ya (1996)
and Hozumi et al. (2000), we perform a number of controlled nu-
merical experiments of unity total mass systems, initially spher-
ical with a power-law density profile and a Gaussian isotropic
velocity dispersion:

f (r, v) =
ρ0(r)

(2πσ2
r )3/2 exp

(
−

1
2
v2

σ2
r

)
, r ≤ R0, (3)

ρ0(r) ∝ rn, (4)

with R0 = 2 the initial radius of the sphere and the initial slope
spanning the range n = 0 to n = −1.5. We consider “warm” and
“cool” cases defined by their respective values of the virial ratio,
η = 0.5 and 0.1, with

η ≡
2T
|W |

, (5)

where T is the total kinetic energy and W the total potential en-
ergy of the system.

In these simulations, we aim to study in detail the evolution
of the phase-space distribution function, the onset of instabili-
ties and the consequence of these at the coarse-grained level. We
shall also relate our measurements of fine details of the spiral
pattern of the phase-space distribution to expectations from self-
similar dynamics (see, e.g. Alard 2013, hereafter A13). To per-
form our simulations, we use three kinds of codes: a spherical
semi-Lagrangian Vlasov solver, VlaSolve, presented in C15,
the N-body public treecode Gadget-2 (Springel 2005) and a
standard spherical shell N-body code (see, e.g. Hénon 1964).
Importantly, while the systems are forced to remain spherical in
VlaSolve and in the shell code, it is not the case for Gadget-2,
which allows for the development of angular anisotropies. The
variety of the codes employed in this work will help us to un-
derstand in detail the nature of different sources of instabilities,
whether physical or numerical. In particular, we shall study the
influence of finite spatial resolution in Vlasolve and of finite
number of particles in the shell code and in Gadget-2.

This paper is organised as follows. In § 2, we present the nu-
merical codes used to perform the simulations and provide de-
tails on the various runs we performed. In § 3, we perform a de-
tailed visual inspection of the phase-space distribution function
and discuss the various dynamical phases at play. Then, section 4
deals with self-similarity: we show how the calculations of A13
can be extended to spherical systems in a very simple way, and
compare theoretical predictions on the shape of the phase-space
distribution function to our numerical experiments. Finally, § 5
summarises and discusses the results.
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2. The simulations

In spherical symmetry, Vlasov equation can be written as:

∂ f
∂t

+ vr
∂ f
∂r

+

(
j2

r3 −
GM(< r)

r2

)
∂ f
∂vr

= 0, (6)

with r the spherical radius, vr the radial velocity, j the conserved
angular momentum and M(< r) the mass contained in a sphere
of radius r. For a given value j, the evolution is thus driven by
the interplay between the gravitational force, dominating at large
radii, and the centrifugal force j2/r3, dominating at small radii.

To solve equation (6), we have resorted to two numerical
methods.

Firstly and mainly, we employ the spherical Vlasov solver
VlaSolve presented in C15. This semi-Lagrangian code is sim-
ilar to that of Fujiwara (1983) and thus uses the splitting algo-
rithm of Cheng & Knorr (1976) to compute the evolution of the
phase-space density on a mesh. The phase-space is divided into
three-dimensional cells along radius, radial velocity, and angu-
lar momentum. A logarithmic scaling is used for radius to prop-
erly resolve the dynamics of the collapse at low radii, making
the use of a minimum radius Rmin necessary. To compute accu-
rately the dynamics at low radii, the exact time spent by matter
elements inside the sphere of radius Rmin is computed assuming
that gravitational force is negligible, which is an improvement
over previous implementations which used the reflecting sphere
method (see, e.g. Gott & Thuan 1976; Fujiwara 1983). More al-
gorithmic details and tests of the code can be found in C15. Un-
less specified later, the grid for all the simulations is such that
(Nr,Nv,N j) = (2048, 2048, 128), where Nr is the number of ver-
tices of radius in log scale, Nv is the number of vertices of radial
velocity in linear scale, and N j is the number of slices of angu-
lar momentum such that the kth slice contains fluid of angular
momentum jmax

(
(k − 1/2)/N j

)2
, corresponding formally to the

interval [ jmax

(
(k − 1)/N j

)2
, jmax

(
k/N j

)2
]. The computation do-

main is log10 Rmin ≡ −2 < log10(r) < 1.4, −vl < vr < vl and
0 < j < 1.6, where vl = 2 for the runs with a virial ratio η = 0.5
and vl = 3 for the runs with a virial ratio η = 0.1. The limits are
chosen such that almost all the mass of the system is contained
in the computing domain during the simulated time, except for
matter elements passing inside the sphere of radius Rmin or those
escaping from the system at large radius. For all the simulations,
the time-step was chosen to be constant, equal to ∆t = 0.005, a
value larger than in C15 to avoid excessive diffusion due to over-
frequent re-samplings of the phase-space distribution function,
but we checked it is still on the safe side.

To avoid excessive aliasing effects in the VlaSolve runs, we
apodize the initial profile given by equation (4) as follows,

f (r, v) =
ρ0(r)

(2πσ2
r )3/2 exp

(
−

1
2
v2

σ2
r

)
×

1
2

[
1 + erf

(R0 − r
∆

)]
, r ≤ R0, (7)

with ∆ = 1/2, exactly as in C15. This apodization slightly
changes the value of the virial ratio, of the order of 10 percent at
most.

The second code we use relies on the standard spherical
shells approach as in e.g. Hénon (1964) and Gott & Thuan
(1976). Note that we employ it only for the most critical cases,
namely (η, n) = (0.1,−1) and (η, n) = (0.1,−1.5), when the re-
sults from Gadget-2 differ too much from VlaSolve. In this N-
body code, each particle represents a shell in configuration space

and interacts with the other particles through gravitational force,
−GM(< r)/r2, which can be obtained very easily with a sorting
procedure. The resolution of the Lagrangian equations of mo-
tion of the particles is performed simply with a leapfrog integra-
tor with a constant time-step dt = 0.001, five times smaller than
the one chosen for the Vlasov code. Similarly as in Vlasolve,
the Leapfrog algorithm is implemented using a decomposition
of the Hamiltonian of the motion into a fully analytical drift part
including centrifugal force and a kick part including solely grav-
itational force (see, e.g. Colombi & Touma 2008). Initial shells
distribution simply consists in taking the initial conditions of the
Gadget-2 simulations described below, with the radius of each
shell being equal to the magnitude of the position of each par-
ticle and their respective radial velocities and angular momenta
directly derived from the three coordinates of the particle veloc-
ities.

Finally, we perform simulations using the public three-
dimensional N-body treecode Gadget-2 (Springel 2005) in its
non cosmological set-up and with the treecode part only. The po-
sitions and velocities of particles are generated in a random way
using a standard rejection method.

In the Gadget-2 simulations, spherical symmetry is no
longer imposed, which leaves room for the development of an-
gular anisotropies due to Poisson fluctuations in the initial par-
ticle distribution, even though the profile is initially spheri-
cal in the statistical sense. In particular, we shall see that the
(η, n) = (0.1,−1) and (η, n) = (0.1,−1.5) simulations are sub-
ject to radial orbit instability. All the simulations in this work
involved 10 million particles, except that we performed an ad-
ditional one with 100 million particles to examine more closely
the case (η, n) = (0.1,−1.5). The parameters for the Gadget-2
runs, in terms of softening length, force accuracy and time-step
control, are otherwise the same as in C15.

Table 1 summarises the parameters used to perform the sim-
ulations of this work. In particular, the last two columns give the
value of 25 tdyn where

tdyn =

√
3π
ρ

(8)

corresponds to the duration of a full radial orbit in a harmonic
potential corresponding to a fixed density ρ. We estimate ρ from
the simulations themselves, once the system has reached a quasi-
stationary state, either directly at the centre of the system or as
the average of the density in a sphere containing 10 percent of the
total mass. Our estimates are rather crude but justify the choice
of final time equal to 80 and 40 for the “warm” and “cool” cases,
respectively. Yet, we have to stay aware of the fact that increasing
the magnitude of the slope |n| decreases the value of tdyn.

3. Visual inspection: phase-space structure and
density profiles

Figures 1 and 2 display, for a typical slice of fixed angular mo-
mentum, the phase-space distribution function of the “warm”
and “cool” VlaSolve simulations, respectively. Additionally,
Figure 3 examines more in detail the case (η, n) = (0.1,−1.5),
which is subject to radial orbit instability (hereafter ROI), while
Figure 4 provides projected density profiles. To supplement our
discussion about ROI, we study in Fig. 5 the velocity anisotropy
parameter for all the simulations as well as deviation from
sphericity for the runs which experience ROI.

Thanks to the high resolution of our simulations, when ex-
amining these figures, one can clearly separate, for the first time,

Article number, page 3 of 14



A&A proofs: manuscript no. PhaseSpaceHalleEtAlResub

n η (Nr,Nv,N j) N (Gadget-2) 25 tdyn (centre) 25 tdyn (10 percent)
0 0.545 (2048, 2048,128) 107 108 123
-0.5 0.536 ” " 82 106
-1.0 0.526 ” " 47 77
-1.5 0.515 ” " 13 46
0 0.109 ” ” 17 21
-0.5 0.108 ” ” 15 24
-1.0 0.106 ” ” + shells 9 23
-1.5 0.104 ” + (1024,512,512) ” +108 + shells 4 19

Table 1. Parameters used for the simulations performed in this article. From left to right, the table gives the slope n of the initial density profile,
the actual value η of the virial ratio after apodization (see equation 7), the resolution (Nr,Nv,N j) of the Vlasov code grid, the number N of particles
in the Gadget-2 simulations, with the mention of when the shell code is used as well. Finally, the two last columns give the approximate value
of time after 25 harmonic orbits respectively computed from the density measured at the centre of the simulation and from the average density
measured in a sphere containing 10 percent of the total mass of the system, once the system has reached a quasi-stationary regime.
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Fig. 1. Snapshots of the phase-space density for the simulations with “warm” initial conditions, η ' 0.5. A typical slice of f (r, vr, j) with j = 0.16 is
shown in (r, vr) space for the VlaSolve simulations at t = 0, at an early time t = 15, at an intermediate time used to perform tests of self-similarity
of the phase-space spiral and at the final time.

2 or 3 well known dynamical phases, depending on initial con-
ditions: (i) a violent relaxation phase during which the system
converges to a quasi-steady state by building a very regular spi-
ral structure in phase-space, (ii) a quiescent phase during which
the quasi-steady state is preserved against small scale radial in-
stabilities which can destroy the spiral and (iii) relaxation to a
non spherical state through ROI when the system is prone to de-
velop it. The novelty in our measurements is obviously not the

discovery of the various phases of the dynamics, which are heav-
ily discussed in the literature, but instead the clear articulation
between them for the systems we study. We discuss now these
three phases in detail.
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Fig. 2. Same as in Fig. 1 but for the simulations with “cool” initial conditions, η ' 0.1 and for a slice with j = 0.06.

3.1. Violent relaxation

In a first phase, the system undergoes violent relaxation that
leads quickly to the establishment of a quasi-steady state. During
this phase, spherical symmetry is preserved and the phase-space
distribution function presents in all the cases a very regular spi-
ral structure, even in the N-body runs, thanks to the large number
of particles we used to perform them. A visualisation of a film
of the evolution of the system shows that it is subject as well
to a global pulsation that introduces at some point irregular fea-
tures in the phase-space distribution function in the outer parts of
the spiral and at large radius, e.g. the dark region in upper right
panel of Fig. 1. During this violent relaxation phase, Gadget-2
agrees very well with VlaSolve, even in regions where these
irregular features develop, as already noticed by C15 for the
(η, n) = (0.5, 0) case, which shows that these features are intrin-
sic to the physical system and are not related to some additional
instability due to some numerical noise.

3.2. Quasi-steady regime with small scale radial instabilities

In a second phase, the system stays in quasi-equilibrium and
preserves its spherical symmetry. However, some radial insta-
bilities perturb it at small scales, whatever numerical technique
used, and can destroy the spiral structure. The time of the ap-
pearance of these instabilities is related to spatial resolution

in the Vlasolve simulation and to the number of particles in
the N-body simulations. This is well illustrated by Fig. 3 for
(η, n) = (0.1,−1.5): for instance, increasing the number of an-
gular momentum slices in the VlaSolve simulation reduces the
magnitude of the perturbations of the spiral (compare middle in-
sert of first and second line of panels), and similarly when in-
creasing the number N of particles in the Gadget-2 runs (com-
pare middle insert of third and fourth line of panels).

In the N-body case, these collective instabilities are induced
by small random but correlated errors on the gravitational force
due to Poisson fluctuations in the particle distribution. In the
Vlasolve code, they are related to coherent errors on the force
due to the representation of the phase-space density on a grid,
but the effect is analogous to the N-body case. These instabili-
ties become naturally more significant when the initial velocity
dispersion is reduced, as explained in C15. We also notice here
that they take place earlier for larger |n|, in agreement with our
calculation of dynamical times in the two right columns of Ta-
ble 1. As a result, during the interval of time we run our simu-
lations, they can be seen in the cool runs and in the warm case
for (η, n) = (0.5,−1.5), but they are not present or negligible in
other cases.

The important fact is that these instabilities intervene only
at the fine level: they do not change the structure of the sys-
tem at the coarse level, even quantitatively. To be more specific,
if the phase-space density was smoothed at scales larger than
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Fig. 3. Closer examination of the onset of instabilities in phase space for the (η, n) = (0.1,−1.5) simulations: effects of spatial and mass resolutions.
For the same angular momentum slice, j = 0.06, as in lower panels of Fig. 2, the phase space density is represented in (r, vr) space. The two first
lines of panels correspond to two VlaSolve simulations with respective resolutions (Nr,Nv,N j) = (2048, 2048, 128) and (1024, 512, 512). The
next two lines of panels correspond to two Gadget-2 simulations with respective numbers of particles N = 107 and N = 108 and the last line of
panels gives, for N = 107, the result obtained for the shell code. For the N-body simulations, the phase-space density is sampled on grids with
resolution (Nr,Nv,N j) = (1024, 1024, 32). One can notice that the phase-space sheet is fuzzier in the N-body simulations than in the Vlasov code
at low radius, this is because what is actually plotted is the distribution of particles (or shells) in a relatively large interval of angular momentum
j ∈ [0.056, 0.077] to have sufficient number of particles to trace the phase-space distribution function, while for the Vlasov simulation, we just
selected the slice corresponding to the value of j of interest. This figure illustrates the effect of radial instabilities and their dependence on spatial
resolution (for the Vlasov code) or mass resolution (for the N-body code). Note the nice agreement between the shell simulation and the Gadget-2
runs with 10 million particles in the middle panels of third and fifth lines, while they diverge in the right panels, when radial orbit instability effects
become prominent in Gadget-2.

the inter-filament separation –by filament, we mean e.g. some
fold of the spiral structure– and than the size of the fluctua-
tions introduced by radial instabilities, there would be no sig-
nificant difference between late times, where these instabilities
can destroy the spiral structure, and earlier times, when the spi-
ral structure is still well defined. A good way to illustrate this
consists in examining the projected density profile measured in
the Vlasolve simulations, as displayed in Fig. 4, and to com-

pare red curves to the green ones, that correspond respectively
to these aforementioned late and earlier times. The calculation
of the projected density, by integrating the phase-space density
over velocities, indeed corresponds to some coarse-graining pro-
cedure, although such anisotropic smoothing does not erase the
quasi-caustic structures seen on the green curves of Fig. 4. These
bumps correspond to projection of parts of the spiral (or any fila-
ment) that are orthogonal to configuration space. However, with
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Fig. 4. Radial density profile measured at various times in the VlaSolve simulations, namely initial conditions (blue dashes), intermediate time
used to perform tests of self-similarity of the phase-space spiral (green) and final time (red dashes). For the final time, the results are also compared
to a Gadget-2 run (thick grey), as well as the output of the shell code (thick grey dashes) for (η, n) = (0.1,−1) and (0.1,−1.5). In addition, the
logarithmic slopes −4 and −2.1 (as measured in Hozumi et al. 2000) are shown respectively as a thin solid and a thin dashed line.

proper (adaptive) smoothing at scales larger than the space be-
tween successive spiral folds, one can be convinced that agree-
ment between the green curves and the red curves, already very
good in most cases, should improve furthermore.

Hence, the quasi-equilibrium built cinematically by the spi-
ral is stable against radial perturbations, but not necessarily the
spiral structure.

3.3. Deviation from sphericity: radial orbit instability

In a third phase, small angular anisotropies induced by numeri-
cal noise get amplified through radial orbit instability (ROI) for
n ≤ −1 in the cool cases and the system deviates from spherical
symmetry by acquiring a prolate shape (right panel of Fig. 5).
A consequence of ROI is the reduction of the magnitude of the
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Fig. 5. Velocity anisotropy and deviation from sphericity. Left panel: velocity anisotropy parameter α = 2〈v2
r 〉/〈v

2
⊥〉 as a function of time for the

VlaSolve (solid lines) and Gadget-2 simulations we performed (dashed curves). Right panel: evolution of the departure from spherical symmetry
for the two kind of initial conditions experiencing radial orbit instability in Gadget-2, namely (η, n) = (0.1,−1.0) (blue curves) and (η, n) =
(0.1,−1.5) (red curves, solid and dashed for the 10 and 100 million particles simulations, respectively). The quantity sgn(1 − raxis) log10 |1 − raxis|

indicates the deviation from unity of raxis (in log scale and with a negative sign for raxis > 1), where raxis = b/c (upper curves) or b/a (lower curves),
and a ≤ b ≤ c are the principal axis lengths of the Gadget-2 particle distribution derived from the inertia tensor.

spherically averaged density profile ρ(r) at small radius, as can
be seen on two bottom right panels of Fig. 4.

ROI signature is best seen in the velocity anisotropy param-
eter

α =
2〈v2

r 〉

〈v2
⊥〉

(9)

(see, e.g. Hozumi, Fujiwara, & Kan-Ya 1996), where vr and v⊥
are respectively the radial and transverse velocities, as plotted
in left panel of Fig. 5. Due the dominant nature of radial in-
fall during the very first phase of violent relaxation, cool initial
conditions induce, after collapse, a strong velocity anisotropy,
which is known, when exceeding some (still not fully known)
threshold, to trigger ROIs in presence of small perturbations to
spherical symmetry (see, e.g. Polyachenko & Shukhman 1981;
Merritt & Aguilar 1985; Barnes, Hut, & Goodman 1986; Barnes,
Lanzel, & Williams 2009; Maréchal & Perez 2011; Polyachenko
& Shukhman 2015, and references therein). In this case, the on-
set of ROI reduces significantly the value of α, as illustrated by
left panel of Fig. 5 for (η, n) = (0.1,−1) and (η, n) = (0.1,−1.5).

In our Gadget-2 simulations, small perturbations from
spherical symmetry are related to shot noise, so the onset of ROI
is particle number dependent (see, e.g. Benhaiem et al. 2018),
as illustrated on Fig. 5 by our two runs with 10 and 100 million
particles in the (η, n) = (0.1,−1.5) case. On this figure, one also
notices that ROI takes place later for n = −1 than for n = −1.5,
but this is roughly consistent with the dynamical times given in
the last two column of Table 1.

The conditions of establishment of radial orbit instability
are however not yet fully understood: some theoretical calcu-
lation and numerical experiments show that it should take place
when α > αcritical with αcritical ranging between 1 and 2.9 (see,
e.g. Polyachenko & Shukhman 2015): this condition is clearly
satisfied for (η, n) = (0.1,−1.0) and (0.1,−1.5) when exam-
ining left panel of Fig. 5. Strictly speaking, given the limited
amount of time we run the simulations, the other cases remain
undecided even though we do not detect any ROI. The results
obtained elsewhere in the literature, in particular by Merritt &

Aguilar (1985), Barnes, Lanzel, & Williams (2009), suggest that
our “warm” systems are probably not prone to ROI, while, for
(η, n) = (0.1,−0.5) and (η, n) = (0.1, 0), there is still a chance
that ROI develops after some time. Clearly, our simulations are
not run long enough to have all the details of the history of the
system, which might evolve further to another interesting state.

Finally, note that whether pure radial instability takes place
before ROI is difficult to quantify in our simulations. Using lin-
ear analysis during collapse phase, Aarseth, Lin, & Papaloizou
(1988) argue that in the cold case, angular anisotropies intro-
duced by Poisson noise are sub-dominant compared to radial
ones, which suggests that a radial instability phase could take
place before ROI. This argument is partly supported by Fig. 3,
where excellent agreement is found between Gadget-2 and the
spherical shell code at t = 4 (middle inserts of 3rd and 5th lines
of panels), when radial perturbations already significantly dis-
rupt the phase-space spiral while ROI did not develop yet.

4. Self-similarity in phase-space

In practice, seeking self-similar solutions to Vlasov-Poisson
equations consists in finding solutions invariant with respect to
some homothetic transforms, e.g.,

f (λ1x, λ2v, λ3t) = λ4 f (x, v, t), (10)

which requires in this case f to be of the form of

f (x, v, t) = tα0 F
( x
tα1
,

v
tα2

)
. (11)

Solving Vlasov equation provides the solution for function F.
While a rigorous framework can be set to define self-similarity
through Lie derivatives (Carter & Henriksen 1991), there is no
unique way to express it. For instance, as studied in e.g. Hen-
riksen & Widrow (1995), instead of equation (10), one can, in
the spherically symmetric case, introduce anisotropy in the self-
similar solution by separating the radial velocity from the angu-
lar momentum, or, in an extreme but well known case, one can
just assume, as in the cold case, pure radial motions with zero
angular momentum.
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Strictly speaking, self-similarity implies a pure power-law
behaviour for the projected density (see, e.g. Henriksen &
Widrow 1995), which is obviously not the case for the systems
we study here when examining Fig. 4, except to some extent
at sufficiently large radii. However, self-similarity usually takes
place only in a limited domain of phase-space. This can for in-
stance simply be due to the finite extension of the system, which
may induce deviations of the density profile from a pure power-
law, even though phase-space density is perfectly self-similar. As
a clear illustration of this state of fact, Alard (2013) argues that
despite the cut-offs due to the finiteness of the system, local self-
similarity in phase-space implies a power-law behaviour for the
quantity Q(r) = ρ(r)/σ(r)3 where ρ(r) and σ(r) are respectively
the projected density and the velocity dispersion, even if these
latter are not found to be exact power-laws of radius due to the
cut-offs. Such a power-law property for Q(r) is verified to a great
accuracy by dark matter halos (see, e.g. Taylor, & Navarro 2001),
of which the density profiles are known to deviate from pure
power-laws (Navarro, Frenk, & White 1996, 1997). As shown
by Dehnen & McLaughlin (2005), solving the spherical Jeans
equation assuming that Q(r) is a power-law can indeed lead to
non pure power-law density profiles.

Here, we are clearly not in the case of a single self-similar
regime (with possible cut-off effects). Indeed, for each value of
the angular momentum j, our systems can trivially be separated
into two distinct regions of phase-space. In the first region, cor-
responding to small enough radius, the centrifugal acceleration,
j2/r3, dominates. Its power-law nature is expected to induce self-
similarity in some domain of the considered phase-space slice.
In the second region, corresponding to large enough radius, the
gravitational acceleration, −GM(< r)/r2, dominates. Provided
that it is also a power-law of radius, one expects another self-
similar behavior. Given the discussion above about the possible
effects due to the finite extent of the system, self similar proper-
ties may be found even if the force is not exactly a power-law.
The transition between these two regions is sharp, as illustrated
by Fig. 6, which is important to make our approach meaningful.

Self-similarity also predicts the set-up of a spiral in phase-
space, of which the structure is defined by the self-similar pa-
rameters (see, e.g. Fillmore & Goldreich 1984, A13). Note, as
already mentioned, that the onset of self-similarity does not need
assuming cold initial conditions as it is often supposed. For in-
stance, in the calculations of A13, no such hypothesis is made,
and the existence of a spiral structure in phase-space is clearly
evidenced just by assuming self-similarity. Here, we cannot rig-
orously demonstrate the existence of such a spiral structure but
can postulate it, predict its local properties in each of the sup-
posed self-similar regimes mentioned above and compare the
predictions to our simulation measurements, which we do now,
following closely Alard (2013, 2016).

When examining a slice of fixed angular momentum, we no-
tice that the Vlasov equation for a spherical system is exactly
analogous to the one-dimensional case:

∂ f
∂t

+ vr
∂ f
∂r
−
∂ψ

∂r
∂ f
∂vr

= 0, (12)

except that the force derives from the following scalar field

ψ(r) =
j2

2r2 + φ(r), (13)

where φ(r) is the gravitational potential. A13 derived detailed
self-similar solutions in the 1D case that we extend below in the
regimes where the centrifugal force dominates ψ(r) ' j2/(2r2)

and in the regime where gravitational potential dominates and is
a power-law, ψ(r) ' φ(r) ∝ rβ+2.

Assuming that the conserved angular momentum j is a
dummy variable, the self-similar solution for the phase-space
distribution function can be expressed as follows:

f (r, vr, j, t) = tα0 F j

( r
tα1
,
vr

tα2

)
. (14)

Setting

r̃ =
r

tα1
, ṽ =

vr

tα2
, (15)

we can express both the gravitational and the centrifugal force
as functions of these new variables.

Starting from the gravitational force, we define a function U
such that:

−
∂φ

∂r
≡ tαU(r̃), (16)

and we assume that

U = −dφ̃/dr̃, (17)

with

φ̃(r̃) ≡ k r̃β+2. (18)

Then,

U(r̃) = −k(β + 2)r̃β+1, (19)

and we obtain from Poisson equation:

U(r̃) = −
G
r̃2

∫
r̃′<r̃

8π2F j(r̃′, ṽ)dr̃′dṽ jd j, (20)

α = α0 + α2 − α1. (21)

Similarly, the centrifugal force can be written

j2

r3 ≡ tαU(r̃), (22)

which implies

α = −3α1, (23)

and, if we assume again that U(r̃) = −k(β + 2)r̃β+1, we obtain:

β = −4, (24)

k =
j2

2
. (25)

By injecting these various expressions in the Vlasov equa-
tion one obtains, in a regime where either the gravitational or
centrifugal force dominates,

α0F j +
∂F j

∂r̃

[
−α1 r̃ + ṽ tα2−α1+1

]
+

∂F j

∂ṽ

[
−α2 ṽ − k (β + 2) r̃β+1tα−α2+1

]
= 0. (26)

Eliminating time dependence in this equation imposes

α1 = α2 + 1, (27)
α = α2 − 1. (28)
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Fig. 6. The small and large radii regimes in the (η, n) = (0.5,−1) VlaSolve run at t = 40. Left panel plots separately the magnitude of centrifugal
force j2/r3 and of the gravitational force as functions of radius as well as the magnitude of the sum of both forces. The right panel shows isocontours
of the specific energy (white curves) superposed on the phase-space distribution function for j = 0.16. In addition, the white dashes and dot-dashes
assume respectively that only the gravitational or the centrifugal force contributes.

Enforcing stationarity of the force tαU(r/tα1 ) with the power-law
(19) implies

α − (β + 1)α1 = 0. (29)

Hence the only viable solution is

α2 = −
β + 2
β

, (30)

α1 = −
2
β
, (31)

α = −
2β + 2
β

, (32)

which is of course consistent with equation (23) and leaves α0 as
a free parameter if the centrifugal force dominates, while, if the
gravitational force dominates, it fixes α0 = −(β+2)/β. Note that,
in general, total mass is not conserved. Indeed, enforcing total
mass conservation (or mass conservation per angular momentum
slice, as well), imposes α0 + α1 + α2 = 0, a condition which is
fulfilled only for β = −3/2 and in this case α0 = 1/3. This is not
a problem because self-similarity is expected to take place only
in a finite dynamical range.

To follow as closely as possible the notations of A13, we now
make the following change of variables,

G ≡ ln F j, (33)

η ≡
β

2
+ 1, (34)

u ≡ r̃η. (35)

Equation (26) becomes

−α0 + (1 + α2) η
∂G

∂u
u + α2

∂G

∂ṽ
ṽ

− η

[
∂G

∂u
ṽ − 2 k u

∂G
∂ṽ

]
uβ/(β+2) = 0, (36)

which is exactly the same equation as equation 11 of A13, except
that the first term α2 +2 is replaced here with −α0. Hence, the so-
lution of this equation is very similar to the expressions given in

A13. The main difference here is that the values of βwe consider
are outside the domain of validity of the calculations of A13,
which implies that the isocontours of the solutions are closer to
hyperbolic curves than to a spiral. However, here, we have to
take into account the fact that we have two distinct supposed
self-similar regimes, one dominated by centrifugal force, say for
r <∼ rcrit( j), and the other dominated by gravitational force, say
for r >∼ rcrit( j). Hence, the actual solution is the connection be-
tween too partial solutions following self-similar properties.
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Fig. 7. Illustration of the method used to determine the positions of
the folds and corresponding interfold distance law at small radius in a
phase-space slice. On top panel, a zoom is performed around the axis
vr = 0 in the region dominated by centrifugal force for the (η, n) =
(0.5,−1.0) simulation at t = 40. The corresponding phase-space distri-
bution function f (r, vr = 0, j = 0.16) is plotted on lower panel. The
black dots give the positions of local maxima estimated with our local
quadratic fit, while the blue and red dot provide upper and lower bounds
to compute the (very conservative) error bars shown on Fig. 8.
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Rescaling variable r̃ so that k = 1/2 in equation (18), and
introducing, exactly as in A13, the new variables

R =
√

u2 + ṽ2, (37)

cos Ψ =
u
R
, (38)

we obtain nearly exactly equation 12 of A13, but the param-
eters of this equation change according to whether the value
of R cos Ψ is above or below a threshold fixed by rcrit. With
H(R,Ψ) ≡ G(u, ṽ) we write, following exactly the footsteps of
A13, the general solution for H when the power-law force is sta-
tionary,

H(R,Ψ) =
α0

α2
ln R

+ Q
(
R−1/α2 +

1 + α2

α2

∫
(cos Ψ)1/α2 dΨ

)
, (39)

with Ψ ∈] − π/2, π/2[ and where Q is some function. At this
point, introducing the same concept of spiral as in A13 is not
simple, because the fact that u > 0 does not allow Ψ to make a
full excursion on the circle. Furthermore, the values of the log-
arithmic density profile slope β we have to consider range in
the interval −4 <∼ β < −2, which implies, from equation (30),
−1/2 <∼ α2 < 0, hence some divergence of the integral

I ≡
1 + α2

α2

∫
(cos Ψ)1/α2 dΨ, (40)

when |Ψ| approaches π/2. This is however not a real problem,
because the objective is to connect two self-similar solutions.
Here, we are unable to demonstrate the existence of the spiral
structure in phase-space, we have to postulate it. We therefore
define a new angular variable θ and

I(θ) ≡
∫

g(θ′)dθ′, (41)

where g(θ) is a function of period 2π verifying

g(θ) ' g−(θ) ≡
1 + α−2
α−2

[cos(Ψ− = θ − 2kπ)]1/α−2 ,

θ − 2kπ ' 0, (42)

g(θ) ' g+(θ) ≡
1 + α+

2

α+
2

[− cos(Ψ+ = θ − 2kπ)]1/α+
2 ,

θ − 2kπ ' π, (43)

and − and + correspond respectively to the regimes dominated
by the centrifugal and the gravitational force. Function g(θ)
makes a smooth transition between g− and g+. The only, triv-
ial but important fact we have to know, is that I(θ) defined this
way is roughly proportional to θ which allows us now to de-
fine explicitly the concept of a spiral across both self-similar do-
mains. The interesting bit is that the subsequent calculations of
A13 are not changed at all when taking this new definition of I
and his equation 19 still stands in each self-similar domain, with
I1 =

∫ 2π
0 g(θ′)dθ′ now an unknown constant instead of a well

defined integral as in A13.
Hence, we have, in the situation where there are many folds,

the following expected relationship for the interfold distance in
each self-similar region:

dR ∝ R1+1/α2 . (44)

In particular, coming back to standard variables (r, vr), the inter-
fold distances along the axis vr = 0 reads

dr ∝ r1−β/2. (45)

To test this property directly, we analyse, at a time where the
spiral structure is still well defined, function f (r, vr = 0, j) for
a fixed value of angular momentum, as illustrated by Fig. 7. We
determine the positions of the folds using local parabolic fits.
For each fold i, we determine two semi-heights radial positions
log(rl,i) and log(rr,i) (the computational grid being logarithmic
in radius), on the left and on the right of the peak (respectively),
and define the error on the position of the peak as δ log(ri) =
log(rr,i) − log(rl,i).

Fig. 8 summarises the results of our measurements in the
VlaSolve simulations. At “small” radius, the system is domi-
nated by the centrifugal force, β = −4, hence dr ∝ r3. This pre-
diction is compared to measurements in the simulations in the
first and third columns of Fig. 8, which correspond respectively
to the simulations with “warm” and “cool” initial conditions. At
large enough radius, where the system is dominated by gravity,
the force is only approximately a power-law but an average slope
can nevertheless be inferred in some interval of scales Egrav, cor-
responding to the regime where the gravitational force remains at
least ten times larger than the centrifugal force and for r smaller
than the turnaround radius. In the second and fourth column of
panels of Fig. 8, the slope of the red line is given by the corre-
sponding value of 1 − β/2. There are also two dashed cyan and
green lines corresponding to the minimum and maximum value
of β found in Egrav, which gives an idea of deviation from a pure
power-law. Globally, the simulations agree rather well with self-
similar predictions, except maybe at very small radius in the first
and third columns of panels and in the top panel of the second
column. Note however that measurement of the interfold dis-
tance for small values of r might be partly spurious, because
we are in a regime where the phase-space distribution function
is small and can be affected by aliasing. Also, notice that the spi-
ral structure survives only shortly for (η, n) = (0.1,−1.5) which
leaves only a small number of folds to deal with. Yet, the agree-
ment with self-similarity remains good when taking into account
the limitations found in all the cases at very small r, already after
only a few dynamical times.

Another interesting property than can be derived directly
from equation (39) is the local shape of the spiral near the axis
vr = 0, hence Ψ ' 0, and for small r, hence small R. Following
the unnumbered equation after equation 16 of A13 and taking
into account the fact that α2 < 0, we expect an isocontour of
the function H(R,Ψ) to have the following shape in the regime
R � 1, Ψ ' 0,

R ∝ Ψ−α2 ∝ Ψ(β+2)/β. (46)

Note thus that because of the form of the interfold law (44), the
spiral actually locally coincides locally with a curve defined by
R ∝ θ−α2 with θ playing the same role as Ψ, but no longer re-
stricted to ]− π/2, π/2[, belonging instead to this interval and its
multiples ]− π/2 + 2kπ, π/2 + 2kπ[. Left panel of figure 9 nicely
illustrates how this prediction matches well the local spiral shape
of the simulated phase-space distribution function, including its
local curvature, in the regime dominated by the centrifugal force
(β = −4) for (η, n) = (0.5,−1.0).

In middle panel of this figure, we also check, in the regime
dominated by centrifugal force, for self-similarity in time of the
spiral shape, namely that if one considers the system at two dif-
ferent times, t1 and t2, the state at t = t2 should superpose to the
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Fig. 8. Interfold distance at null radial velocity versus self-similar predictions for a fixed value of angular momentum. The distance dr between
local maxima of the function f (r, vr = 0, j) is plotted as a function of r for the VlaSolve runs with various initial conditions. The time considered
corresponds to the middle column of panels in Figs. 1 and 2. The two lefts columns of panels correspond to the “warm” case, η = 0.5 with
j = 0.16, and the two right ones to the “cool” case, η = 0.1 with j = 0.06. Then, odd column numbers (1 and 3) and even column numbers (2 and
4) correspond to the regime where centrifugal/gravitational force dominates, respectively. On each panel a red line indicates the logarithmic slope
predicted by self-similarity. When the gravitational force dominates, two additional dashed curves provide a bracket of the estimated slope taking
into account deviations from self-similarity, i.e. variations of the effective logarithmic slope of the gravitational force.

state at t = t1 rescaled as follows

vr(t1) → vr(t1)
(

t2
t1

)α2

, (47)

r(t1) → r(t1)
(

t2
t1

)α1

. (48)

Of course, since we have two distinct self-similar regimes, this
property works well only in the neighbourhood of vr ' 0 and for
values of r where the gravitational force is sub-dominant com-
pared to the centrifugal force.

Finally, right panel of Fig. 9 shows that if gravitational po-
tential is known, the spiral shape of the phase-space distribution
function can be fully reconstructed accurately just by knowing
its intersection with the vr = 0 axis in the regime dominated
by angular momentum (or reversely, in the regime dominated by
gravitational force) by simple linear interpolation of the specific

energy E along the spiral during an orbit in the following Angle
coordinateA,

A(s, E) ≡ 2π
τ(s, E)
T (E)

, (49)

τ(s, E) =

∫ s

0

dr(s′)
vr(s′)

, (50)

T (E) =

∮
dr(s′)
vr(s′)

, (51)

where s is a curvilinear coordinate. This technique was actually
used to draw the spiral of middle panel. Of course, this result
is kind of trivial from the dynamical point of view. However, it
suggests that passing to Action-Angle space or energy-Angle as
performed here may represent the right way to smoothly con-
nect both self-similar regimes and therefore to have a full ana-
lytic description of the fine grained structure of the phase-space
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Fig. 9. Spiral shape versus self-similar predictions for the VlaSolve run with (η, n) = (0.5,−1.0). Left panel: comparison, at t = 40, of the local
shape of the spiral structure in the region dominated by centrifugal force to the curve given by equation (46) (red curve). Middle panel: test for
self-similarity in time. The green spiral shape obtained at t = 30, is rescaled according to equations (47) and (48) to be compared to the blue one,
in the regime dominated by centrifugal force. Right panel: using only the determination of the position of the folds in the region dominated by
centrifugal force, it is possible to draw the full shape of the spiral if the gravitational potential is known, by interpolating the specific energy in
Angle coordinate defined by equations (49), (50) and (51).

distribution function. To do this, one needs to relate locally the
angular variable Ψ intervening in the self-similar solutions to the
Angle given by equation (51), but this is left for future work.

5. Conclusion

In this article, we have analysed in detail the phase-space struc-
ture of various systems with spherical initial conditions, con-
sisting in a power-law density profile with a Gaussian veloc-
ity dispersion. Two cases were considered, the “warm” set-up
with virial ratio η ' 0.5 and the “cool” one with η ' 0.1.
The choice of such initial conditions is not really new but the
numerical set-up is different from what can be found in the
literature. Firstly, we compare three kind of codes, a Vlasov
code, a treecode and a shell code. Secondly we perform this
comparison with unprecedented numerical resolution, namely
(Nr,Nv,N j) = (2048, 2048, 128) for the Vlasov code and 10 mil-
lion particles for the N-body simulations, up to 100 million for
one Gadget-2 run.

The high resolution of our simulations allowed us to study
all the fine details of the phase-space distribution function and
to really distinguish, for the first time, three well known dynam-
ical phases of the evolution of these systems, namely, (a) a vi-
olent relaxation phase to a quasi-steady state where the phase-
space density can be mainly described by a smooth spiral struc-
ture winding with time, (b) a steady state phase during which
radial instabilities can destroy the spiral structure but do not af-
fect the macroscopic properties of the system and (c) relaxation
to a non spherical state due to radial orbit instability in the cool
cases with n ≤ −1. Obviously, we did not push the simulations
long enough to approach the so-called gravothermal catastrophe
regime, where a core-halo structure can appear due to collisional
relaxation (see, e.g. Antonov 1962; Lynden-Bell & Wood 1968;
Lynden-Bell & Eggleton 1980; Makino 1996; Baumgardt et al.
2003).

While the concept of violent relaxation phase to a quasi-
steady state is a well known process studied heavily in the liter-
ature, the fact that it is expressed as a well defined smooth spiral
structure in phase-space is non trivial. Subsequent radial instabil-
ities that can appear indeed do not introduce sufficient disorder
to disturb significantly the steady state initially built from the
kinematic evolution of the spiral structure. Only radial orbit in-
stability changes the properties of the system at the coarse level.
But even in this case, this happens only at small radii, the outer

part of the system being still given by the quasi-steady state so-
lution obtained previously.

These results seem to diverge from what can be obtained in
the pure cold case. For instance, a similar analysis was done by
Henriksen & Widrow (1997), but for spherical initially cold sys-
tems with power-law density profiles using a shell code: in this
case, Henriksen & Widrow (1997) found that radial instabilities
are sufficiently strong to destroy the quasi-steady self-similar
state obtained during the violent relaxation phase and produce
a density profile close to ρ(r) ∝ r−2, hence, changing the proper-
ties of the system at the macroscopic level. However, the number
of shells employed by these authors was rather small and it is
possible, despite the convergence tests they did, that they missed
an intermediary phase where radial instability would be suffi-
cient to destroy the spiral while preserving, as in our case, the
coarse grained properties of the distribution function. Note that
this question remains rather academic as radial orbit instability is
expected to be prominent for such systems when allowed to de-
viate from spherical symmetry, although they still present some
self-similar properties (Vogelsberger, Mohayaee, & White 2011)

In a second part of our analyses, in order to understand, at
least partly, the dynamical processes at stake during the violent
relaxation phase, we examined the properties of the spiral struc-
ture of our systems in the framework of self-similar solutions.
Obviously, our systems are not fully self-similar, but we show
that they follow self-similar properties in well defined domains
of phase-space. Indeed, each slice of phase-space of given an-
gular momentum can be trivially decomposed into two regions,
one where centrifugal force dominates, and the other one, where
gravitational force dominates. While the centrifugal force, j2/r3

is a pure power-law, this is only approximately the case for the
gravitational force. Nevertheless, this approach allowed us to
partly predict the properties of the spiral structure, for instance
the interfold distance at zero radial velocity. While this is not
enough by itself to be able to fully predict the steady state ab-
initio, self-similarity in phase-space remains an interesting path
of investigation.
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