I. Jeru, Mutations in NALP12 cause hereditary periodic fever syndromes, Proc. Natl Acad. Sci. USA 105, pp.1614-1619, 2008.

Z. Ye, ATP binding by monarch-1/NLRP12 is critical for its inhibitory function, Mol. Cell. Biol, vol.28, pp.1841-1850, 2008.

K. L. Williams, The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals, J. Biol. Chem, vol.280, pp.39914-39924, 2005.

I. C. Allen, NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling, Immunity, vol.36, pp.742-754, 2012.

M. H. Zaki, The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis, Cancer Cell, vol.20, pp.649-660, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01936352

M. H. Zaki, S. M. Man, P. Vogel, M. Lamkanfi, and T. D. Kanneganti, Salmonella exploits NLRP12-dependent innate immune signaling to suppress host defenses during infection, Proc. Natl Acad. Sci. USA, vol.111, pp.385-390, 2013.

G. I. Vladimer, The NLRP12 inflammasome recognizes Yersinia pestis, Immunity, vol.37, pp.96-107, 2012.

J. B. Kaper, J. P. Nataro, and H. L. Mobley, Pathogenic Escherichia coli, Nat. Rev. Microbiol, vol.2, pp.123-140, 2004.

R. Mundy, T. T. Macdonald, G. Dougan, G. Frankel, and S. Wiles, Citrobacter rodentium of mice and man, Cell Microbiol, vol.7, pp.1697-1706, 2005.

L. F. Poulin and M. Chamaillard, The battlefield in the war against attachingand-effacing bacterial pathogens: monocytes, macrophages and dendritic cells in action, Vet. Microbiol, vol.202, pp.47-51, 2017.

Y. G. Kim, The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands, Immunity, vol.28, pp.246-257, 2008.

K. S. Kobayashi, Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract, Science, vol.307, pp.731-734, 2005.

C. R. Homer, A. L. Richmond, N. A. Rebert, J. P. Achkar, and C. Mcdonald, ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis, Gastroenterology, vol.139, pp.1630-1641, 2010.

M. T. Sorbara, The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagyindependent manner, Immunity, vol.39, pp.858-873, 2013.

A. M. Marchiando, A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection, Cell. Host. Microbe, vol.14, pp.216-224, 2013.

K. H. Lee, A. Biswas, Y. J. Liu, and K. S. Kobayashi, Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components, J. Biol. Chem, vol.287, pp.39800-39811, 2012.

R. N. Wagner, M. Proell, T. A. Kufer, and R. Schwarzenbacher, Evaluation of Nod-like receptor (NLR) effector domain interactions, PLoS. One, vol.4, p.4931, 2009.

J. P. Ting, S. B. Willingham, and D. T. Bergstralh, NLRs at the intersection of cell death and immunity, Nat. Rev. Immunol, vol.8, pp.372-379, 2008.

J. C. Arthur, J. D. Lich, R. K. Aziz, M. Kotb, and J. P. Ting, Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase, J. Immunol, vol.179, pp.6291-6296, 2007.

R. J. Fahy, Inflammasome mRNA expression in human monocytes during early septic shock, Am. J. Respir. Crit. Care. Med, vol.177, pp.983-988, 2008.

C. A. Lord, Blimp-1/PRDM1 mediates transcriptional suppression of the NLR gene NLRP12/Monarch-1, J. Immunol, vol.182, pp.2948-2958, 2009.

N. Kayagaki, Noncanonical inflammasome activation by intracellular LPS independent of TLR4, Science, vol.341, pp.1246-1249, 2013.

S. Kobayashi, R. Nantz, T. Kitamura, R. Higashikubo, and N. Horikoshi, Combined inhibition of extracellular signal-regulated kinases and HSP90 sensitizes human colon carcinoma cells to ionizing radiation, Oncogene, vol.24, pp.3011-3019, 2005.

C. Miceli-richard, CARD15 mutations in Blau syndrome, Nat. Genet, vol.29, pp.19-20, 2001.

M. G. Netea, IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism, Proc. Natl Acad. Sci. USA, vol.102, pp.16309-16314, 2005.

Y. Li, IL-32) exerts extensive antiviral function via selective stimulation of interferonlambda1 (IFN-lambda1), Inducible interleukin, vol.32, pp.20927-20941, 2013.

G. B. Park, TLR3/TRIF signalling pathway regulates IL-32 and IFN-beta secretion through activation of RIP-1 and TRAF in the human cornea, J. Cell. Mol. Med, vol.19, pp.1042-1054, 2015.

J. Pott, IFN-lambda determines the intestinal epithelial antiviral host defense, Proc. Natl Acad. Sci. USA, vol.108, pp.7944-7949, 2011.

A. Siegfried, IFIT2 is an effector protein of type I IFN-mediated amplification of lipopolysaccharide (LPS)-induced TNF-alpha secretion and LPS-induced endotoxin shock, J. Immunol, vol.191, pp.3913-3921, 2013.

Y. V. Katlinskaya, Type I interferons control proliferation and function of the intestinal epithelium, Mol. Cell. Biol, vol.36, pp.1124-1135, 2016.

L. Sun, Type I interferons link viral infection to enhanced epithelial turnover and repair, Cell. Host. Microbe, vol.17, pp.85-97, 2015.

C. Sommereyns, S. Paul, P. Staeheli, and T. Michiels, IFN-lambda (IFNlambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo, PLoS Pathog, vol.4, p.1000017, 2008.

Y. G. Kim, The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes, Immunity, vol.34, pp.769-780, 2011.

K. Geddes, Identification of an innate T helper type 17 response to intestinal bacterial pathogens, Nat. Med, vol.17, pp.837-844, 2011.

J. W. Collins, Citrobacter rodentium: infection, inflammation and the microbiota, Nat. Rev. Microbiol, vol.12, pp.612-623, 2014.

V. A. Rathinam, TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria, Cell, vol.150, pp.606-619, 2012.

M. E. Spehlmann, CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesionforming bacterial pathogen, J. Immunol, vol.183, pp.3332-3343, 2009.

J. D. Lich, Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes, J. Immunol, vol.178, pp.1256-1260, 2007.

A. T. Satpathy, Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens, Nat. Immunol, vol.14, pp.937-948, 2013.

Q. Pan, NF-kappa B-inducing kinase regulates selected gene expression in the Nod2 signaling pathway, Infect. Immun, vol.74, pp.2121-2127, 2006.

W. I. Tameling, Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation, Plant Physiol, vol.140, pp.1233-1245, 2006.

A. Couturier-maillard, NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer, J. Clin. Invest, vol.123, pp.700-711, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00944194

L. Chen, NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth, Nat. Immunol, vol.18, pp.541-551, 2017.

J. W. Dugan, Nucleotide oligomerization domain-2 interacts with 2'-5'oligoadenylate synthetase type 2 and enhances RNase-L function in THP-1 cells, Mol. Immunol, vol.47, pp.560-566, 2009.

O. Shalem, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, vol.343, pp.84-87, 2014.