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SUMMARY

This study showed a metastasis-suppressive function of
sterile a motif– and Src-homology 3–domain containing 1
(SASH1) in vivo. Furthermore, SASH1 antagonizes
epithelial–mesenchymal transition, tumor aggressiveness,
and chemoresistance in colon cancer. Mechanistically,
SASH1 directly inhibits the oncoprotein V-Crk avian sarcoma
virus CT10 oncogene homolog-like, introduced as its new
interaction partner.

BACKGROUND & AIMS: The tumor-suppressor sterile a motif–
and Src-homology 3–domain containing 1 (SASH1) has clinical
relevance in colorectal carcinoma and is associated specifically
with metachronous metastasis. We sought to identify the mo-
lecular mechanisms linking decreased SASH1 expression with
distant metastasis formation.

METHODS: SASH1-deficient, SASH1-depleted, or SASH1-
overexpressing HCT116 colon cancer cells were generated
by the Clustered Regularly Interspaced Short Palindromic
Repeats/CRISPR-associated 9-method, RNA interference, and
transient plasmid transfection, respectively. Epithelial-
mesenchymal transition (EMT) was analyzed by quantitative
reverse-transcription polymerase chain reaction, immunoblot-
ting, immunofluorescence microscopy, migration/invasion
assays, and 3-dimensional cell culture. Yeast 2-hybrid assays and
co-immunoprecipitation/mass-spectrometry showed V-Crk
avian sarcoma virus CT10 oncogene homolog-like (CRKL) as a
novel interaction partner of SASH1, further confirmed by domain
mapping, site-directed mutagenesis, co-immunoprecipitation,
and dynamic mass redistribution assays. CRKL-deficient cells
were generated in parental or SASH1-deficient cells. Metastatic
capacity was analyzed with an orthotopic mouse model.
Expression and significance of SASH1 and CRKL for survival and
response to chemotherapy was assessed in patient samples from
our department and The Cancer Genome Atlas data set.

RESULTS: SASH1 expression is down-regulated during
cytokine-induced EMT in cell lines from colorectal, pancreatic,
or hepatocellular cancer, mediated by the putative SASH1
promoter. Deficiency or knock-down of SASH1 induces EMT,
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leading to an aggressive, invasive phenotype with increased
chemoresistance. SASH1 counteracts EMT through interaction
with the oncoprotein CRKL, inhibiting CRKL-mediated activa-
tion of SRC kinase, which is crucially required for EMT. SASH1-
deficient cells form significantly more metastases in vivo,
depending entirely on CRKL. Patient tumor samples show
significantly decreased SASH1 and increased CRKL expression,
associated with significantly decreased overall survival. Pa-
tients with increased CRKL expression show significantly worse
response to adjuvant chemotherapy.

CONCLUSIONS: We propose SASH1 as an inhibitor of CRKL-
mediated SRC signaling, introducing a potentially druggable
mechanism counteracting chemoresistance and metastasis
formation. (Cell Mol Gastroenterol Hepatol 2019;7:33–53;
https://doi.org/10.1016/j.jcmgh.2018.08.007)

Keywords: EMT; Tumor Suppressor; SRC-Kinase;
Chemoresistance.

ost cancer-related deaths can be attributed to
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green fluorescent protein; gRNA, guide RNA; GTPase, guanosine tri-
phosphatase; mRNA, messenger RNA; MS, mass spectrometry; NLS,
nuclear localization signal; PBS, phosphate-buffered saline; qRT-PCR,
quantitative reverse-transcription polymerase chain reaction; SASH1,
sterile a motif– and Src-homology 3–domain containing 1; SH2, Src-
homology 2 domain; SH3, Src-homology 3 domain; SH3N, N-terminal
Src-homology 3 domain; TGF, transforming growth factor; TNF, tumor
necrosis factor; ZEB, zinc-finger dEF1 family.
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Mmetastasis from epithelial-derived carcinomas,
while local, undisseminated tumors only rarely are lethal.1

Therefore, it is of major clinical importance to understand
the molecular mechanisms that regulate the metastatic
cascade. The transdifferentiation process referred to as
epithelial-mesenchymal transition (EMT) is believed to be
crucial for the formation of metastases because it converts
sessile epithelial cells into motile and invasive
mesenchymal-like cells. EMT is physiologically required for
embryonic development and wound healing, but can be
hijacked by cancer cells (reviewed by Kalluri and Weinberg2

and Lamouille et al3). During EMT, key epithelial charac-
teristics are suppressed, notably the epithelial adherens
junction protein E-cadherin. Thus, intercellular adhesions
are weakened or completely lost, promoting cell individu-
alization.3 In addition, typical mesenchymal properties are
induced, increasing cell survival, motility, and invasiveness.
These processes are mediated primarily by master tran-
scription factors such as the 2-handed zinc-finger dEF1
family (ZEB1/2) factors.3–6 Because cells that underwent
EMT have gained an invasive behavior, they are believed to
drive metastasis by penetrating tissue adjacent to the pri-
mary tumor. These cells then can enter the blood and lymph
system, disseminate systemically, and may finally settle
down at distant sites to spawn metastases.2 The scaffold
protein sterile a motif– and Src-homology 3 (SH3)-domain
containing 1 (SASH1) is a candidate tumor suppressor with
clinical relevance in breast and colon cancer, as well as in
other solid cancer entities.7–13 In addition, SASH1 is
involved in atherosclerosis, innate immune responses, and
skin pigmentation defects.14–18 Our group previously
showed that down-regulation of SASH1 specifically corre-
lates with poor prognosis and formation of metachronous
distant metastases in patients with colorectal cancer.8,9

Although these data confirm a clinical implication of
reduced or absent intratumoral SASH1 expression, it is still
unknown how its loss or decrease mechanistically aggra-
vates tumor progression and induces formation of distant
metastases. Considering that SASH1 is thought to be a
multitissue tumor suppressor, better understanding of this
process could provide a basis for therapeutic strategies in a
wide variety of cancer entities.

Results
Loss of SASH1 Induces Epithelial-Mesenchymal
Transition

We sought to identify the mechanistic role of SASH1 in
cancer progression and metastasis formation. Because
SASH1 frequently is lost or down-regulated in colorectal
cancer,7,8 its deficiency was induced by CRISPR/Cas9-
editing in human HCT116 colon cancer cells. Clones were
derived from 2 independent guide RNAs to minimize the
risk of confounding off-target effects. Deficiency of SASH1
was confirmed by immunoblot analysis and next-generation
sequencing of the genomic target area, revealing single base
pair insertions in the coding sequence of exon 1 (clone S1)
or exon 2 (clone S2), respectively, leading to premature stop
codons and absent protein expression (Figure 1A and B).
Proliferation was essentially unaffected by loss of SASH1
(data not shown), however, cellular morphology was altered
remarkably. Because a fibroblast-like morphology is indic-
ative of EMT, expression of EMT-specific markers was
investigated, using treatment with the cytokine tumor ne-
crosis factor (TNF), which is known to induce EMT in
HCT116 cells, as positive control for EMT19 (Figure 1B). The
epithelial marker E-cadherin was down-regulated signifi-
cantly upon SASH1 deficiency, while the mesenchymal
marker vimentin and the EMT-promoting transcription
factor ZEB1 were up-regulated. Compared with SASH1-
deficient cells, TNF-treated parental cells showed a minor
reduction of E-cadherin and no increase in ZEB1 or vimentin
levels. Interestingly, SASH1 also was reduced upon TNF
treatment. In accordance with these results, EMT marker
expression was altered significantly at the messenger RNA
(mRNA) level (Figure 1C). Whereas parental cells (wild
type) formed dense epithelial islets, SASH1-deficient cells
(S1 and S2) acquired a fibroblast-like morphology with
concomitant cell individualization (Figure 1D). In accor-
dance, immunofluorescence microscopy showed barely
detectable E-cadherin staining of SASH1-deficient cells,
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whereas E-cadherin localized to cell–cell adhesion sites in
parental cells with primarily cortical distribution of F-actin
(Figure 1D). Loss of SASH1 induced the formation of actin
stress fibers and a fibroblast morphology (Figure 1D). This
observation also was reflected by a significant increase in
cell size and length-to-width ratio (Figure 1E). As a com-
plementary approach, stable short hairpin RNA–mediated
depletion of SASH1 was performed. SASH1 down-
regulation led to reduced E-cadherin levels, while ZEB1
was increased (Figure 1F). E-cadherin was absent from
cell–cell interfaces, and cells also acquired a fibroblast-like
morphology (Figure 1F). Therefore, both down-regulation
and loss of SASH1 induced EMT in HCT116 cells.
SASH1 Is a Negative Regulator of
EMT-Associated Aggressiveness

To verify whether loss of SASH1 induces a bona fide EMT
that generates aggressive cancer cells, its impact was func-
tionally analyzed by migration and invasion assays. SASH1-
deficient clones showed a highly significant increase in
transmigrated and Matrigel (Sigma Aldrich, Steinheim,
Germany)-invading cells (Figure 2A). Furthermore, cells
were cultured in Matrigel to analyze colony morphology in a
3-dimensional matrix. Parental cells formed rounded col-
onies with a smooth surface (Figure 2B, arrowheads).
Consistent with the EMT-like phenotype in 2-dimensional
cultures, SASH1-deficient cells formed morphologically
differing cell clusters, as single cells disseminated from the
colony and invaded the extracellular matrix (Figure 2B, ar-
rows). Next, soft agar assays were used to probe anchorage-
independent growth and survival. The number and size of
colonies were increased significantly upon loss of SASH1
(Figure 2C). Thus, SASH1 deficiency induces a bona fide
EMT with increased migration and invasion, and increased
survival in soft agar. Based on our observation of reduced
SASH1 levels upon TNF treatment, we focused on the hith-
erto unknown transcriptional regulation of SASH1. TNF
indeed induced EMT within 48 hours, as judged by loss of E-
cadherin–mediated intercellular adhesions and fibroblast-
like morphology (Figure 2D). HEK293 cells were trans-
fected with luciferase reporters under the control of various
fragments of the putative regulatory region of the SASH1
gene (Figure 2E, upper panel). Of note, a robust and sig-
nificant constitutive reporter activity was detected for a 1-
kb region immediately upstream of the transcription start
(Figure 2E, lower left panel). HCT116 cells were transfected
with the 1-kb reporter construct, and stimulation with TNF
Figure 1. (See previous page). CRISPR/Cas9-mediated SAS
type. (A) Domain architecture of SASH1, and premature stop
generated by independent guide RNAs. (B) Immunoblot analys
HCT116 cells. As control, parental cells were treated with 20 ng/m
of E-cadherin levels (Mann–Whitney test; n¼ 4 independent expe
to determine expression of CDH1, ZEB1, ZEB2, and VIM (Mann–
Immunofluorescence staining (40� objective; scale bar: 20 mm
phenylindole for nuclei (blue). (E) Quantification of cell size (unpa
(unpaired t test; n ¼ 20 cells; P < .0001). (F) Immunoblot and im
stably transfected with vector control (Ctrl) or short hairpin RN
(kilodalton); Pro-rich, Proline-rich region; Rel, relative; SAM, steri
caused a significant decrease of SASH1 reporter activity,
while controls showed no alterations (Figure 2E, lower right
panel). In accordance, expression of both CDH1 and SASH1
were reduced at the mRNA level (Figure 2F). Importantly,
SASH1 expression also was down-regulated in cancer cell
lines derived from further entities, including SW480 (colo-
rectal cancer), PANC-1 (pancreatic ductal adenocarcinoma),
Huh7 (hepatocellular carcinoma), and H1650 (non–small-
cell lung cancer) after treatment with transforming growth
factor (TGF)-b1 for 48 hours, indicating a general role of
SASH1 in EMT, independent from the inducing agent and
cancer entity (Figure 2F).
SASH1 Interacts With the Oncoprotein and
Signal Adaptor V-Crk Avian Sarcoma Virus
CT10 Oncogene Homolog-Like

To determine if forced expression of SASH1 can coun-
teract TNF-induced EMT, SASH1 with a C-terminal V5-
epitope tag was expressed transiently in parental HCT116.
In contrast to control transfected cells, TNF treatment
induced only a minor reduction of E-cadherin levels in
SASH1-V5–expressing cells. Of note, overexpression of
SASH1 was associated with apoptosis, as indicated by
Poly(ADP-Ribose)-Polymerase 1 cleavage and reduced
SASH1-V5 levels (Figure 3A). The epithelial state of SASH1-
V5–expressing cells after TNF administration was high-
lighted further by a cobblestone-like morphology and
E-cadherin strongly localizing to intercellular adhesions
(Figure 3B). Next, to investigate the molecular mechanism of
the negative regulatory role of SASH1 in EMT, a yeast
2-hybrid screen was performed in a human placental
complementary DNA (cDNA) bank with SASH1 as bait.
Complementary to the yeast 2-hybrid screen, co-
immunoprecipitations were performed with SASH1 with
an N-terminal green fluorescent protein (GFP) tag expressed
in HEK293 cells, and analyzed by mass spectrometry, using
GFP-only transfected cells as control. As potential binding
partners, the yeast 2-hybrid screen showed 28 protein
coding hits (Figure 3C). Among these candidates, the V-Crk
avian sarcoma virus CT10 oncogene homolog family of
adaptor proteins (the V-Crk avian sarcoma virus CT10
oncogene homolog [CRK] and V-Crk avian sarcoma virus
CT10 oncogene homolog-like [CRKL]) were published to be
EMT-related. However, only CRKL was detected indepen-
dently by co-immunoprecipitation. For these reasons, we
focused on CRKL as a potential EMT-related interaction
partner of SASH1. First, the putative interaction between
H1 deficiency in HCT116 induces a mesenchymal pheno-
codons of SASH1-deficient clones (S1*, S2*), which were

is of SASH1-deficient (S1, S2) and parental (wild-type [WT])
L TNF for 48 hours to induce EMT. Immunoblot quantification

riments; P¼ .0286) is also shown. (C) qRT-PCR was performed
Whitney test; n ¼ 4–6 independent experiments; P � .019). (D)
) for E-cadherin (green), F-actin (red), and 40,6-diamidino-2-
ired t test; n ¼ 40 cells; P < .0001) and length-to-width ratio
munofluorescence microscopic analysis of parental HCT116
A (shRNA) vector targeting SASH1. Mr (K), molecular range
le a motif. *P � .05; **P � .01; P � .001; ****P � .0001.
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SASH1 and CRKL was verified by co-immunoprecipitation of
endogenous proteins (Figure 3D). Furthermore, SASH1 with
a V5-epitope tag and endogenous CRKL co-localized in the
cytoplasm, and at phase-dense structures, partly identified
as focal adhesions by paxillin staining (data not shown)
(Figure 3E). Because of relatively low SASH1-V5 levels in the
nuclei, as well as increased nuclear CRKL staining in cells
lacking SASH1-V5 (Figure 3E, asterisk), the predicted nu-
clear localization signals (NLS)1 and NLS2 within SASH1
were disabled by site-directed mutagenesis, either alone
or combined, efficiently blocking nuclear import of the
N-terminal fragment (Figure 3F). Therefore, nuclear shut-
tling of SASH1 is mediated by both amino-terminal NLS
signals, and SASH1 likely interacts with CRKL both in
cytoplasm and nucleus.

The N-Terminal SH3 Domain of CRKL Interacts
With a PXXPXK Motif of SASH1

Next, the binding mode between SASH1 and CRKL was
mapped using full-length and truncated SASH1 constructs
with N-terminal GFP or C-terminal V5 epitopes (Figure 4A)
expressed in HEK293 cells, as described before.20 Immu-
noprecipitation showed that only constructs containing the
C-terminal part of SASH1 bind to endogenous CRKL
(Figure 4B and C). However, the NLS showed no impact on
CRKL binding (Figure 4C). CRKL is known to bind specific
PXXPXK/R motifs of its downstream effector proteins (eg,
C3G), mediated by its N-terminal SH3 domain (SH3N).21,22

Analysis of the SASH1 primary structure (Research Collab-
oratory for Structural Bioinformatics Protein Data Bank-
entry: O94885) showed 3 PXXPXK motifs within the
C-terminal part as putative CRKL binding sites (aa865-870,
984-989, and 1016-1021). Site-directed mutagenesis of
SASH1 was performed by alanine substitution of the 3
PXXPXK motifs to AXXAXK. Immunoprecipitations of
endogenous CRKL showed that only mutation of the second
PXXPXK motif (aa984-989), or of all PXXPXK motifs
together, disrupted CRKL binding (Figure 4D, left panel).
Furthermore, mutation of a tryptophan residue to arginine
(W160R) within the CRKL SH3N domain, reported to be
important for domain function,23 abolished the interaction
with C3G, as well as with SASH1 (Figure 4D, right panel). As
Figure 2. (See previous page). Loss of SASH1 activates a bo
were performed with SASH1-deficient (S1, S2) and parental (w
pendent experiments; P ¼ .0022). (B) In contrast to parental cel
cells grown in a 3-dimensional Matrigel culture for 5 days freque
as single cells (arrows; scale bar: 50 mm). (C) Cells were grown in
t test; n ¼ 9 independent experiments; P < .0001) and colony s
.0001) was assessed. (D) Parental cells treated with 20 ng/mL
immunofluorescence microscopy (40� objective, scale bar: 20 m
phenylindole (DAPI) for nuclei (blue). (E) Shown is the proximal
structs. Luciferase assays were performed to compare the ac
pGL3-basic vector, as well as the SV40 promoter containing
panel; Mann–Whitney test; n � 3 independent experiments; P ¼
formed with HCT116 cells treated with 20 ng/mL TNF for 24 ho
.0286). (F) SASH1 and CDH1 expression levels after induction o
4–6 independent experiments; P � .019), as determined by q
cadherin levels upon treatment of a panel of cell lines with 20 n
Huh7, H1650) for 48 hours. Ctrl, control; Rel, relative; RoI, regio
a control, the CRKL interaction partner GAB1,24 which binds
to the Src-homology 2 (SH2) domain of CRKL, still interacted
with CRKLW160R. Thus, the interaction between SASH1 and
CRKL is mediated by the CRKL SH3N domain, binding the
second PXXPXK motif of SASH1. Importantly, recombinant
expression of SASH1 significantly inhibited CRKL binding to
its effector C3G, while the interaction with GAB1 remained
unaffected (Figure 4E). The apparent affinity between a
peptide corresponding to the second PXXPXK motif of
SASH1 (QPPPVPAKKS) and the recombinant CRKL SH3N
domain was determined by a dynamic mass redistribution-
based assay (dissociation constant ¼ 7.4 ± 1.637 mmol/L)
(Figure 4F).

SASH1 Negatively Regulates EMT
Through CRKL

As a working hypothesis, SASH1 physically associates
with CRKL and counteracts its EMT-promoting signaling.
CRKL deficiency thus was induced in parental and SASH1-
deficient cells, using 2 independent guide RNAs (clones C1
and C2 in parental cells). CRKL deficiency induced a more
pronounced epithelial morphology with densely packed,
cobblestone-like islets (Figure 5A). Strikingly, loss of CRKL
in SASH1-deficient cells (S1C2) completely reverted their
fibroblast-like morphology into a clear epithelial phenotype
(Figure 5A). Essentially the same phenotype was observed
for an independent SASH1/CRKL-deficient clone (S2C2, data
not shown). Loss of CRKL in SASH1-deficient cells restored the
expression of EMT markers to the parental levels (Figure 5B).
CRKL deficiency did not affect anchorage-independent growth
in parental cells, but highly significantly reduced colony
number and size of SASH1-deficient cells (Figure 5C).
Furthermore, increased migration and invasion of SASH1-
deficient cells was completely reverted by loss of CRKL
(Figure 5D). Thus, EMT induced by loss of SASH1 completely
depends on the presence of its interaction partner CRKL.

EMT Induced by Loss of SASH1 Depends on
CRKL-Mediated SRC Signaling

CRKL was reported to play unique roles in integrin
signaling at focal adhesions.25–27 To investigate if SASH1
negatively regulates EMT through these signaling pathways
na fide EMT program in HCT116 cells. (A) Transwell assays
ild-type [WT]) HCT116 cells (Mann–Whitney test; n ¼ 6 inde-
ls, which form dense colonies (arrowheads), SASH1-deficient
ntly detach from the colony and invade the extracellular matrix
soft agar for 14 days, before the number of colonies (unpaired
ize (unpaired t test; n ¼ 24 colonies; S1: P ¼ .0007; S2: P <
TNF for 48 hours undergo EMT, as judged by staining for
m) for E-cadherin (green), F-actin (red), and 40,6-diamidino-2-
promoter of SASH1 and corresponding pGL3 reporter con-
tivity of SASH1 promoter sequences with the promoter-less
positive pGL3-control plasmid in HEK293 cells (lower left
.0286). Luciferase assays (lower right panel) also were per-

urs (Mann–Whitney test; n ¼ 4 independent experiments; P ¼
f EMT by 20 ng/mL TNF for 48 hours (Mann–Whitney test; n ¼
RT-PCR (left panel). Immunoblot analysis of SASH1 and E-
g/mL TNF (HCT116), or 10 ng/mL TGF-b1 (SW480, PANC-1,
n of interest.
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in a CRKL-dependent manner, cells were cultured on
fibronectin-coated plates. SASH1-deficient cells showed
significantly increased tyrosine-phosphorylation levels of
SRC family kinases at the activating residue Y416, as well as
of paxillin at Y118, which was abolished by loss of CRKL
(Figure 6A and B). SASH1-deficient cells formed focal
adhesions after 3 hours of adhesion, while parental or
CRKL-deficient cells poorly spread and rarely formed
phospho-paxillin–positive foci (Figure 6C). After 24 hours,
SASH1-deficient cells showed multipolar lamellipodia with
abundant phospho-paxillin–positive focal adhesions, while
parental cells showed few adhesive structures (Figure 6D).
CRKL deficiency strongly reduced the development of focal
adhesions in parental and SASH1-deficient cells.

Next, CRKL was recombinantly expressed in parental
HCT116, which led to tyrosine phosphorylation of SRC and
paxillin, phenocopying a loss of SASH1. This effect was
inhibited by the Abl/SRC-inhibitor dasatinib (Figure 6E).
Importantly, pharmacologic inhibition of SRC via dasatinib
counteracted the mesenchymal phenotype of SASH1-
deficient cells (S1 and S2), as E-cadherin was increased to
the levels of compound SASH1/CRKL-deficient cells (S1C2
and S2C2) (Figure 6F). ZEB1 was slightly decreased (S1) or
undetectable (S2) after treatment with dasatinib. Thus, EMT
induced by loss of SASH1 directly depends on CRKL-
dependent SRC signaling.
SASH1 Inhibits Metastasis Formation In Vivo in a
CRKL-Dependent Manner

An orthotopic xenograft model was applied to analyze
the metastatic capability of SASH1-deficient (S1), compound
SASH1/CRKL-deficient (S1C2), and parental (wild-type)
HCT116 cells. Cells were retrovirally transduced to express
luciferase and injected in immune-deficient mice into the tip
of the cecum, previously enclosed by absorbable surgical
suture. This model allowed tumors to form upon local in-
vasion of the cecum mucosa at the site of implantation. After
34 days, animals were killed and analyzed by
Figure 3. (See previous page). Identification of the signal
SASH1. (A) Immunoblot analysis of parental HCT116 cells tran
SASH1 with a C-terminal V5 tag. Cells were stimulated with
quantifications also are shown (unpaired t test; n ¼ 3 indepen
croscopy (scale bar: 20 mm) of control or SASH1-V5–transfected
hours. Fixed cells were stained with an anti-V5 antibody (re
phenylindole for nuclei (DAPI; blue). (C) To screen for potential
performed with SASH1 as bait protein and a human placental
confidence (significance A–C), and the corresponding number
PubMed database. In addition, SASH1 with an N-terminal GFP t
to analyze co-precipitating proteins via mass spectrometry. Yeas
co-precipitation/mass spectrometry are indicated. (D) Endogeno
HEK293 cell lysates, while the isotype control antibody shows no
C-terminal V5 epitope were stained for immunofluorescence m
antibody. SASH1-V5 and CRKL showed a pronounced co-loc
the cell (arrowheads). (F) Immunofluorescence microscopy (sca
constructs with wild-type (WT) or mutated (mut) nuclear locali
antibody (red) and DAPI for nuclei (blue). COIP, co-immunop
Mr (K), molecular range (kilodalton); PARP, Poly(ADP-Ribose)-P
bioluminescence imaging (Figure 7A). Mice harbored
palpable primary tumors, histologically confirmed as poorly
differentiated colon carcinoma with similar overall tissue
architecture for all 3 cell lines (Figure 7A). Importantly,
tumors derived from SASH1-deficient cells featured a
strongly reduced E-cadherin staining, in accordance with
our in vitro findings (Figure 7A).

To quantitatively assess the metastatic capability,
bioluminescence was measured post-mortem before and
after resection of primary tumors. Automated quantification
after removal of the primary tumor showed a significant
increase in the total number of metastatic lesions generated
by SASH1-deficient cells compared with parental cells
(Figure 7B, left panel). This increase was fully blocked by
CRKL deficiency as compound SASH1/CRKL-deficient cells
were essentially identical to the parental line. To quantify
the relative distribution of tumor cells, the signal ratio of
distant lesions after removal of the primary tumor was
calculated relative to the total signal before removal of the
primary tumor (Figure 7B, right panel). In contrast to
parental and compound SASH1/CRKL-deficient lines,
SASH1-deficient cells showed a significantly higher relative
metastatic luminescence signal. Thus, although a similar
tumor burden was induced by the different cell lines, a
drastic difference was apparent in tumor dissemination.
Parental and compound SASH1/CRKL-deficient cells
showed locoregional spread, while SASH1-deficient cells
showed massive distant dissemination.

Tissue sections were analyzed with an antibody
specifically staining human cells.28 Peritoneal carcino-
matosis occurred in essentially all mice injected with
parental or compound SASH1/CRKL-deficient cells as
lesions were attached to the outer surface of host organs
within the peritoneum (Figure 7C, left panels). In
contrast, secondary lesions from SASH1-deficient cells
were completely enclosed by host tissue, and tumor cells
often were dispersed extensively as small clusters or
single cells (Figure 7C, right panels). In addition, only
SASH1-deficient cells were detected within intrahepatic
adaptor CRKL as an EMT-related interaction partner of
siently transfected with control vector or a vector to express
20 ng/mL TNF or vehicle control for 48 hours. Immunoblot
dent experiments; P ¼ .0094). (B) Immunofluorescence mi-
cells, either untreated or stimulated with 20 ng/mL TNF for 48
d), anti–E-cadherin antibody (green), and 40,6-diamidino-2-
interaction partners of SASH1, a yeast 2-hybrid screen was
cDNA bank. Shown are protein coding hits of good and high
of articles from “<gene name> and EMT” searches in the

ag was transiently expressed in HEK293 cells and precipitated
t 2-hybrid hits that also were found to interact with SASH1 via
us CRKL co-precipitates endogenous SASH1 in HCT116 and
signal. (E) HEK293 cells transiently expressing SASH1 with a
icroscopy (scale bar: 10 mm) with an anti-V5 and anti-CRKL
alization at phase-dense structures in peripheral regions of
le bar: 20 mm) of HeLa cells expressing SASH1-V5 deletion
zation signals. Cells were fixed and stained with an anti-V5
recipitation; IP, immunoprecipitation; ISO, isotype antibody;
olymerase 1; SIGN, significance.
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blood vessels (data not shown). SASH1-deficient cells
were capable of hematogenic and lymphogenic systemic
dissemination, as evidenced by detection of human cancer
cells in lungs of the host (Figure 7C, lower right panel).
Human E-cadherin was strongly expressed in distant
lesions from parental cells, whereas SASH1-deficient
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secondary lesions showed only low staining (Figure 7C,
lower panels).

To address the question of whether SASH1 and CRKL
play a clinical role and are involved in survival of patients
with colorectal cancer, genetic alterations and aberrant
expression of both genes were assessed in the publicly
available TCGA data set consisting of 233 colorectal cancer
patients, with full sequence information and available
follow-up data in the cBioPortal (Memorial Sloan Kettering
Cancer Center, New York, NY) platform.29,30 SASH1 was
down-regulated or homodeleted, and CRKL was increased
or genomically amplified in 10.8% of cases (23 of 213).
There was a trend toward mutual exclusivity of both alter-
ations in individual patients. Kaplan–Meier analysis showed
a significantly reduced overall survival in the subgroup with
up-regulated CRKL and/or down-regulated SASH1
(Figure 7D). Therefore, SASH1 and its interaction partner
CRKL have prognostic significance in colorectal cancer. In
addition, SASH1 and CRKL expression was analyzed in an
independent patient cohort with locally advanced colorectal
cancer (Union for International Cancer Control/American
Joint Committee on Cancer stage III, n ¼ 76) by quantitative
reverse-transcription polymerase chain reaction (qRT-PCR)
(Figure 7E). In accordance with earlier findings, SASH1
expression was highly significantly down-regulated in tu-
mor tissue (Figure 7E, upper right panel), whereas expres-
sion of CRKL was increased significantly compared with
normal colon tissue (Figure 7E, lower right panel). Because
of the relevance of EMT in chemoresistance,31,32 the resis-
tance to 5-fluorouracil was probed in vitro (Figure 7F, upper
panel). SASH1-deficient cells showed an increased resis-
tance to 5-fluorouracil, which was dependent on the pres-
ence of CRKL, because loss of CRKL either in SASH1-deficient
(Figure 7F, upper panel) or parental cells (not shown)
significantly increased the cytotoxic effects. In accordance,
survival of stage III colorectal cancer patients receiving
5-fluorouracil as an adjuvant chemotherapeutic agent was
reduced significantly in the subgroup with high intratumoral
CRKL expression (Figure 7F, lower panel). Intratumoral
SASH1 expression was not correlated significantly with
response to 5-fluorouracil therapy (data not shown).
Figure 4. (See previous page). The N-terminal SH3 domain
(A) Shown are several SASH1 deletion constructs tagged with a
to map the CRKL binding site. Length of SASH1 constructs a
(B) Endogenous CRKL was precipitated with an anti-CRKL an
deletion constructs with N-terminal GFP tags. Full-length GFP
C-terminal part of SASH1 (aa1–887 and 709–1247) co-precipi
performed with SASH1 constructs carrying a C-terminal V5-ep
tation with anti-V5 and anti-CRKL antibodies showed that e
(aa590–1247). (D) SASH1 contains 3 distinct PXXPXK motifs (P1
motif (P2, aa984–989) of GFP-SASH1 is sufficient to disrupt c
immunoprecipitations show that the interaction of CRKL (fuse
GAB1, is abolished by the W160R mutation that inactivates the N
expression of SASH1 with a C-terminal V5 tag in HEK293 ce
(unpaired t test; n ¼ 3 independent experiments; P ¼ .0310), wh
between SASH1 and CRKL was determined by dynamic mass re
second PXXPXK motif of SASH1 (aa982–991) and the N-termi
CRKL with an apparent dissociation constant of dissociation
immunoprecipitation; Mr (K), molecular range (kilodalton); P1–3,
red fluorescent protein; SAM, sterile a motif; WB, Western blot
Discussion
Metastases account for the majority of cancer-related

deaths,1 in the case of colorectal cancer most frequently
spreading to the liver or lungs. Thus, it is of huge clinical
importance to understand metastasis formation and to find
druggable targets. The differentiation process of EMT turns
epithelial cells into highly invasive mesenchymal-like cells,
proposed as an essential prerequisite for the formation of
metastases.2,3,33 The present study shows that loss or down-
regulation of the tumor-suppressor SASH1 is sufficient to
induce EMT. Furthermore, cytokine-induced EMT resulted
in a strong reduction of SASH1 expression in a panel of
carcinoma cell lines. Forced expression of SASH1 in turn
counteracted EMT induced by TNF. Therefore, multiple lines
of evidence have indicated a reciprocal relation between
EMT and SASH1, and established SASH1 as a key negative
regulator of EMT. In support, EMT induced by hypoxia or
TGF-b1 was shown independently to down-regulate SASH1
in a pancreatic and gastric cell line, respectively.34,35 Down-
regulation of SASH1 expression during EMT thus fosters the
conversion toward a mesenchymal phenotype, representing
a feed-forward loop.

Tumor cells acquire an invasive phenotype during EMT,
enabling them to detach from the primary tumor and invade
adjacent tissue, ultimately spawning metastases.2 Loss of
SASH1 was sufficient to induce a drastic increase in
migration and invasion, even in the absence of cytokines.
These data are in accordance with our previous data
because forced expression of SASH1 reduced cell migration
and increased cell-matrix adhesion,20 as well as with our
clinical results showing a significant association between
distant metastasis and reduced SASH1 expression in colon
cancer.9 Indeed, orthotopic xenograft models showed a
significant increase of metastatic lesions upon loss of SASH1.
This report confirms that SASH1 is a tumor suppressor
in vivo, counteracting metastasis. Our data also support the
relevance of EMT during the metastatic process, which
currently is discussed controversially.31,32,36,37 Further-
more, the mechanistic involvement of SASH1 in these
processes could be clarified because the phenotype of
of CRKL binds to a specific PXXPXK motif of SASH1.
n N-terminal GFP- or C-terminal V5-epitope, which were used
s well as the CRKL domain architecture also are indicated.
tibody in HEK293 cells expressing GFP or different SASH1
-SASH1 (aa1–1247) and deletion constructs containing the
tated with CRKL. (C) Reciprocal immunoprecipitations were
itope tag. In accordance to GFP-SASH1 constructs, precipi-
ndogenous CRKL binds to the C-terminal part of SASH1
–3) in the C-terminal region. Mutation of the second PXXPXK
o-precipitation with endogenous CRKL (left panel). Anti-RFP
d to RFP at the C-terminus) with C3G and SASH1, but not
-terminal SH3 domain of CRKL (right panel). (E) Recombinant

lls abrogates co-precipitation of C3G by endogenous CRKL
ile the interaction with GAB1 is not disturbed. (F) The affinity
distribution (DMR) experiments using a peptide containing the
nal SH3 domain of CRKL purified from E coli. SASH1 binds
constant (±SD) of 7.378 ± 1.637 mmol/L. Ctrl, control; IP,
PXXPXK motifs; Pro-rich, proline-rich region; rel, relative; RFP,
.
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SASH1-deficient cells depended exclusively on CRKL, which
we introduce as a novel interaction partner of SASH1.

CRKL and CRK were identified as putative new interac-
tion partners of SASH1 by yeast 2-hybrid screening.
Although both proteins are involved in EMT,38–43 only CRKL
was confirmed independently by co-immunoprecipitation.
This can be explained by domain organization differences
between CRK and CRKL since the N-terminal SH3 domain of
CRK is regulated negatively by phosphorylation. CRK
therefore might not be absolutely excluded as an interaction
partner.44 CRKL is a SH2- and SH3-domain-containing
oncogenic adaptor protein involved in signaling pathways
downstream of receptor tyrosine kinases and integ-
rins.21,24,25,39,45 It binds phosphorylated, membrane-
associated proteins (eg, GAB1) via its SH2 domain.24,27

Thereby, CRKL recruits PXXPX(K/R)-motif containing ef-
fectors such as C3G through the SH3N domain to the
membrane, leading to activation of small guanosine tri-
phosphatases (GTPases), and thus inducing downstream
signaling.21,24,45 Our data indicate that SASH1 binds to the
SH3N domain of CRKL primarily through a PXXPXK motif
(aa984–989) with an affinity in the low micromolar range.
The interaction may be supported through other PXXPXK
motifs of SASH1 because a deletion construct containing
another motif (aa1–887) also co-precipitated with CRKL.
Importantly, SASH1 inhibited interactions between CRKL
and its effector protein C3G, elucidating a potential inhibi-
tory mode of action for SASH1: by tightly binding the SH3N
domain of CRKL, SASH1 abolishes interactions between
CRKL, C3G, and further effector proteins, which are essential
for CRKL signaling.21 In the absence of SASH1, C3G, and
other factors thus can act as a guanine nucleotide
exchange factor for small GTPases to induce cell migration.
Because CRKL is well established to promote EMT,39,41,42 we
assume that SASH1 inhibits EMT directly through the
competitive inhibition of CRKL downstream signaling (eg, by
preventing activation of small GTPases required for cyto-
skeletal rearrangement and efficient cell migration, see the
graphic abstract). A recent study on lung carcinoma suggested
that knockdown of CRKL affects migration and invasion, but
not EMT-marker expression in mesenchymal-like carcinoma
cells.25 In the present study, however, loss of CRKL in SASH1-
deficient cells not only rescued the aggressive phenotype, but
also reverted the expression of EMT markers. Furthermore,
genetic deletion of CRKL in SASH1-deficient cells significantly
decreased their aggressive prometastatic phenotype toward
the parental state in vivo. Therefore, EMT induced by SASH1
deficiency clearly depends on CRKL-mediated signaling. CRKL
is involved in signaling downstream of integrins at focal
Figure 5. (See previous page). Loss of CRKL rescues the EMT
[WT]), SASH1-deficient (S1), CRKL-deficient (C1, C2), and co
subjected to immunofluorescence staining (40� objective, sca
diamidino-2-phenylindole for nuclei (blue). (B) Immunoblot an
specific antibodies. (C) Cells were grown for 14 days in soft a
n ¼ 9 independent experiments; P < .0001) and colony size (unp
to quantify migration and invasion (Mann–Whitney test; n ¼
antibody; Mr (K), molecular range (kilodalton); pAb, polyclonal an
****P � .0001.
adhesions, which potentially could promote EMT.22,25,27 Focal
adhesions also are important players during metastasis.46

Here, we establish SASH1 as a negative regulator of CRKL-
mediated activation of SRC family kinases. In accordance,
pharmacologic inhibition of SRC in SASH1-deficient cells
phenocopied loss of CRKL, indicating that SRC activation upon
loss of SASH1 is required for the EMT phenotype. CRK has
been shown to activate SRC by association with its negative
regulatory kinase C-terminal SRC kinase,47,48 which also may
apply to CRKL. In the absence of SASH1, SRC signaling also
could be activated directly by binding of effector proteins
(eg, C3G in this study) to the CRKL SH3N domain, leading to
activation of small GTPases.

According to our working model, loss of SASH1 induces
EMT and formation of metastases owing to a lack of CRKL
inhibition. Our in vitro and in vivo findings are supported by
data obtained from clinical samples that show a striking
decrease of SASH1 and an increase of CRKL expression in
colorectal cancer compared with normal colon mucosa.
Moreover, analysis of the TCGA data set on an independent
patient cohort showed that genetic loss of SASH1, and/or
amplification of the CRKL gene locus, occur in approxi-
mately 11% of patients, and are associated significantly with
worse overall survival. This is in good accordance with our
earlier findings on SASH1 as a positive prognostic factor in
colorectal cancer.8,9

Importantly, chemoresistance, which has been linked to
EMT,31,32 was increased significantly in SASH1-deficient
cells, whereas loss of CRKL reverted this phenotype. The
decreased resistance in vitro against the cytotoxic com-
pound 5-fluorouracil upon loss of CRKL was in accordance
with clinical findings. Patients with stage III colorectal
cancer who received adjuvant 5-fluorouracil therapy had
significantly worse survival when intratumoral CRKL
expression was increased. These findings highlight CRKL as
a promising therapeutic target. In contrast, intratumoral
SASH1 expression was not associated significantly with
prognosis in 5-fluorouracil–treated patients. Even though
decreased SASH1 expression has been reported as a nega-
tive prognostic factor,7–13 it recently was shown that
increased SASH1 expression is associated with a reduced
response to adjuvant therapy in a subgroup of breast cancer
patients.13 Therefore, independent patient cohorts are
required to make conclusive statements about the clinical
implications of our findings. However, it is tempting to
speculate that patients might be stratified by expression of
SASH1 and CRKL to identify subgroups that benefit from
pharmacologic inhibition of SRC kinases, which remarkably
reduced the malignant properties of cancer cells in our
phenotype of SASH1-deficient cells. (A) Parental (wild-type
mpound SASH1/CRKL-deficient (S1C2) HCT116 cells were
le bar: 20 mm) for E-cadherin (green), F-actin (red), and 40,6-
alysis of EMT markers and CRKL, using 2 different CRKL-
gar before quantification of colony number (unpaired t test;
aired t test; n ¼ 24 colonies; P < .0001). (D) Transwell assays
6 independent experiments; P ¼ .0022). mAb, monoclonal
tibody; RoI, region of interest. *P � .05; **P � .01; P � 0.001;



Figure 6. SASH1 inhibits CRKL-mediated SRC signaling, which is required for the mesenchymal phenotype. (A) SASH1-
and/or CRKL-deficient cells that adhered to fibronectin-coated plates for 3 hours (left panel) or for 24 hours (right panel) were
subjected to immunoblot analysis. (B) Immunoblot quantification of SRC (Y416) and paxillin (Y118) phosphorylation after 3
hours of adhesion (Mann–Whitney test; n ¼ 4 independent experiments; P ¼ .0286). *P � .05. (C) Cells that adhered for 3 hours
to fibronectin-coated plates were subjected to immunofluorescence staining (100� objective, scale bar: 10 mm) for Y118
phospho-paxillin (green), F-actin (red), and 40,6-diamidino-2-phenylindole for nuclei (blue). (D) The same analysis was per-
formed after 24-hour adhesion to fibronectin-coated plates. (E) Immunoblot analysis of parental HCT116 cells recombinantly
expressing RFP as control or CRKL with a C-terminal RFP tag. In addition, CRKL-RFP–expressing cells were treated with 100
nmol/L dasatinib for 24 hours. (F) Parental (wild-type [WT]), CRKL-deficient (C2), SASH1-deficient (S1, S2), and compound
SASH1/CRKL-deficient (S1C2, S2C2) cells were treated with 100 nmol/L dasatinib for 72 hours before they were subjected to
immunoblot analysis. Mr (K), molecular range (kilodalton); pPaxillin, phospho-Paxillin; pSrc, phospho-Src; RFP, red fluorescent
protein.
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analyses. Furthermore, the inhibition of CRKL, based on the
interaction with its natural inhibitor SASH1, could be a
suitable new strategy for therapeutic intervention, espe-
cially in combination with conventional chemotherapeutic
agents. Such treatments potentially could inhibit EMT-
induced tumor progression, metastasis, and chemo-
resistance, thereby preventing minimal residual disease.
Patients and Methods
Cell Culture and Constructs

Human cell lines HCT116 and HEK293 (ATCC, Rockville,
MD) were cultured in Dulbecco’s modified Eagle medium
(DMEM; Invitrogen, Karlsruhe, Germany) containing 10%
fetal bovine serum (Biochrom, Berlin, Germany). HEK293
cells were transfected by precipitation with calcium phos-
phate as described earlier.20 HCT116 cells were transfected
using FuGENE HD (Promega, Madison, WI) according to the
manufacturer’s protocol. Human CRKL was cloned from
cDNA into pmRFP-N2 with primers containing KpnI and
XmaI sites. SASH1 deletion constructs were described
earlier.20 Mutagenesis of GFP–SASH1 and CRKL–RFP was
performed according to published protocols,49 using 1 pair
of primers per PXXPXK motif. For short hairpin
RNA–mediated knockdown of SASH1, pSUPER.neoþGFP
(Oligoengine, Seattle, WA), was used as described.20 The
luciferase reporter construct was generated by cloning the
proximal 1 kb of the SASH1 gene regulatory region into the
pGL3 vector. For induction of epithelial–mesenchymal
transition, cells were stimulated with 10 ng/mL TGF-b1
(Stemcell Technologies, Cologne, Germany) or 20 ng/mL
TNF (Gibco, Waltham, MA) for 48 hours in normal growth
medium. Proliferation and response to 5-fluorouracil (24-
hour treatment) was probed using the Cell Proliferation
Kit II (XTT) from Roche (Mannheim, Germany). The
Figure 7. (See previous page). SASH1 suppresses metastas
deficient (severe combined immunodeficiency/beige) mice wer
(wild-type [WT]), SASH1-deficient (S1), or compound SASH1/CR
per group). Metastasis was assessed by bioluminescence ima
tumors were subjected to H&E and immunohistochemistry stai
automatically counting the number of lesions by their lumines
Mann–Whitney test; n ¼ 4–6 mice; P ¼ .019). In addition, metast
intensity before and after removal of primary tumors (right pan
sections were analyzed for the presence of tumor cells (brown
tibodies against mitochondria or E-cadherin. In parental and co
tosis frequently occurred (arrowheads), with metastatic lesion
spawned metastases enclosed by normal tissue (arrows), which
line (lower panels). (D) Genomic deletion of SASH1 and/or am
colorectal cancers (23 of 213 patients) and was associated sig
(log-rank test; n ¼ 213 patients; P ¼ .0266), based on the TCGA
University of Munich patient cohort (left panel). qRT-PCR analy
Control/American Joint Committee on Cancer stage III colorec
nificant reduction of SASH1 expression (upper right panel; Ma
colon mucosa (N, n ¼ 16 patient samples). The expression of
panel; Mann–Whitney U test; P ¼ .03). (F) Chemoresistance of
CRKL-deficient (S1C2) cells was analyzed by XTT (Roche)
fluorouracil for 24 hours to determine the median inhibitory co
n ¼ 4 independent experiments; P ¼ .0286). Tumor-specific sur
(5-FU) was strongly reduced in the group with high intratumoral
P ¼ .018). CRC, colorectal cancer; E-cad, E-cadherin; Rel, rela
following antibodies were used: E-cadherin (3195; CST),
b-actin (3700; CST), SASH1 (A302-265A; Bethyl, Mont-
gomery, TX), GAB1 (A303-288A; Bethyl), C3G (Bethyl A301-
965A), RFP (5F8; Chromotek, Martinsried, Germany), V5
epitope tag (MA5-15253; Thermo Scientific, Waltham, MA),
Poly(ADP-Ribose)-Polymerase 1 (ab137653; Abcam, Cam-
bridge, UK), GFP (3H9; Chromotek), CRK-II (sc-289; SCBT,
Heidelberg, Germany), CRKL (05-414; EMD Millipore,
Darmstadt, Germany), CRKL (sc-319; SCBT), ZEB1
(HPA027524; Sigma, Steinheim, Germany), vimentin
(ab92547; Abcam), Y118 phospho-paxillin (2541; CST,
Danvers, MA), paxillin (12065; CST), Y416 phospho-Src
family (6943; CST), Src (2123; CST), human mitochondria
(ab92824; Abcam), human E-cadherin (ab40772; Abcam),
RFP-trap (rta-10; Chromotek), and GFP trap (gta-10; Chro-
motek). The following primers were used: cloning of CRKL-
RFP: 50-CAAGGTACCATGTCCTCCGCCAGG-30 and 50-GCCCGG
GACTCGTTTTCATCTGGGTTTTG-30; mutagenesis of PXXP1:
50-GATTGTAGCAGAAGTGGCACAGAAGACGACCGCC-30 and 50-
CTGTGCCACTTCTGCTACAATCTGAGGGGGCGG-30; PXXP2: 50-
CAGCCTGCACCTGTTGCAGCCAAAAAGAGCAGAGAACG-30 and
50-CTTTTTGGCTGCAACAGGTGCAGGCTGTGATGGAATTTTGG-30;
PXXP3: 50-GATGCGGCATGCCTGGCAGTGAAAAGGGGCAGCCC
CGC-30 and 50-CTTTTCACTGCCAGGCATGCCGCATCGGGAC
TGGGGAG-30; CRKL W160R: 50-GAACAGCGGTGGAGTGCCCGG
AACAAGG-30 and 50-GCACTCCACCGCTGTTCTTCAGGCTTCTC-
30; amplification of guide RNA (gRNA) target locus gRNA1:
50-CACATCCGAGGCGTTCTC-30 and 50-TGTGTGTATTTAGCCCC
CTAAG-30; gRNA2: 50-GCGCAGCAGTATGCAGATTA-30 and
50-GTGCAGCAGCCTACAGATTG-30; cloning of luciferase
reporter constructs with SASH1_1 kb forward (-972):
50-CCGGTACCGACATGCTCTTATCCCCTTTCAAG-30; SASH1_0.25
kb-30 forward (-250): 50-CCGGTACCGCATTGTAGCGACAC
GGACTACTTG-30; SASH1_0.25 kb-30 reverse (-250): 50-
GAACGCGTAAGTAGTCCGTGTCGCTACAATGC-30; SASH1_0.25
is formation in a CRKL-dependent manner. (A) Immuno-
e injected orthotopically with luciferase expressing parental
KL-deficient (S1C2) HCT116 cells into the cecum (n ¼ 6 mice
ging before and after removal of the primary tumor. Primary
ning for human E-cadherin. (B) Metastasis was quantified by
cence signal after removal of the primary tumor (left panel;
atic efficiency was assessed by the ratio of total luminescence
el; Mann–Whitney test; n ¼ 4–6 mice; P ¼ .0381). (C) Organ
staining) by immunohistochemistry with human-specific an-
mpound SASH1/CRKL-deficient cells, peritoneal carcinoma-
s showing central necrosis (asterisk). SASH1-deficient cells
showed low E-cadherin staining compared with the parental
plification of CRKL expression was observed in 10.8% of
nificantly with poor overall survival in Kaplan–Meier analysis
data set. (E) Clinicopathologic characteristics of the Technical
sis of the patient cohort with Union for International Cancer
tal cancer (T, n ¼ 76 patient samples) showed a highly sig-
nn–Whitney U test; P < .0001) compared with nondiseased
CRKL was increased significantly in tumor tissue (lower right
parental (WT), SASH1-deficient (S1), and compound SASH1/
assays after treatment with varying concentrations of 5-
ncentration (IC50) values (upper panel; Mann–Whitney test;
vival for stage III patients who received adjuvant 5-fluorouracil
CRKL expression (lower panel; log-rank test; n ¼ 25 patients;
tive. *P � .05; **P � .01; ***P � .001; **** P � .0001.
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kb-50 forward (-518): 50-CCGGTACCCTGTGTCCCTAATGTAA
AGG-30; SASH1_2 kb forward (-2094): 50-CCGGTACCTT
GAAAACCCATCTGGCCTAACTC-30; SASH1_1 kb reverse (-34):
50-GGAGATCTCTCTCCCTCGAGGCTAAAGAA automatic gain
control-30.

Generation of SASH1- and/or CRKL-Deficient Cells
SASH1- and CRKL-deficient cells were generated with the

CRISPR/Cas9 system. The vector pSpCas9(BB)-2A-Puro
(PX459) V2.0 was a gift from Feng Zhang (plasmid 62988;
Addgene, Cambridge, MA).50 Two different guide RNAs per
gene were cloned into the PX459 vector according to pub-
lished protocols,50 with the target genes SASH1 (gRNA1:
50-CGACTCTGGACCGACGTGAT-30; gRNA2: 50-GTTTCTCCGAC
GTGTGCGAG-30) and CRKL (gRNA1: 50-GTCCGAGGAGTCG
AACCTGG-30; gRNA2: 50-CGAGGAGTCGAACCTGGCGG-30).
HCT116 cells were transfected using FuGENE HD (Promega)
according to the manufacturer’s protocol. Two days later,
cells were selected with 5 mg/mL puromycin for 72 hours.
Single colonies were isolated and analyzed for SASH1 or
CRKL protein levels by immunoblotting during several
passages to ensure a complete loss of the respective protein.
Specific primers were used for amplification of the genomic
CRISPR/Cas9 target area. These amplicons then were
sequenced via NGS CRISPR amplicon sequencing (CCIB DNA
Core, Massachusetts General Hospital, Boston, MA).

Co-immunoprecipitation
Co-immunoprecipitation was performed as described

previously.20 Briefly, cells were lysed in RIPA buffer (50
mmol/L Tris-HCl [pH 7.4], 150 mmol/L NaCl, 1% NP-40,
0.25% sodium deoxycholate, 1 mmol/L EDTA [pH 8.0],
1 mmol/L Na3VO4, 1 mmol/L NaF, 1 mmol/L Pefabloc,
2� protease inhibitor cocktail [Roche], 1 mmol/L
b-glycerophosphate, 1 mmol/L benzamidine, 1 mmol/L
phenylmethylsulfonyl fluoride, 1 mg/mL Pepstatin), total
protein was quantified with the Pierce BCA Protein Quanti-
fication Kit (Thermo Fisher Scientific), and equal concentra-
tions of cleared lysates were incubated with 2 mg antibody
for 2 hours at 4�C with end-over-end rotation before protein
A– or protein G–Sepharose (Sigma-Aldrich) was added. After
further rotation for 1 hour at 4�C, beads were washed 4 times
with RIPA buffer. Bound proteins were eluted by addition of
Laemmli buffer and subjected to immunoblotting.

Reverse Transcription and qRT-PCR
RNA isolation and reverse transcription from cell lines

and tissue was performed with the RNeasy Kit (Qiagen,
Hilden, Germany) as described before.8,9 Gene expression at
the mRNA level was determined by qRT-PCR using the
LightCycler 480 II system (Roche) and specific primers.
Hypoxanthine-guanine phosphoribosyltransferase was used
as an internal reference transcript and a pool of human
mucosal cDNA for normalization. The following primers
were used: CDH1 (universal probe library [UPL] #84): 50-
TGGAGGAATTCTTGCTTTGC-30 and 50-CGCTCTCCTCCGAA
GAAAC-30; CRKL (UPL #77): 50-GGCCCTGCTGGAGTTTTAC-30

and 50-TTGGTGGGCTTGGATACCT-30; SASH1 (UPL #25):
50-CTTGGCACAGGACTGAGGA-30 and 50-GGTCAAAGAGAACC
GCACTAA-30; VIM (UPL #39): 50-GACCAGCTAACCAACGAC
AAA-30 and 50-GAAGCATCTCCTCCTGCAAT-30; ZEB1 (UPL
#34): 50-TTTTTCCTGAGGCACCTGAA-30 and 50-TGAAAATG
CATCTGGTGTTCC-30; ZEB2 (UPL #6): 50-GCTCGCACTAC
AATGCATCA-30 and 50-GGGAAATTGATGAATAGCGAAA-30.

Immunofluorescence Microscopy
Immunofluorescence microscopy was performed as

described previously.20 Briefly, cells were fixed with 3%
paraformaldehyde in phosphate-buffered saline (PBS) for
20 minutes, permeabilized with 0.1% Triton X-100 (Carl
Roth, Karlsruhe, Germany) in PBS for 3 minutes, blocked
with 2% (wt/vol) bovine serum albumin (BSA; Sigma-
Aldrich) in PBS for 1 hour at room temperature, and incu-
bated with the appropriate primary antibody in blocking
buffer overnight at 4�C. Afterward, cells were incubated
with Alexa Fluor 488– or Cy3-conjugated secondary anti-
bodies (Thermo Scientific) in blocking buffer for 1 hour at
room temperature, before they were mounted on glass
slides with Prolong Gold antifade (Life Technologies, Wal-
tham, MA). Images were acquired with a Zeiss AxioObserver
Z1 microscope (Carl Zeiss, Jena, Germany).

Transwell Migration and Invasion Assays
Transwell migration (8.0-mm Transwell Permeable Sup-

ports, 3422; Costar, Washington DC) and invasion assays
(8.0-mm Matrigel Invasion Chamber, 354480; Corning,
Corning, NY) were performed according to the manufac-
turer’s protocol. Briefly, inserts were coated for 2 hours at
37�C with DMEM containing 10% fetal bovine serum. For
Transwell assays, 1 � 105 cells were placed on the upper
layer of the insert in DMEM without supplements and
allowed to migrate toward DMEM containing 10% fetal
bovine serum for 20 hours. The same gradient was used for
the invasion assay, but with 2 � 105 cells in the upper
chamber and a 40-hour incubation time. Afterwards, cells
were fixed with 3% paraformaldehyde in PBS for 20 mi-
nutes, permeabilized with 0.5% Triton X-100 for 10 mi-
nutes, and stained with 40,6-diamidino-2-phenylindole. Cells
at the upper layer of the insert were carefully scratched off.
Images of fluorescent nuclei were acquired with a 10�
objective (Zeiss AxioObserver Z1) to quantify the number of
cells per region with the image analysis software ImageJ
v1.51 (National Institutes of Health, Bethesda, MD).

Soft Agar Assay and 3-Dimensional Culture
in Matrigel

Soft agar assays for anchorage-independent growth were
performed in 12-well plates, in which a bottom layer of 0.5
mL DMEM containing 10% fetal bovine serum and 0.6%
agarose was allowed to solidify. Cells (2500 per well) were
seeded in 0.5 mL DMEM with 10% fetal bovine serum and
0.4% agarose on top of the bottom layer. After solidification,
0.5 mL DMEM containing 10% fetal bovine serum was
added on top of the well. Cells were grown for 2 weeks with
medium being replenished every 3 days. The colony number
then was counted manually with a 5� objective and an
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inverted phase-contrast microscope (Zeiss Axiovert 100). In
addition, image acquisition of single colonies was performed
with a 20� objective in a Zeiss AxioObserver Z1. Colony size
then was determined by measuring the area using ImageJ
software v1.51 (National Institutes of Health). To culture
cells in a 3-dimensional matrix, Matrigel was diluted 1:1
with DMEM containing 10% fetal bovine serum and allowed
to solidify in a 96-well plate to generate a bottom layer. On
top of this layer, 100 cells were seeded in the same extra-
cellular matrix gel composition. Cell growth was monitored
daily and images were acquired after 7 days of incubation
(Zeiss AxioObserver Z1).

Luciferase Reporter Assay
The plasmids pGL3 control (Promega), pGL3 basic

(Promega), and pGL3 SASH1 (containing the -972 to -34 bp
upstream of the SASH1 transcription start site) were co-
transfected with the pCMVR renilla reporter plasmid
(Promega) in a ratio of 1:1. Cells were grown for 24 hours
before media was changed. After 6 hours, cells were incu-
bated with 10 ng/mL TNF (Gibco) for a further 24 hours.
Cells were washed with PBS before being lysed in dual-glow
luciferase assay lysis buffer. Enzymatic activity was eluci-
dated following the Promega dual-glow luciferase assay kit
manual, using a Fluoroskan 2300 device (Thermo Fisher).
Relative luciferase activity was calculated as the quotient of
firefly-to-renilla luciferase signals.

Mass Spectrometry
Precipitations were performed as described earlier

against GFP-only or GFP–SASH1 transiently expressed in
HEK293 cells. The samples were subjected to sodium dodecyl
sulfate–polyacrylamide gel electrophoresis and gels were
stained with Sypro Ruby (Thermo Scientific). Specific gel
bands were excised and submitted to reduction (10 mmol/L
dithiothreitol in 50 mmol/L ammonium bicarbonate for 30
min at 56�C) and alkylation (50 mmol/L iodoacetamide in 50
mmol/L ammonium bicarbonate for 30 min, room tempera-
ture). In-gel digestion was performed using 250 ng trypsin
overnight at 37�C, then tryptic peptides were concentrated in
a speed vacuum dryer and resuspended in 20 mL of 5% ACN
with 0.1% formic acid. Liquid chromatography–mass spec-
trometry(MS)/MS analyses were performed using an Ulti-
mate 3000 Rapid Separation liquid chromatographic system
coupled to an Orbitrap Fusion Tribrid mass spectrometer
(Thermo Fisher Scientific). Mass spectrometer settings were
as follows: full MS (automatic gain control target, 2E5; res-
olution, 60K; m/z range, 350–1500; maximum ion injection
time, 60 ms); MS/MS (normalized collision energy, 30% ±
5%; detector, ion trap; isolation window, 1.6 m/z; dynamic
exclusion time setting, 30 s; automatic gain control target,
2E4; maximum injection time, 100 ms). Fragmentation was
permitted for a precursor with a charge state of 2 to 7.
Protein identification was performed using Mascot 2.2
(Matrix Science, Boston, MA) with a concatenated forward
and reverse SwissProt (Swiss Institute of Bioinformatics,
Lausanne, Switzerland) Human database (April 13, 2016,
40,422 entries) generated with DBToolKit. ProteinScape 2.1
(Bruker, Billerica, MA) was used to run Mascot with the
following parameters: 1 missed cleavage, carbamidomethyla-
tion of Cys as a fixed modification, acetylation of protein N-ter
and oxidation of Met as variable modifications, MS tolerance at
5 ppm and MS/MS tolerance at 0.5 daltons, and a protein
list compilation by Protein Extractor (University of Alberta,
Alberta, Canada). At least 2 peptides with a P value less than
.05 (score, 20) were required for protein validation. With
these parameters, the false-discovery rate was less than 1%.

Yeast Two-Hybrid Screen
Yeast 2-hybrid screening was performed with the UL-

TImate Y2HTM platform (Hybrigenics, Paris, France) on a
human placenta cDNA library as prey, with human full-
length SASH1 (aa1–1247) as bait, cloned in a pB27
plasmid (N-LexA-bait-C fusion; Hybrigenics), according to
published protocols.51 The number of processed clones was
447, and 65 million interactions were analyzed. A confi-
dence score previously shown to correlate with the biolog-
ical significance of the interactions (predicted biological
score) was attributed to each interaction, essentially as
described elsewhere.52,53 This score (the predicted biolog-
ical score) is based first on a local score, considering the
redundancy and independency of prey fragments, as well as
the distribution of reading frames and stop codons in
overlapping fragments. Second, a global score measures the
interactions found in all the screens performed at Hybri-
genics using the same library. The global score represents
the probability of an interaction being nonspecific. Only hits
from the highest confidence categories were selected for
further analysis, from A (highest confidence, 15 hits), B
(high confidence, 9 hits), to C (good confidence, 7 hits), and
all other categories (D to F, lowest confidence, 52 hits in
total) were discarded from further analysis. Hits from cat-
egories A–C were verified independently for their presence
in co-immunoprecipitation/mass spectrometry experi-
ments, and curated manually for the number of EMT-related
articles by searching PubMed for “<gene name> and EMT.”

Dynamic Mass Redistribution–Based
Affinity Measurement

The affinity between SASH1 and CRKL was assessed
using a peptide corresponding to the CRKL binding
sequence within SASH1 (aa982–991, QPPPVPAKKS, syn-
thesized by JPT Peptide Technologies, Berlin, Germany), and
the recombinant SH3N of CRKL. The SH3N domain was
fused to a hexahistidine-tag at the C-terminus and purified
from Escherichia coli BL21 Star DE3 (Thermo Fisher Scien-
tific). Assay plates (Enspire-LFB, 384-well High Sensitivity,
User-Activated Biochemical Plates, Corning Epic System;
Corning) were activated with N-hydroxysulfosuccinimide
and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide for 30
minutes at room temperature. After washing 4 times with
25 mL ddH2O, 15 mL of the purified domain at a concen-
tration of 25 mg/mL in 20 mmol/L sodium acetate (pH 5.0)
was added to each well and allowed to immobilize overnight
at 4�C. The plate then was washed 4 times with 15 mL PBS
(pH 7.4), containing 0.005% Tween-20, and equilibrated to
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room temperature for 3 hours, before the baseline was
measured using the Enspire Multimode Plate Reader (Per-
kinElmer, Waltham, MA). Volumes of 15 mL peptide solution
at different concentrations then were added and the final
read was performed. Response was calculated by subtract-
ing the baseline from the final peak wavelength.
Orthotopic Mouse Model
HCT116 cells (parental, and clones S1 and S1C2) were

transduced with retroviral particles carrying a luciferase
encoding vector (LPP-hLUC-Lv201-025-C; GeneCopoeia,
Rockville, MD). Cells were selected with 1 mg/mL puromycin
for 3 weeks. Bioluminescence of cultured cells was
measured in a luminometer (FLUOstar OPTIMA; BMG Lab-
tech GMBH, Ortenberg, Germany). Female SCID/beige mice
(Barcelona Biomedical Research Park, Barcelona, Spain)
were used at 8 weeks of age. All mice were housed under
specific pathogen-free conditions in mixed groups and in
accordance with institutional guidelines approved by the
Use Committee for Animal Care of the University of Santiago
de Compostela (Santiago de Compostela, Spain). For sur-
gery, mice were anesthetized under constant isoflurane
application. The cecum was exposed with an incision
through the abdominal wall. The luminal content was
carefully pushed away from the tip of the cecum and
approximately the first 2 mm of the tip of the cecum then
was tied up using absorbable surgical sutures. Cells resus-
pended in ice-cold Matrigel were injected into the enclosed
cecal lumen (5 � 106 cells in 25 mL Matrigel). The cell/
Matrigel suspension was allowed to rigidify before the
surgical wound was closed. Mice were killed upon signs of
distress or weight loss greater than 10%, otherwise tumors
were allowed to grow for 34 days with regular daily follow-
up evaluation. Mice then were injected intraperitoneally
with 10 mL/g D-luciferine substrate (P/N 122796; Perki-
nElmer) before death. Spatially resolved luminescence
measurements were performed on whole dissected mice
with an IVIS Spectrum In Vivo Imaging System (Xenogen
Corp, Alameda, CA; Caliper Life Sciences, Inc, Hopkinton,
MA; PerkinElmer, Waltham, MA), and data were analyzed
using Living Image 3.1. In 2 of 6 mice injected with SASH1-
deficient cells, primary tumors were barely developed,
obviously failing to attach to the mucosa. These mice were
excluded from further analysis.

Immunohistochemistry
Formalin-fixed tissue samples from the orthotopic

xenograft experiments were embedded in paraffin, from
which 2-mm sections were generated. These sections were
deparaffinized in Roticlear (Carl Roth) 3 times for 10
minutes. Rehydration was performed with an ethanol
gradient before samples were boiled in citrate buffer (10
mmol/L, pH 6.0) at 94�C for 20 minutes. After washing
with PBS containing 0.1% BSA, peroxidase activity was
blocked by incubating the samples in 3% H2O2 in methanol
for 5 minutes at room temperature. Samples were washed
3 times with PBS, 0.1% BSA, and then treated with 0.1%
Triton X-100 in PBS, 0.1% BSA for 5 minutes at room
temperature. The tissue sections then were blocked with
10% goat serum in PBS, 0.1% BSA for 1 hour at room
temperature, before they were incubated with the primary
antibody in blocking solution overnight at 4�C. As primary
antibodies, either anti–E-cadherin (ab40772; Abcam) or
anti-mitochondria (ab92824; Abcam) were used. The next
day, samples were washed 3 times with PBS, 0.1% BSA,
before they were incubated with the appropriate second-
ary anti-mouse or anti-rabbit antibody–horseradish-
peroxidase conjugate (EnVisionþ System; DAKO, Agilent,
Leuven, Belgium) for 1 hour at room temperature. Samples
were washed 3 times with PBS, and chromogen-substrate
mixture (DAKO) was added for 8 minutes at room tem-
perature. After washing in ddH2O, sections were counter-
stained with hematoxylin for 5 minutes at room
temperature, washed again with H2O, and mounted with
gelatin. Images were acquired with a Zeiss Axiolab micro-
scope (Carl Zeiss).

Analysis of Human Tissue Samples
Seventy-six patients with stage III primary colon cancer

were analyzed, who underwent curative surgery (R0) and
provided informed consent for analysis of their tissue and
data before surgery at the Department of Surgery (Technical
University of Munich, Munich, Germany). The tissue was
shock-frozen immediately after resection. Clinicopathologic
characteristics of the patients are summarized in Figure 7E.
Patients with documented local recurrence were not
included in this study to circumvent putative bias by poor
surgical technique. Ethical and data protection standards of
this study were ensured by supervision of the Ethics Com-
mittee of the Faculty of Medicine (Technical University of
Munich), which approved the study (#1926/07, #5428/12).
Tumor-specific overall survival and recurrence-free survival
(ie, distant metastasis-free survival) was considered as the
primary end point for risk prediction. Statistical evaluation
was performed using IBM SPSS Statistics software version
20.0 (SPSS, Inc, Chicago, IL). To derive optimal cut-off values
of gene expression levels (SASH1, 0.29; CRKL, 0.44), maxi-
mally selected log-rank statistics performed by R Software
version 2.13.0 (R Foundation for Statistical Computing,
Vienna, Austria) were used. To consider multiple test issues
within these analyses, the R-function maxstat.test was used.
Survival analysis was performed using Kaplan–Meier esti-
mates. All statistical tests were performed 2-sided, and the
significance level was set at 0.05. No correction of P values
was applied to adjust for multiple test issues. However,
results of all statistical tests being conducted were thor-
oughly reported so that an informal adjustment of P values
could be performed while reviewing the data. The Cancer
Genome Atlas TCGA data set was analyzed for prognostic
association of SASH1 and CRKL genes with the cBioPortal
platform, consisting of 213 fully sequenced colorectal can-
cer samples with available follow-up documentation.29,30
Statistical Evaluation
Statistical analysis was performed with GraphPad Prism

6.01 (GraphPad Software, San Diego, CA). All error bars
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represent the SD. Statistical tests, P values, and sample size
are indicated in figure legends.
References
1. Mehlen P, Puisieux A. Metastasis: a question of life or

death. Nat Rev Cancer 2006;6:449–458.
2. Kalluri R, Weinberg RA. The basics of epithelial-

mesenchymal transition. J Clin Invest 2009;119:
1420–1428.

3. Lamouille S, Xu J, Derynck R. Molecular mechanisms of
epithelial-mesenchymal transition. Nat Rev Mol Cell Biol
2014;15:178–196.

4. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH
factors in tumour progression: an alliance against the
epithelial phenotype? Nat Rev Cancer 2007;7:415–428.

5. Shirakihara T, Saitoh M, Miyazono K. Differential regu-
lation of epithelial and mesenchymal markers by del-
taEF1 proteins in epithelial mesenchymal transition
induced by TGF-beta. Mol Biol Cell 2007;18:3533–3544.

6. Krebs AM, Mitschke J, Lasierra Losada M,
Schmalhofer O, Boerries M, Busch H, Boettcher M,
Mougiakakos D, Reichardt W, Bronsert P, Brunton VG,
Pilarsky C, Winkler TH, Brabletz S, Stemmler MP,
Brabletz T. The EMT-activator Zeb1 is a key factor for cell
plasticity and promotes metastasis in pancreatic cancer.
Nat Cell Biol 2017;19:518–529.

7. Zeller C, Hinzmann B, Seitz S, Prokoph H, Burkhard-
Goettges E, Fischer J, Jandrig B, Schwarz LE,
Rosenthal A, Scherneck S. SASH1: a candidate tumor
suppressor gene on chromosome 6q24.3 is down-
regulated in breast cancer. Oncogene 2003;22:2972–2983.

8. Rimkus C, Martini M, Friederichs J, Rosenberg R, Doll D,
Siewert JR, Holzmann B, Janssen KP. Prognostic sig-
nificance of downregulated expression of the candidate
tumour suppressor gene SASH1 in colon cancer. Br J
Cancer 2006;95:1419–1423.

9. Nitsche U, Rosenberg R, Balmert A, Schuster T,
Slotta-Huspenina J, Herrmann P, Bader FG, Friess H,
Schlag PM, Stein U, Janssen KP. Integrative marker
analysis allows risk assessment for metastasis in stage II
colon cancer. Ann Surg 2012;256:763–771; discussion
771.

10. Burgess JT, Bolderson E, Saunus JM, Zhang SD,
Reid LE, McNicol AM, Lakhani SR, Cuff K, Richard K,
Richard DJ, O’Byrne KJ. SASH1 mediates sensitivity of
breast cancer cells to chloropyramine and is associated
with prognosis in breast cancer. Oncotarget 2016;
7:72807–72818.

11. Yang L, Zhang H, Yao Q, Yan Y, Wu R, Liu M. Clinical
significance of SASH1 expression in glioma. Dis Markers
2015;2015:383046.

12. Meng Q, Zheng M, Liu H, Song C, Zhang W, Yan J, Qin L,
Liu X. SASH1 regulates proliferation, apoptosis, and in-
vasion of osteosarcoma cell. Mol Cell Biochem 2013;
373:201–210.

13. Peng L, Wei H, Liren L. Promoter methylation assay of
SASH1 gene in hepatocellular carcinoma. J BUON 2014;
19:1041–1047.
14. Shellman YG, Lambert KA, Brauweiler A, Fain P,
Spritz RA, Martini M, Janssen KP, Box NF, Terzian T,
Rewers M, Horvath A, Stratakis CA, Robinson WA,
Robinson SE, Norris DA, Artinger KB, Pacheco TR.
SASH1 is involved in an autosomal dominant lentiginous
phenotype. J Invest Dermatol 2015;135:3192–3194.

15. Weidmann H, Touat-Hamici Z, Durand H, Mueller C,
Chardonnet S, Pionneau C, Charlotte F, Janssen KP,
Verdugo R, Cambien F, Blankenberg S, Tiret L, Zeller T,
Ninio E. SASH1, a new potential link between smoking
and atherosclerosis. Atherosclerosis 2015;242:571–579.

16. Wang J, Zhang J, Li X, Wang Z, Lei D, Wang G, Li J,
Zhang S, Li Z, Li M. A novel de novo mutation of the
SASH1 gene in a Chinese family with multiple lentigines.
Acta Derm Venereol 2017;97:530–531.

17. Courcet JB, Elalaoui SC, Duplomb L, Tajir M, Riviere JB,
Thevenon J, Gigot N,Marle N, Aral B, Duffourd Y, Sarasin A,
Naim V, Courcet-Degrolard E, Aubriot-Lorton MH, Martin L,
Abrid JE, Thauvin C, Sefiani A, Vabres P, Faivre L.
Autosomal-recessive SASH1 variants associated with a
new genodermatosis with pigmentation defects, palmo-
plantar keratoderma and skin carcinoma. Eur J Hum
Genet 2015;23:957–962.

18. Dauphinee SM, Clayton A, Hussainkhel A, Yang C,
Park YJ, Fuller ME, Blonder J, Veenstra TD, Karsan A.
SASH1 is a scaffold molecule in endothelial TLR4
signaling. J Immunol 2013;191:892–901.

19. Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF,
Zhang G, Bu XZ, Cai SH, Du J. Epithelial-mesenchymal
transition (EMT) induced by TNF-alpha requires AKT/
GSK-3beta-mediated stabilization of snail in colorectal
cancer. PLoS One 2013;8:e56664.

20. Martini M, Gnann A, Scheikl D, Holzmann B, Janssen KP.
The candidate tumor suppressor SASH1 interacts with
the actin cytoskeleton and stimulates cell-matrix adhe-
sion. Int J Biochem Cell Biol 2011;43:1630–1640.

21. Bell ES, Park M. Models of crk adaptor proteins in can-
cer. Genes Cancer 2012;3:341–352.

22. Arai A, Nosaka Y, Kohsaka H, Miyasaka N, Miura O. CrkL
activates integrin-mediated hematopoietic cell adhesion
through the guanine nucleotide exchange factor C3G.
Blood 1999;93:3713–3722.

23. Senechal K, Heaney C, Druker B, Sawyers CL. Structural
requirements for function of the Crkl adapter protein in
fibroblasts and hematopoietic cells. Mol Cell Biol 1998;
18:5082–5090.

24. Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M,
Birchmeier W, Feller SM. Signaling of hepatocyte growth
factor/scatter factor (HGF) to the small GTPase Rap1 via
the large docking protein Gab1 and the adapter protein
CRKL. J Biol Chem 2000;275:10772–10778.

25. Ungewiss C, Rizvi ZH, Roybal JD, Peng DH, Gold KA,
Shin DH, Creighton CJ, Gibbons DL. The microRNA-200/
Zeb1 axis regulates ECM-dependent beta1-integrin/FAK
signaling, cancer cell invasion and metastasis through
CRKL. Sci Rep 2016;6:18652.

26. Lamorte L, Rodrigues S, Sangwan V, Turner CE, Park M.
Crk associates with a multimolecular Paxillin/GIT2/beta-
PIX complex and promotes Rac-dependent

http://refhub.elsevier.com/S2352-345X(18)30122-X/sref1
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref1
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref1
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref2
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref2
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref2
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref2
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref3
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref3
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref3
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref3
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref4
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref4
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref4
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref4
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref5
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref5
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref5
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref5
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref5
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref6
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref6
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref6
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref6
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref6
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref6
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref6
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref6
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref7
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref7
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref7
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref7
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref7
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref7
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref8
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref8
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref8
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref8
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref8
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref8
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref9
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref9
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref9
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref9
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref9
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref9
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref9
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref10
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref10
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref10
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref10
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref10
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref10
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref10
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref11
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref11
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref11
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref12
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref12
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref12
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref12
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref12
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref13
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref13
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref13
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref13
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref14
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref14
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref14
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref14
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref14
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref14
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref14
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref15
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref15
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref15
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref15
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref15
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref15
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref16
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref16
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref16
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref16
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref16
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref17
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref18
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref18
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref18
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref18
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref18
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref19
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref19
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref19
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref19
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref19
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref20
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref20
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref20
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref20
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref20
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref21
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref21
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref21
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref22
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref22
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref22
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref22
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref22
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref23
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref23
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref23
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref23
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref23
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref24
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref24
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref24
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref24
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref24
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref24
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref25
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref25
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref25
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref25
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref25
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref26
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref26
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref26


52 Franke et al Cellular and Molecular Gastroenterology and Hepatology Vol. 7, No. 1
relocalization of Paxillin to focal contacts. Mol Biol Cell
2003;14:2818–2831.

27. Li L, Guris DL, Okura M, Imamoto A. Translocation of
CrkL to focal adhesions mediates integrin-induced
migration downstream of Src family kinases. Mol Cell
Biol 2003;23:2883–2892.

28. Thibaudeau L, Taubenberger AV, Holzapfel BM,
Quent VM, Fuehrmann T, Hesami P, Brown TD,
Dalton PD, Power CA, Hollier BG, Hutmacher DW.
A tissue-engineered humanized xenograft model of hu-
man breast cancer metastasis to bone. Dis Model Mech
2014;7:299–309.

29. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO,
Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E,
Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N.
The cBio cancer genomics portal: an open platform for
exploring multidimensional cancer genomics data. Can-
cer Discov 2012;2:401–404.

30. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B,
Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E,
Cerami E, Sander C, Schultz N. Integrative analysis of
complex cancer genomics and clinical profiles using the
cBioPortal. Sci Signal 2013;6:pl1.

31. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST,
Choi H, El Rayes T, Ryu S, Troeger J, Schwabe RF,
Vahdat LT, Altorki NK, Mittal V, Gao D. Epithelial-to-
mesenchymal transition is not required for lung metas-
tasis but contributes to chemoresistance. Nature 2015;
527:472–476.

32. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J,
Sugimoto H, Wu CC, LeBleu VS, Kalluri R. Epithelial-to-
mesenchymal transition is dispensable for metastasis
but induces chemoresistance in pancreatic cancer. Na-
ture 2015;527:525–530.

33. Thiery JP. Epithelial-mesenchymal transitions in tumour
progression. Nat Rev Cancer 2002;2:442–454.

34. Pan J, Liu Y. SASH1 inhibits hypoxia-induced epithelial-
to-mesenchymal transition via suppression of the PI3K/
Akt pathway in human pancreatic cancer cells. Int J Clin
Exp Pathol 2016;9:750–757.

35. Zong W, Yu C, Wang P, Dong L. Overexpression of
SASH1 inhibits TGF-beta1-induced EMT in gastric can-
cer cells. Oncol Res 2016;24:17–23.

36. Aiello NM, Brabletz T, Kang Y, Nieto MA, Weinberg RA,
Stanger BZ. Upholding a role for EMT in pancreatic
cancer metastasis. Nature 2017;547:E7–E8.

37. Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA,
StangerBZ,YangJ,WeinbergRA.Upholdinga role forEMT
in breast cancer metastasis. Nature 2017;547:E1–E3.

38. Matsumoto R, Tsuda M, Wang L, Maishi N, Abe T,
Kimura T, Tanino M, Nishihara H, Hida K, Ohba Y,
Shinohara N, Nonomura K, Tanaka S. Adaptor
protein CRK induces epithelial-mesenchymal transition
and metastasis of bladder cancer cells through HGF/c-
Met feedback loop. Cancer Sci 2015;106:709–717.

39. Lamorte L, Royal I, Naujokas M, Park M. Crk adapter
proteins promote an epithelial-mesenchymal-like transi-
tion and are required for HGF-mediated cell spreading
and breakdown of epithelial adherens junctions. Mol Biol
Cell 2002;13:1449–1461.
40. Yamada S, Yanamoto S, Kawasaki G, Rokutanda S,
Yonezawa H, Kawakita A, Nemoto TK. Overexpression of
CRKII increases migration and invasive potential in oral
squamous cell carcinoma. Cancer Lett 2011;303:84–91.

41. Han G, Wu D, Yang Y, Li Z, Zhang J, Li C. CrkL meditates
CCL20/CCR6-induced EMT in gastric cancer. Cytokine
2015;76:163–169.

42. Cheng S, Guo J, Yang Q, Yang X. Crk-like adapter pro-
tein regulates CCL19/CCR7-mediated epithelial-to-
mesenchymal transition via ERK signaling pathway in
epithelial ovarian carcinomas. Med Oncol 2015;32:47.

43. Elmansuri AZ, Tanino MA, Mahabir R, Wang L, Kimura T,
Nishihara H, Kinoshita I, Dosaka-Akita H, Tsuda M,
Tanaka S. Novel signaling collaboration between TGF-
beta and adaptor protein Crk facilitates EMT in human
lung cancer. Oncotarget 2016;7:27094–27107.

44. Jankowski W, Saleh T, Pai MT, Sriram G, Birge RB,
Kalodimos CG. Domain organization differences explain
Bcr-Abl’s preference for CrkL over CrkII. Nat Chem Biol
2012;8:590–596.

45. Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and
CrkL adaptor proteins: networks for physiological and
pathological signaling. Cell Commun Signal 2009;7:13.

46. Barbazan J, Alonso-Alconada L, Elkhatib N, Geraldo S,
Gurchenkov V, Glentis A, van Niel G, Palmulli R,
Fernandez B, Viano P, Garcia-Caballero T, Lopez-
Lopez R, Abal M, Vignjevic DM. Liver metastasis is
facilitated by the adherence of circulating tumor cells to
vascular fibronectin deposits. Cancer Res 2017;
77:3431–3441.

47. Kumar S, Lu B, Davra V, Hornbeck P, Machida K,
Birge RB. Crk tyrosine phosphorylation regulates PDGF-
BB-inducible Src activation and breast tumorigenicity
and metastasis. Mol Cancer Res 2018;16:173–183.

48. Watanabe T, Tsuda M, Makino Y, Konstantinou T,
Nishihara H, Majima T, Minami A, Feller SM, Tanaka S.
Crk adaptor protein-induced phosphorylation of Gab1 on
tyrosine 307 via Src is important for organization of focal
adhesions and enhanced cell migration. Cell Res 2009;
19:638–650.

49. Zheng L, Baumann U, Reymond JL. An efficient one-step
site-directed and site-saturation mutagenesis protocol.
Nucleic Acids Res 2004;32:e115.

50. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA,
Zhang F. Genome engineering using the CRISPR-Cas9
system. Nat Protoc 2013;8:2281–2308.

51. Rain JC, Cribier A, Gerard A, Emiliani S, Benarous R.
Yeast two-hybrid detection of integrase-host factor in-
teractions. Methods 2009;47:291–297.

52. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C,
Simon S, Lenzen G, Petel F, Wojcik J, Schachter V,
Chemama Y, Labigne A, Legrain P. The protein-protein
interaction map of Helicobacter pylori. Nature 2001;
409:211–215.

53. Formstecher E, Aresta S, Collura V, Hamburger A, Meil A,
Trehin A, Reverdy C, Betin V, Maire S, Brun C, Jacq B,
Arpin M, Bellaiche Y, Bellusci S, Benaroch P, Bornens M,
Chanet R, Chavrier P, Delattre O, Doye V, Fehon R,
Faye G, Galli T, Girault JA, Goud B, de Gunzburg J,
Johannes L, Junier MP, Mirouse V, Mukherjee A,

http://refhub.elsevier.com/S2352-345X(18)30122-X/sref26
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref26
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref26
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref27
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref27
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref27
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref27
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref27
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref28
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref28
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref28
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref28
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref28
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref28
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref28
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref29
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref29
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref29
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref29
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref29
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref29
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref29
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref30
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref30
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref30
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref30
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref30
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref31
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref31
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref31
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref31
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref31
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref31
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref31
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref32
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref32
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref32
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref32
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref32
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref32
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref33
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref33
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref33
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref34
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref34
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref34
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref34
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref34
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref35
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref35
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref35
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref35
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref36
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref36
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref36
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref36
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref37
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref37
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref37
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref37
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref38
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref38
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref38
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref38
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref38
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref38
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref38
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref39
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref39
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref39
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref39
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref39
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref39
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref40
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref40
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref40
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref40
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref40
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref41
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref41
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref41
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref41
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref42
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref42
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref42
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref42
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref43
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref43
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref43
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref43
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref43
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref43
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref44
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref44
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref44
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref44
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref44
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref45
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref45
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref45
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref46
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref46
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref46
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref46
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref46
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref46
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref46
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref46
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref47
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref47
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref47
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref47
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref47
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref48
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref48
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref48
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref48
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref48
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref48
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref48
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref49
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref49
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref49
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref50
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref50
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref50
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref50
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref51
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref51
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref51
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref51
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref52
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref52
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref52
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref52
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref52
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref52
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53


2019 SASH1 Blocks EMT Through Inhibition of CRKL 53
Papadopoulo D, Perez F, Plessis A, Rosse C, Saule S,
Stoppa-Lyonnet D, Vincent A, White M, Legrain P,
Wojcik J, Camonis J, Daviet L. Protein interaction map-
ping: a Drosophila case study. Genome Res 2005;
15:376–384.

Received May 15, 2018. Accepted August 30, 2018.

Correspondence
Address correspondence to: Klaus-Peter Janssen, PhD, Department of
Surgery, Klinikum Rechts der Isar, Ismaninger Strasse 22, 81675 Munich,
Germany. e-mail: Klaus-Peter.Janssen@tum.de; fax: (49) 89-4140 6031.

Acknowledgments
The authors wish to thank Alexandra Gnann and Widya Johannes
for excellent technical assistance, Dr Julia Slotta-Huspenina for
histopathologic evaluation of tissue samples, and Maximilian Ehrenfeld,
Dr Bernhard Holzmann, and Dr Melanie Laschinger for critical discussion.
The authors thank the 3P5 proteomic facility (Institut Cochin, Paris, France)
for liquid chromatography–MS/MS data acquisition.

Current address of H.W.: Institute of Clinical Chemistry and Laboratory
Medicine, University Medical Center Hamburg-Eppendorf, Hamburg,
Germany. Current address of J.M.: Max Planck Institute of Biochemistry,
Research Dept. Proteomics and Signal Transduction, Martinsried, Germany.

Author contributions
Fabian Christoph Franke and Klaus-Peter Janssen were responsible for the
study concept and design; Fabian Christoph Franke, Johannes Müller,
Eduardo Domínguez Medina, Henri Weidmann, and Solenne Chardonnet
acquired data; Fabian Christoph Franke, Johannes Müller, Miguel Abal,
Eduardo Domínguez Medina, Ulrich Nitsche, Henri Weidmann, Solenne
Chardonnet, Ewa Ninio, and Klaus-Peter Janssen analyzed and interpreted
data; Fabian Christoph Franke, Johannes Müller, Solenne Chardonnet, and
Klaus-Peter Jansse collected and assembled data; Fabian Christoph Franke
and Klaus-Peter Janssen drafted the manuscript; Klaus-Peter Janssen
critically revised the manuscript for important intellectual content; Ulrich
Nitsche performed the statistical analysis; Ewa Ninio and Klaus-Peter
Janssen obtained funding; Miguel Abal provided technical and material
support; and Klaus-Peter Janssen supervised the study.

Conflicts of interest
The authors disclose no conflicts.

Funding
Supported by the Institut National de la Santé et de la Recherche Médicale and
Fondation de France (201300038584 for project R13072DD-Bigot) (E.N.). This
study was initiated based on findings obtained by grant 111822 from the
Deutsche Krebshilfe e.V. (K.-P.J.).

http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
http://refhub.elsevier.com/S2352-345X(18)30122-X/sref53
mailto:Klaus-Peter.Janssen@tum.de

	The Tumor Suppressor SASH1 Interacts With the Signal Adaptor CRKL to Inhibit Epithelial–Mesenchymal Transition and Metastas ...
	Results
	Loss of SASH1 Induces Epithelial-Mesenchymal Transition
	SASH1 Is a Negative Regulator of EMT-Associated Aggressiveness
	SASH1 Interacts With the Oncoprotein and Signal Adaptor V-Crk Avian Sarcoma Virus CT10 Oncogene Homolog-Like
	The N-Terminal SH3 Domain of CRKL Interacts With a PXXPXK Motif of SASH1
	SASH1 Negatively Regulates EMT Through CRKL
	EMT Induced by Loss of SASH1 Depends on CRKL-Mediated SRC Signaling
	SASH1 Inhibits Metastasis Formation In Vivo in a CRKL-Dependent Manner

	Discussion
	Patients and Methods
	Cell Culture and Constructs
	Generation of SASH1- and/or CRKL-Deficient Cells
	Co-immunoprecipitation
	Reverse Transcription and qRT-PCR
	Immunofluorescence Microscopy
	Transwell Migration and Invasion Assays
	Soft Agar Assay and 3-Dimensional Culture in Matrigel
	Luciferase Reporter Assay
	Mass Spectrometry
	Yeast Two-Hybrid Screen
	Dynamic Mass Redistribution–Based Affinity Measurement
	Orthotopic Mouse Model
	Immunohistochemistry
	Analysis of Human Tissue Samples
	Statistical Evaluation

	References
	Acknowledgments


