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The molecular landscape of glioma in patients 
with Neurofibromatosis 1
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Francesco DiMeco11,12,13, François Ducray14, Walid Farah15, Gaetano Finocchiaro   16, 
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Marica Eoli16, Marc Sanson6, Anna Lasorella   1,38,39,42* and Antonio Iavarone   1,39,40,42*

Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome in which glioma is one of the prevalent tumors. 
Gliomagenesis in NF1 results in a heterogeneous spectrum of low- to high-grade neoplasms occurring during the entire lifes-
pan of patients. The pattern of genetic and epigenetic alterations of glioma that develops in NF1 patients and the similarities 
with sporadic glioma remain unknown. Here, we present the molecular landscape of low- and high-grade gliomas in patients 
affected by NF1 (NF1-glioma). We found that the predisposing germline mutation of the NF1 gene was frequently converted to 
homozygosity and the somatic mutational load of NF1-glioma was influenced by age and grade. High-grade tumors harbored 
genetic alterations of TP53 and CDKN2A, frequent mutations of ATRX associated with Alternative Lengthening of Telomere, and 
were enriched in genetic alterations of transcription/chromatin regulation and PI3 kinase pathways. Low-grade tumors exhib-
ited fewer mutations that were over-represented in genes of the MAP kinase pathway. Approximately 50% of low-grade NF1-
gliomas displayed an immune signature, T lymphocyte infiltrates, and increased neo-antigen load. DNA methylation assigned 
NF1-glioma to LGm6, a poorly defined Isocitrate Dehydrogenase 1 wild-type subgroup enriched with ATRX mutations. Thus, the 
profiling of NF1-glioma defined a distinct landscape that recapitulates a subset of sporadic tumors.

A full list of affiliations appears at the end of the paper.

NF1 is a common autosomal dominant disorder that  
results in the most frequent tumor predisposition syn-
drome. NF1 affects an estimated 100,000 people in the USA  

(1 in 3,000 individuals)1,2. Individuals with NF1 suffer from a 
wide range of clinical manifestations caused by the increased risk  
of malignant and non-malignant conditions compared with the 
general population3.

NF1 is caused by germline mutations in the NF1 tumor sup-
pressor gene, which encodes a GTPase-activating protein called 
neurofibromin that functions as a negative regulator of the RAS 
oncoprotein. Neurofibromin regulates cell growth and survival 
through several downstream signaling effectors by accelerating the 
conversion of active GTP-bound RAS to its inactive GDP-bound 
form. Thus, loss of neurofibromin expression, as seen in tumors 
associated with NF1, is predicted to lead to increased cell growth 
and survival through hyperactivation of RAS4.

Recent genome-wide sequencing studies have revealed that spo-
radic malignancies including sporadic gliomas (both lower grade 
glioma and glioblastoma, GBM) have haploinsufficient or nullizy-
gous loss of NF1, indicating that NF1 functions as a somatic tumor 
suppressor in the general population5.

NF1 patients are predisposed to develop brain tumors, and glio-
mas are seen in 15–20% of individuals with NF16,7. Approximately 
15% of children with NF1 develop optic pathway, low-grade glio-
mas8. NF1 patients are also prone to developing non-optic gliomas, 
more frequently later in life, which manifest with a spectrum of 
histological subtypes including high-grade gliomas9. Although the 
predisposition to develop central nervous system tumors in patients 
with NF1 is well recognized, the molecular features of gliomas 
occurring in patients with NF1 have remained obscure, preventing 
development and application of novel therapeutic approaches. It is 
also unclear whether NF1-gliomas recapitulate the molecular pro-
files of the subtypes recently identified in sporadic gliomas10.

Here, we report a comprehensive analysis of NF1-gliomas. We 
define distinct features of low- and high-grade tumors in children 
and adults and describe a comparative evaluation of genomic fea-
tures in syndromic NF1 and sporadic gliomas.

Results
Overview of cohort characteristics. The tumor cohort analyzed in 
this study is composed of 59 glioma samples from 56 patients (33 
females and 23 males) who met the clinical criteria of NF111. Tumor 
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samples were from 22 children (age range, 2–15 years) and 33 adults 
(age range, 18–63 years), plus one patient lacking age information, 
and were classified as low grade (grades I and II, n =  35, 59%) and high 
grade (grades III and IV, n =  24, 41%; see Supplementary Table 1).  
The frequency distribution of patient age exhibited two main modes 
at 13.5 and 38.8 years, respectively. Children developed mostly low-
grade tumors (17 of 22 or 77% of pediatric gliomas were low grade) 
and high-grade gliomas occurred primarily in adults (18 of 23 or 
78% of high-grade tumors were observed in adults; see Fig. 1a). Age 
and grade distribution of our cohort is consistent with the notion 
that NF1-gliomas are primarily benign during childhood, whereas 
malignant gliomagenesis occurs later in life12,13.

Whole exome sequencing (WES) was performed for the 59 
NF1-glioma samples and matched blood DNA (available from 43 
patients) and was used to call germline and somatic single nucleo-
tide variants (SNVs), small insertions and deletions (indels), and 
copy number variations (CNVs) as previously described14–20 (see 
also Methods and Extended Data Fig. 1). A dendrogram resulting 
from a ‘fingerprint’ analysis built from depth-dependent correla-
tion models of allele fractions of known single nucleotide poly-
morphisms (SNPs) to identify samples from the same individual21  

confirmed the matching of normal blood and glioma tissue for 
each paired sample (Extended Data Fig. 2). We validated each class 
of germline and somatic DNA sequence alterations discovered by 
WES through secondary assays. Germline and somatic SNVs were 
confirmed by Sanger sequencing of matched blood and tumor 
DNA. Across variant types, we validated 93% of SNVs that are 
therefore referred to as verified variants (Supplementary Table 2).  
We determined the functional effects of each missense muta-
tion and in-frame indel by applying a pathogenicity prediction 
platform including eight independent algorithms (four evaluat-
ing missense mutations and four evaluating indels; see Methods 
and Supplementary Tables 2–4). Recurrent WES-detected somatic 
CNVs were estimated by GISTIC2.0 and confirmed by qPCR of 
genomic DNA (CNV validation rate: 96%; see Extended Data  
Fig. 3a–d). We also carried out messenger RNA expression analysis 
from RNA sequencing of 29 tumors and DNA methylation of 31 
tumors. A summary of the assays performed and case-assay overlap 
is presented in Supplementary Table 1.

The landscape of germline NF1 gene mutations in glioma patients. 
To determine the pattern and frequency of the predisposing NF1 
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Fig. 1 | Analysis of germline and somatic mutations in NF1-glioma patients. a, The relative frequency distribution of age at diagnosis is represented 
by density plot: the overall distribution of NF1-glioma patients (dashed black line, n =  55) by age identifies two peaks, 13.5 and 38.8 years. Low-grade 
gliomas (blue line, n =  32) occur more frequently in children, while high-grade gliomas (red line, n =  23) are diagnosed more frequently in adults. b, 
Germline mutations in the NF1 gene identified in NF1-glioma patients by WES. The spectrum of NF1 germline variants (SNVs and indels) is represented 
with each mutation shown only once per patient. We identified NF1 germline pathogenic mutation in 51 of 56 (91%) patients. Patients no. 47 and no. 52 
had one additional pathogenic germline mutation. c, Scatter plot showing the number of somatic mutations (SNVs and indels) occurring in low-grade 
and high-grade NF1-glioma (low-grade glioma, n =  32; high-grade glioma, n =  24; P =  7.4 ×  10–5, two-sided Mann-Whitney-Wilcoxon (MWW) test). d, 
Scatter plot showing the number of somatic mutations occurring in patients younger than 16 years (pediatric, n =  22) or older than 18 years (adult, n =  33; 
P =  9.8 ×  10–4, two-sided MWW test). Mutations in the patient of unknown age were not included in the analysis. e, Scatter plot showing the number of 
mutations according to grade and age (low-grade glioma, pediatric, n =  17; high-grade glioma, pediatric, n =  5; low-grade glioma, adult, n =  15; high-grade 
glioma, adult, n =  18). Mutations in the patient of unknown age were not included in the analysis. P =  3.8 ×  10–3, high-grade versus low-grade adult gliomas; 
P =  0.025, adult versus pediatric low-grade gliomas; P =  0.06, low-grade versus high-grade pediatric gliomas; P =  0.07, pediatric versus adult high-grade 
gliomas (two-sided MWW test). Scatter plots show median and interquartile range. Median and range of mutations are reported below each plot.
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Fig. 2 | Landscape of somatic genomic alterations in NF1-glioma. a, Integrated matrix of 59 glioma samples from 56 patients and gene variants (SNVs, 
indels, and significant CNVs) observed in NF1-glioma (left panel, high-grade glioma; right panels, low-grade glioma). Rows and columns represent genes and 
tumor samples, respectively. Genomic alterations, age, the histology of glioma, and NF1 germline mutations are indicated. NF1-glioma samples are sorted 
by their mutation profiles, except for patient no. 5, hypermutated high-grade glioma, and patient no. 39, including four spatially distinct glioma samples, 
which are shown at the last columns of left and right panel, respectively. Recurrently mutated genes are selected for their previously established association 
with glioma (ATRX, CDKN2A, TP53, PIK3CA/B, PTEN, BRAF, FGFR1 and FGF1, PRKCA, TERT), cancer biology (DOCK2/3/6, FDZ3/8, BCL9/9L, TOP2/3B), and 
immune functions (IL15, DGKQ). Genes are sorted according to higher frequency (percentage of patients) in high-grade (top, red) or low-grade gliomas 
(bottom, blue), respectively. Validations by Sanger sequencing (SNVs) and quantitative-genomic PCR (gains and losses) are indicated by yellow and green 
triangles, respectively. LOH, loss of heterozygosity. b, Function/pathway analysis of damaging somatic mutations and CNVs. Genetic alterations in NF1-
gliomas grouped into PI3K, transcription/chromatin regulation, splicing, MAPK, and cilium/centrosome functions. A significantly higher frequency of genetic 
alterations in PI3K, transcription/chromatin regulation, and splicing pathway were observed in high-grade glioma (n =  24; P =  4.7 ×  10–5, P =  9.1 ×  10–4, and 
P =  0.03, respectively; two-sided Fisher’s exact test), while mutations in the MAPK pathway were more frequent in low-grade glioma (n =  32; P =  0.03, two-
sided Fisher’s exact test). The integrated matrices of NF1-glioma and gene pathway alterations are reported in Extended Data Figs. 9 and 10.

gene mutations in patients who developed glioma, we analyzed 
blood DNA by WES. We also inferred the germline status of 
NF1 mutations from the analysis of tumor-only samples using a 
recently described computational approach that models the allele 
frequency of genomic events under different scenarios account-
ing for copy number events, minor and major alleles, and clonality 
(Supplementary Table 3a,b)22. We found germline mutations inac-
tivating the NF1 gene (typically truncating and frameshift) in 51 of 
the 56 (91%) patients analyzed. All mutation details are summarized 
in Supplementary Table 3a, b. The 91% NF1 germline mutation rate 
is within the highest frequencies previously reported in NF1 patients 
by several studies that have used multiple and highly sensitive assays 
for NF1 mutation detection (typically 83–95%)23–26. Among the 
identified NF1 germline mutations, 32 variants had previously been 
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Transcription/chromatin regulation 32 of 56 (57%) 20 of 24 (83%) 12 of 32 (38%) 9.1 × 10–4
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Cilium/centrosome 18 of 56 (32%) 10 of 24 (42%) 8 of 32 (25%) 0.25
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reported in NF1 patients (http://www.hgmd.cf.ac.uk)27, whereas 
19 are new pathogenic variants. We did not find pathogenic germ-
line variants in genes previously implicated in NF1-like syndromes 
(SPRED1, BRAF, CBL, GNAS, HRAS, KRAS, MAP2K1, MAP2K2, 
MLH1, MSH2, MSH6, NF2, NRAS, PMS2, PTPN11, RAF1, RASA2, 
RIT1, SHOC2, SOS1, SOS2)28,29. The comparative analysis of blood 
and glioma DNA revealed that the variant allele frequency of the 
constitutive NF1 gene mutations increased, resulting in loss of het-
erozygosity in the majority of tumors (Supplementary Table 3a,b). 
The spectrum of NF1 mutations in patients who developed gliomas 
did not cluster into specific domains of the NF1 protein and the dis-
tribution of mutations was not related to patient age or tumor grade 
(Fig. 1b). These findings are in agreement with the broad distribu-
tion of germline mutations of the NF1 gene previously reported in 
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Fig. 3 | Analysis of ATRX somatic mutations in NF1-glioma patients. a, ATRX mutations were identified by WES. The spectrum of ATRX somatic variants 
(SNVs and indels) is represented with each mutation shown only once per patient. We identified and validated by Sanger sequencing ATRX pathogenic 
mutations in 10 patients (1 low-grade glioma, 3%; 9 high-grade gliomas, 37.5%). b, The relative frequency of age distribution is represented for all patients 
(dashed black line, n =  55), ATRX wild-type (green line, n =  46), and ATRX mutant gliomas (red line, n =  9; for one patient carrying ATRX mutation age was 
unknown and was not included in the analysis). c, Microphotographs of ATRX immunohistochemistry in gliomas from NF1 patients. Representative images 
are from n =  7 low-grade gliomas (left) and n =  16 high-grade gliomas (right). Results were validated on more than ten independent samples to ensure the 
staining pattern on human tissue was reproducible. High-grade glioma samples were negative for ATRX expression whereas low-grade gliomas retained 
ATRX protein expression. d, Contingency table shows loss of ATRX protein expression in 8 of 16 high-grade and in none of 7 low-grade NF1-gliomas 
(P =  0.05, two-sided Fisher’s exact test). e, C-circle (CC) assay was performed to measure ALT activity in NF1-glioma samples. The scatter plot reports 
the normalized CC content for each glioma according to ATRX mutational status: ATRX wild-type (blue, n =  11) and ATRX mutant gliomas (red, n =  10). For 
each group the median with interquartile range is indicated. All ATRX mutant gliomas but only one ATRX wild-type glioma showed increased ALT activity 
(normalized CC content greater than 1; P =  2.3 ×  10–5, two-sided MWW test).

unselected NF1 patients3,25. They also indicate that the probability of 
developing a brain tumor is not dependent on particular patterns of 
NF1 gene mutations in the patient’s germline. We found that, in addi-
tion to the pathogenic NF1 germline variant, seven tumors harbored 
a second NF1 somatic mutation (Supplementary Table 3a,b). This 
finding is consistent with previous studies that reported frequent 
somatic NF1 mutations in neurofibromas from NF1 patients26,30–34. 
We used four of seven tumor samples for which DNA or RNA was 
available to amplify a single fragment that included both germline 
and somatic mutations, cloned the amplified genomic or comple-
mentary DNA, and sequenced individual clones. As expected, we 
found that multiple clones for each tumor contained only the germ-
line or somatic mutation, indicating that the two mutations reside 
on different alleles (Supplementary Table 5).

The landscape of somatic genomic alterations cooperating with 
NF1 for glioma development. The application of a stringent somatic 
mutation-calling algorithm to the cohort of NF1-glioma resulted in 
1,007 high-confidence somatic mutations across 59 tumors, includ-
ing 838 SNVs and 169 indels, 767 of which were predicted to carry 
pathogenic effects (Supplementary Table 4). Mutation burden 
increased with grade and age, with high-grade gliomas of adults 
having a sixfold higher mutation load than low-grade tumors in 
children (Fig. 1c–e). The lowest rate of mutations in pediatric NF1-
glioma is within the low range of mutation frequencies in pedi-
atric tumors35. More specifically, it reflects the lower frequency of  

mutations of sporadic brain tumors in children compared with their 
adult counterparts (Extended Data Fig. 4). However, the mutational 
clonality of NF1-glioma was consistent across patients’ ages and 
tumor grades (Extended Data Fig. 5). The analysis of copy number 
changes of NF1-glioma using GISTIC2.0 led to the identification 
of CNVs selected on the basis of focality, amplitude, and recur-
rence of alterations. Statistically significant CNVs comprised gains 
at 5q31.3 (FGF1), 5p15.33 (TERT), 4q31.21 (IL15), and 17p13.2 
(KIF1C), and losses at 9p21.3 (CDKN2A/CDKN2B; see Extended 
Data Figs. 3a–d and 6 and Supplementary Table 6a,b). The Isocitrate 
Dehydrogenase 1 (IDH1) gene, which is frequently mutated in spo-
radic low-grade gliomas and the Glioma-CpG Island Methylator 
Phenotype (G-CIMP) group of glioblastomas36,37, was wild-type in 
all 59 NF1-gliomas, regardless of grade and age. Similarly, muta-
tions of H3.3 histone genes, genetic lesions frequently found in 
sporadic pediatric gliomas38, were absent in pediatric or adult NF1-
gliomas. Additionally, the landscape of SNVs in low-grade NF1-
gliomas was markedly different from that of high-grade tumors. 
Sporadic gliomas frequently harbor genetic alterations that cause 
telomere elongation. This process is typically carried out through 
mutations in the TERT gene promoter in IDH wild-type tumors10,39. 
Conversely, in lower grade, sporadic gliomas of adults harboring 
co-occurring mutations of IDH1 and TP53, the telomerase-inde-
pendent alternative lengthening of telomeres (ALT) is sustained 
by inactivating mutations of ATRX, a gene encoding a chromatin 
remodeler and epigenetic modifier protein10,40. In NF1-glioma,  
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we failed to detect mutations in the TERT promoter by targeted 
sequencing but we found copy number gain of the TERT gene 
more frequently in low-grade than high-grade tumors (47% ver-
sus 12%, P =  9 ×  10–3; Fig. 2a). Despite the absence of IDH1 muta-
tions, high-grade NF1-glioma frequently harbored inactivating 
mutations of ATRX (9 of 24, 38%; Fig. 2a). In contrast, this altera-
tion was very rare in low-grade tumors (1 of 32 or 3.1%; Fig. 2a).  
ATRX mutations were mutually exclusive with TERT gene copy 
number gain and co-occurred with copy number loss of CDKN2A/
CDKN2B, which was also more frequent in high-grade (58%) in 
comparison with low-grade tumors (19%; see Fig. 2a, Extended 
Data Fig. 7, and Supplementary Table 7), and mutations of TP53. 
TP53 mutations were absent in low-grade NF1-glioma (Fig. 2a). 
ATRX mutation emerged from a multinomial regression model41, 
including also age and grade, as the only independent predic-
tor of somatic mutational spectrum in protein-coding regions 
(P =  1.1 ×  10–3) with accumulation of C→ T transitions in ATRX 
mutant NF1-glioma (Extended Data Fig. 8a, b). In conclusion, 
together with TP53 mutations and CDKN2A copy number losses, 
ATRX mutations characterize high- but not low-grade gliomas 
from NF1 patients.

Gene pathway analysis performed on CNVs and SNVs that 
had been selected for pathogenic features indicated that five bio-
logical pathways were commonly targeted, often in a mutually 
exclusive manner. In total, 22 of 24 (92%) high-grade and 24 of 32 
(75%) low-grade NF1-gliomas harbored genetic alterations in 1 or 
more of the 5 key biological processes (Fig. 2b and Extended Data  
Figs. 9 and 10). These included the PI3-kinase pathway that was 
more frequently targeted in high-grade (50%) compared with low-
grade (3%) NF1-gliomas (P =  4.7 ×  10–5), the transcription/chroma-
tin regulation pathway that was disrupted in high-grade at higher 
frequency than low-grade NF1-gliomas (83% and 38%, respectively, 
P =  9.1 ×  10–4), and RNA splicing, affecting 42% of high grade and 
12% of low grade (P =  0.03). Conversely, the MAP kinase pathway 
was more frequently targeted in low-grade than high-grade tumors 
(59% and 29%, respectively, P =  0.03). Genetic alterations of cilium/
centrosome occurred in a significant fraction of NF1-gliomas but 
were similarly distributed in high- and low-grade NF1-gliomas  
(Fig. 2b and Extended Data Figs. 9 and 10).

The multi-regional sampling of sporadic gliomas has revealed a 
notable extent of intra-tumoral heterogeneity42. We performed WES 
from four regionally distinct tumor fragments of a pilocytic astro-
cytoma from an adult patient with NF1 (patient no. 39). Among the 
4 fragments, 36 of 64 of the observed alterations (56%, including 
29 copy number gains and 7 SNVs) were shared by all samplings, 

whereas 37% of alterations (24 of 64, including 5 copy number 
gains, 12 copy number losses, and 7 SNVs) were private to a single 
tumor lesion (Supplementary Fig. 1).

Validation and functional characterization of ATRX inactiva-
tion in high-grade NF1-glioma. Functional annotation revealed 
that ATRX mutations are damaging events predicted to generate 
truncated or inactive ATRX proteins (Fig. 3a and Supplementary 
Table 4). In accordance with the increased frequency of high-grade 
tumors in older patients, we also found that ATRX mutations in 
NF1-gliomas primarily occurred in adults. Conversely, ATRX muta-
tions were rare in children as only 1 of the 22 pediatric NF1-gliomas 
(4.5%) harbored an ATRX mutation (Fig. 3b).

As ATRX mutations occurring in NF1-gliomas are predicted to 
severely impact ATRX protein expression, we sought to validate our 
sequencing findings in an independent data set of 23 NF1-gliomas 
(16 high-grade and 7 low-grade) using formalin-fixed, paraffin-
embedded samples and ATRX immunohistochemistry. Whereas 
ATRX protein expression was detected in 7 of 7 (100%) low-grade 
tumors, it was undetectable in 8 of 16 (50%) high-grade NF1-
glioma samples (P =  0.05; Fig. 3c,d). Thus, immunohistochemistry 
data converged with sequencing results and confirmed that approx-
imately half of high-grade gliomas from NF1 patients lose ATRX, 
which is instead retained in low-grade tumors. Next, we asked 
whether loss of ATRX is associated with the ALT phenotype in 
the context of NF1-gliomas. In primary tumors, ALT can be deter-
mined by measuring a specific type of circular and mostly single-
stranded C-rich extrachromosomal telomeric repeat (C-circles)43. 
The C-circle assay of 21 NF1-gliomas from which genomic DNA 
was available showed that 10 of 10 gliomas harboring ATRX muta-
tions scored positive for the presence of ALT-specific C-circles but 
only 1 of 11 (9%) tumors that retained a wild-type ATRX gene was 
positive for C-circles (P =  2.3 ×  10–5; see Fig. 3e).

A subgroup of low-grade NF1-glioma exhibits an enriched 
immune transcriptome and contains abundant cytolytic T lym-
phocyte infiltrates and tumor neoantigens. To segregate the RNA 
expression subtypes across the NF1-glioma data set, we analyzed 
29 RNA-sequencing (RNAseq) profiles from 10 high-grade and 19 
low-grade NF1-gliomas through unsupervised consensus cluster-
ing based on the 1,330 most variable genes, which resulted in 2 main 
clusters (cluster 1, red; cluster 2, blue; see Fig. 4a). Cluster 1 was 
specific for high-grade and cluster 2 for low-grade NF1-gliomas, 
thus indicating that tumor grading was the primary driver of tran-
scriptome clustering. Next, we sought to identify the functional 

Fig. 4 | Transcriptomic analysis of NF1-glioma. a, Consensus clustering on the Euclidean distance matrix based on the most variable genes among 29 
NF1-glioma samples (1,330 genes). The consensus matrix is obtained from 10,000 random samplings using 70% of the 29 samples. The 10 high-grade 
samples fall in 1 cluster (red) and all low-grade samples (n =  19) fall in a different cluster (blue). b, Hierarchical clustering of 29 NF1-gliomas by Euclidean 
distance with the Ward linkage method was based on the 100 most differentially expressed genes (two-sided MWW test, top and bottom 50 genes). c,d, 
Enrichment map network of statistically significant gene ontology categories in (c) ten high-grade and (d) 19 low-grade NF1-gliomas (two-sided MWW-
GST; q <  0.001, absolute NES > 0.6). Nodes represent gene ontology terms and lines their connectivity. Node size is proportional to number of genes in the 
gene ontology category and line thickness indicates the fraction of genes shared between groups. Gene network categories in NF1 high-grade gliomas are 
linked to mitotic progression, chromosome organization, and RNA biogenesis/regulation. Gene network categories in NF1 low-grade gliomas converge on 
proinflammatory immune response enriched for T lymphocyte effector functions. e, Unsupervised clustering of single-sample MWW-GST enrichments of 
the categories in d. Low-grade NF1-gliomas are divided into two clusters (red and green), characterized by high- and low-immune gene set enrichments, 
respectively (two-sided MWW test; only statistically significant categories are shown; the complete list is presented in Supplementary Table 8). f, Tumor 
purity scores of low-grade/high-immune, low-grade/low-immune, and high-grade tumors computed by ESTIMATE. The low-grade/high-immune group 
has significantly lower tumor purity when compared with either the low-grade/low-immune or the high-grade glioma groups (P =  0.001, high-immune 
versus low-immune low-grade gliomas; P =  0.01 high-immune low-grade gliomas versus high-grade gliomas; P =  0.762 for low-immune low-grade gliomas 
versus high-grade gliomas; two-sided t-test). g, Immune scores of low-grade/high-immune, low-grade/low-immune, and high-grade tumors computed 
by ESTIMATE (P =  9.6 ×  10–5, high-immune versus low-immune low-grade gliomas; P =  0.005 high-immune low-grade gliomas versus high-grade gliomas; 
P =  0.852 for low-immune low-grade gliomas versus high-grade gliomas; two-sided t-test). h–l, Enrichments of CD8+ T cell functions in low-grade/high-
immune compared with low-grade/low-immune and high-grade gliomas. Boxplots report the z-scores and P values (two-sided MWW test) for published 
CD8+ T cell signatures46–50. Scatter plots show median, interquartile, and minimum to maximum range.
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categories that characterize each cluster. A hierarchical cluster-
ing based on the 100 most differentially expressed genes between 
the 2 groups was constructed with the Mann–Whitney–Wilcoxon 
(MWW) test, from which we extracted the top and bottom 50 
genes of the test statistics (Fig. 4b and Supplementary Table 8a,b). 
We performed a functional analysis of gene expression categories 
differentially enriched in high-grade versus low-grade NF1-glioma 
samples using a recently described robust, two-sided, single-sample  
MWW gene set test (MWW-GST) to inform the construction of a 
gene ontology enrichment map network (q <0.001, absolute nor-
malized enrichment score (NES) > 0.6)44. The network revealed 
that the genes enriched in high-grade NF1-gliomas belonged to 

categories involved in cell cycle and mitosis, chromosome orga-
nization, RNA metabolism, and neurogenesis, whereas the bio-
logical functions activated in low-grade NF1-gliomas composed 
an interconnected network of immune response categories nota-
bly enriched for T lymphocyte effector functions (Fig. 4c,d and 
Supplementary Table 9a,b). To recognize the individual low-grade 
tumors that exhibit immune cell activation, we applied single-sam-
ple MWW-GST using the enriched immune gene sets. The analy-
sis showed that low-grade NF1-gliomas divided into two clusters, 
characterized by high- and low-immune gene expression, respec-
tively (Fig. 4e). No histological group was predominant in either 
cluster (Pearson’s chi-squared P =  0.9635). qPCR with reverse  
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transcription (RT–qPCR) confirmed that immune genes were ele-
vated in the high-immune group of NF1-gliomas (Supplementary 
Fig. 2a and Supplementary Table 10). The application of 
ESTIMATE45, a validated computational approach for the infer-
ence of the fraction of stromal/immune cells and consequently 
the tumor cell purity within tumor samples, showed that the 
low-grade/high-immune group had significantly lower tumor 
purity and higher immune score when compared with either 
the low-grade/low-immune or the high-grade groups (Fig. 4f,g).  
A transcriptomic-based analysis with five different CD8+ T cell-
specific gene expression signatures46–50 showed that low-grade/
high-immune NF1-gliomas contain higher numbers of effector 
CD8+ T cells (Fig. 4h–l). This finding was confirmed by quantita-
tive immunostaining for the T lymphocyte markers CD3 and CD8 
(Fig. 5a–d). Interestingly, the T cell infiltrates in high-immune NF1-
gliomas included cells positive for granzyme B (GZMB), the key 
cytolytic effector that is upregulated on CD8+ T cell activation, and 
productive responses to immunotherapies (Fig. 5e,f). Conversely, 
immunostaining for specific markers of B lymphocytes (CD20) and 
macrophages (CD68) indicated that these cell types are very rare 
in both high- and low-immune groups (Supplementary Fig. 2b,c).

Recent data showed that aberrant DNA methylation of genes 
expressed by immune cells regulates the extent of immune infiltra-
tion in solid tumors51,52. Therefore, we asked whether activation of 
an immune signature in NF1-gliomas might be driven by differ-
ential DNA methylation. Towards this aim, we profiled 11 of the 
low-grade NF1-gliomas previously analyzed by RNAseq with the 
850K Epic Methylation platform. Clustering based on the probes 
differentially methylated between high- and low-immune tumors 
revealed that the low-immune group exhibited a larger number of 
hyper-methylated probes than the high-immune cluster (229 ver-
sus 30, P < 0.01, and absolute methylation fold-change > 0.3; see 
Supplementary Fig. 3a and Supplementary Table 11a,b). Functional 
gene ontology analysis of the genes corresponding to the hyper-
methylated probes in the low-immune group of NF1-gliomas iden-
tified enriched immune system categories (Supplementary Fig. 3b 
and Supplementary Table 12). We further confirmed this finding 
by an integrated analysis of gene expression and DNA methyla-
tion, from which a total of 68 genes enriched for immune categories 
emerged as significantly hyper-methylated and down-regulated in 
low- versus high-immune NF1-gliomas (Supplementary Fig. 3c,d 
and Supplementary Tables 13 and 14). At least eight of these genes 
(indicated in the magnified area of Supplementary Fig. 3c) are 
involved in important T lymphocyte functions.

The execution of an effective anti-tumor immune response 
by effector T cells is typically driven by neoantigens generated by 
somatic mutations of cancer cells53. To assess whether high- and 
low-immune NF1-glioma subtypes contain a different number of 
tumor-specific neoantigens, we evaluated NF1-gliomas profiled 
with matched germline/tumor WES and tumor RNAseq for HLA 
typing and tumor neoantigen identification. The analysis revealed 
that the high- but not the low-immune group of NF1-gliomas 
expressed neoantigens (Fig. 5g). To characterize the neoantigens 
identified in high-immune NF1-gliomas, we performed a homog-
enous, proximity-based assay that measures the affinity kinetics 
of mutant neoantigens and corresponding wild-type peptides for 
binding to their restricted HLA class I allele54. The mutant pep-
tides bound with markedly higher affinity to HLA than their wild-
type peptide counterpart, consistent with the mutations conferring 
enhanced HLA binding (Fig. 5h and Supplementary Fig. 4).

NF1-gliomas resemble LGm6 subgroup of sporadic gliomas. 
Having identified the landscape of genetic and epigenetic features 
of NF1-gliomas, we sought to relate them to those of the different 
subgroups of sporadic gliomas that we have recently reported in 
the pan-glioma cohort from The Cancer Genome Atlas (TCGA) 

project10. We first compared the epigenetic features through an 
integrative analysis of DNA methylation profiles of NF1-gliomas 
and the TCGA pan-glioma data set. We integrated NF1-gliomas 
with the TCGA pan-glioma cohort (n =  819) on 1,233 glioma-
specific methylation probes and performed a supervised clas-
sification of NF1-gliomas using a nearest neighbor classifier 
trained on sporadic gliomas. We also performed an unsupervised 
clustering, merging sporadic TCGA gliomas and NF1-gliomas. 
Both supervised and unsupervised analyses showed that all of 
the NF1-glioma samples belong to the LGm6 group of gliomas, 
which is characterized by the divergent survival between grade 
II and III tumors (pilocytic astrocytoma-like) and grade IV 
tumors10 (LGm6-GBM; see Fig. 6a and Supplementary Fig. 5). 
Next, we used mathematical methods based on a multiple lin-
ear regression model to deconvolute mutation signatures that in 
other cancer types have been associated with distinct underly-
ing mutational processes55 (Supplementary Fig. 6). The cluster-
ing of the TCGA pan-glioma cohort of IDH wild-type tumors 
based on mutational signatures revealed that the large majority 
(86%) of sporadic gliomas belonged to a group (cluster 2) that 
displays a single mutational signature (signature 1). Conversely, 
a smaller group of tumors (cluster 1) was richer in mutational 
signatures, including signature 3 that has been associated with 
failure of DNA double-strand break-repair by homologous 
recombination55. Although cluster 1 contained only 14% of IDH 
wild-type gliomas, it included 20 of 48 (42%) LGm6 tumors, 
therefore manifesting a marked enrichment for this methylation 
group (P =  8.1 ×  10–8). Interestingly, 100% of NF1-gliomas fell 
within cluster 1 (Supplementary Fig. 6a). The subset of sporadic 
LGm6 gliomas in cluster 1 exhibited significant enrichment for 
low-grade histology (P =  0.02) and, albeit not reaching statistical 
significance, there was a trend for increased frequency of NF1 
mutations in this group (Supplementary Fig. 6c).

Next, we explored in more detail the pattern of driver mutations 
and CNVs of the LGm6 group of sporadic gliomas to ask whether it 
was related to the landscape of somatic alterations of NF1-gliomas. 
We found that somatic mutations of the NF1 gene are frequent in 
LGm6 tumors (25%). We also found that the key alterations iden-
tified in high-grade NF1-gliomas (ATRX and TP53 mutations 
and CDKN2A copy number losses) were also highly recurrent in 
LGm6 grade III and IV tumors in the LGm6 subgroup (Fig. 6b). 
Re-evaluation of ATRX status revealed that mutation of this gene 
is more frequent in this group than the other subtypes of sporadic 
IDH wild-type gliomas (Fig. 6c). This was in contrast with grade II 
tumors that lacked ATRX mutations and displayed a greatly reduced 
frequency of mutations (Fig. 6b,c). Furthermore, we found that, 
whereas the clinical outcome of LGm6-GBM was poor regardless of 
the ATRX status, ATRX mutations conferred a significantly worse 
prognosis to the grade III LGm6 patients (P =  0.03), with a survival 
that was comparable to that of LGm6-GBM. In contrast, survival of 
patients with ATRX wild-type grade III LGm6 glioma was similar to 
patients with grade II LGm6 glioma (Fig. 6d).

Finally, to identify the transcription factors that are causally 
involved as master regulators of the transcriptomic changes asso-
ciated with loss of ATRX in the LGm6 group of IDH wild-type 
gliomas, we used the transcriptional network assembled from a 
TCGA-derived pan-glioma cohort and applied the regularized 
gradient-boosting machine (RGBM) approach, a recently devel-
oped algorithm that involves gradient-boosting machines for the 
inference of gene regulatory networks. RGBM was benchmarked 
with synthetic data and used to identify the master regulators that 
direct mitochondrial metabolic reprogramming of tumors harbor-
ing the FGFR3-TACC3 gene fusions44,56. We inferred the activity 
of master regulators enriched in ATRX mutant samples within the 
LGm6 cluster of IDH wild-type gliomas by computing a score that 
integrates the ability of transcription factors to activate their targets 
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Fig. 5 | T cell infiltration and neoantigen analysis in low-grade NF1-glioma subclusters. a, Representative microphotographs of CD3 immunohistochemistry  
in low-grade/high-immune (left panels) and low-grade/low-immune (right panels) NF1-gliomas. Results were validated on more than ten independent 
samples to ensure that the staining pattern on human tissue was reproducible. b, The number of CD3-positive cells was scored in at least 5 pictures from 
low-grade/high-immune (n =  6, red dots) and low-grade/low-immune (n =  6, green dots) (*P =  0.003, two-sided t-test with Welch correction; scatter 
plots show mean with minimum to maximum range). c, Representative microphotographs of CD8 immunohistochemistry in low-grade/high-immune (left 
panels) and low-grade/low-immune (right panels) NF1-gliomas. Results were validated on more than ten independent samples to ensure that the staining 
pattern on human tissue was reproducible. d, The number of CD8-positive cells was scored in at least 5 pictures from low-grade/high-immune (n =  6, 
red dots) and low-grade/low-immune (n =  6, green dots) (*P =  0.017, two-sided t-test with Welch correction; scatter plots show mean with minimum to 
maximum range). e, Representative microphotographs of GZMB immunohistochemistry in low-grade/high-immune (left panels) and low-grade/low-
immune (right panels) NF1-gliomas. Results were validated on more than ten independent samples to ensure that the staining pattern on human tissue 
was reproducible. f, The number of GZMB-positive cells was scored in at least 5 pictures from low-grade/high-immune (n =  6, red dots) and low-grade/
low-immune (n =  6, green dots) (*P =  0.004, two-sided t-test with Welch correction; scatter plots show mean with minimum to maximum range).  
g, Quantification of neoantigens in low-grade NF1-glioma subclusters. The number of neoantigens per somatic mutation was significantly higher in the set 
of low-grade/high-immune NF1-gliomas (P =  0.034, two-sided MWW test). h, In vitro binding affinity kinetics of neoantigens and corresponding wild-type 
peptides for their restricted HLA class I allele. Data are shown as counts per second with increasing peptide concentration (log10 M). Data are mean of two 
independent experiments. MT, mutant peptide; WT, wild-type peptide. 

in each individual tumor sample. The analysis resulted in 41 acti-
vated master regulators and 48 inhibited master regulators in the 8 
ATRX mutant high-grade LGm6 samples compared with 40 ATRX 

wild-type gliomas (two-sided MWW-GST q < 0.01, absolute NES 
> 0.6, and two-sided MWW test for differential activity q <0.01; 
see Fig. 6e and Supplementary Table 15). Unsupervised consensus 
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Fig. 6 | NF1-gliomas resemble LGm6 subgroup of sporadic gliomas. a, Heat map of DNA methylation data for the TCGA pan-glioma cohort (n =  819) and 
31 NF1-gliomas according to the methylation clusters of sporadic gliomas10. The methylation profiles of NF1-glioma samples were classified using a nearest 
neighbor classifier based on 1,233 cancer-specific DNA methylation probes. Thirty-one of 31 NF1-glioma samples were assigned to the LGm6 methylation 
cluster, one of the methylation clusters that includes both low-grade and high-grade gliomas. b, Oncoprint of selected somatic genomic alterations in 
the LGm6 group of gliomas from the TCGA data set (ATRX, TP53, CDKN2A, PTEN, PIK3CA, NF1, BRAF). Rows and columns represent genes and samples, 
respectively. Glioma grade was significantly associated with alterations of ATRX, TP53, CDKN2A, PTEN. Glioma grade IV, n =  40; glioma grade III, n =  12; 
glioma grade II, n =  13; P =  0.01, P =  0.02, P =  0.04, P =  0.002, respectively; two-sided Fisher’s exact test. c, Barplot of ATRX non-synonymous somatic 
mutations occurring in phenotypic subtypes of IDH wild-type gliomas (classic-like, mesenchymal-like, and LGm6) and LGm6 gliomas grouped by tumor 
grade. ATRX mutations were significantly enriched in grade III LGm6 (P =  0.01, two-sided Fisher’s exact test). d, Kaplan–Meier survival analysis of LGm6 
gliomas stratified according to histological grade and ATRX status for grade III gliomas: grade II (green curve, n =  13), grade III ATRX mutant (blue curve, 
n =  5), grade III ATRX wild-type (cyan, n =  7), grade IV (red curve, n =  23). The ATRX mutant grade III subgroup showed a significantly worse survival when 
compared with ATRX wild-type grade III patients (P =  0.03, two-sided log rank test). No difference in clinical outcome was observed when comparing 
ATRX mutant grade III with grade IV. e, Master regulators (MRs) in ATRX mutant glioma. Gray curves represent the activity of each of the 10 MRs with the 
highest (red) or lowest (blue) activity. Red or blue lines indicate individual ATRX mutant samples displaying high or low activity, respectively, of the MRs in 
ATRX mutant compared with ATRX wild-type (n =  8 and n =  40 ATRX mutant and ATRX wild-type samples, respectively; P value, two-sided MWW test for 
differential activity (left) and mean of the activity (right)). f, Hierarchical clustering of MR activity in 48 high-grade LGm6 IDH wild-type gliomas  
(36 grade IV and 12 grade III). Data were obtained using the Euclidean distance and Ward linkage method built on differential activity of MRs in ATRX 
mutant (8 samples, red) versus ATRX wild-type (40 samples, black) tumors (two-sided MWW-GST q < 0.01, absolute NES > 0.6, and two-sided MWW 
test for differential activity P < 0.01). The activity of 41 of 89 MRs was increased in ATRX mutant samples. g, Enrichment map network of statistically 
significant gene ontology categories (two-sided Fisher’s exact test q < 0.01) for genes included in the regulons of the 10 MRs with the highest activity 
in ATRX mutant gliomas. Nodes represent gene ontology terms and lines their connectivity. Node size is proportional to number of genes in the gene 
ontology category and line thickness indicates the fraction of genes shared between groups.

clustering based on the activity of master regulators resulted in two 
main clusters defined by the divergent activity of the two groups 
of master regulators. The first cluster included all ATRX mutant 
samples, whereas the second cluster was exclusively composed of 

ATRX wild-type samples (Fig. 6f). This finding independently vali-
dates the 41 activated master regulators as key drivers of the hall-
mark features of ATRX mutant gliomas within the LGm6 group. 
The enrichment map network built from gene ontology categories 
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and informed by the inferred targets of the 10 most active mas-
ter regulators in ATRX mutant tumors shown in Fig. 6e indicated 
that chromatin and transcription regulation are among the most 
enriched functions (Fisher’s exact test q < 0.01; see Fig. 6g and 
Supplementary Table 16a,b). This is consistent with the role of the 
most active master regulators in ATRX mutant gliomas (MYST3, 
CHD2, ZMIZ1, NCOR1, NSD1) as chromatin and epigenetic 
modifiers. The activation of a unique set of master regulators with 
important functions in chromatin remodeling and transcriptional 
coregulation as drivers of the ATRX mutant transcriptome within 
the IDH wild-type LGm6 cluster provides a clue to the molecu-
lar events that become deregulated and trigger global epigenomic 
remodeling and transcriptional changes following loss of ATRX 
function in brain tumors.

Discussion
Here, we reported the landscape of genetic and epigenetic altera-
tions of gliomas occurring in NF1 patients. It is important to 
consider that the inaccessible brain tumor location, the relatively 
benign behavior of brain lesions, the comorbidities, and the 
neurological deterioration associated with surgical intervention 
most frequently argue against surgery as choice of treatment for 
glioma patients with NF113. Therefore, the collection of glioma 
samples analyzed in this study represents the selected subset of 
tumor lesions that undergo surgical resection in NF1 patients. 
Nevertheless, a comprehensive analysis of the complete spectrum 
of glioma grades throughout the lifespan of NF1 patients has 
allowed us to follow NF1 gliomagenesis and identify the genetic 
modules and the expression signatures that distinguish low- from 
high-grade tumors. We found that abundant infiltrates of activated 
T lymphocytes and mutation-derived neoantigens characterize a 
subset of low-grade gliomas, whereas high-grade tumors exhibit 
frequent mutations of ATRX typically co-occurring with alterations 
of TP53 and CDKN2A. We also classified gliomas occurring in the 
context of the NF1 syndrome within a particular methylation sub-
group of sporadic gliomas, the LGm6, that recapitulates mutational 
and epigenetic profiles of NF1-glioma. The discovery that ATRX 
mutations drive aggressiveness in NF1-glioma prompted re-evalu-
ation of the mutational and clinical features of the sporadic glioma 
counterpart (LGm6), leading to a more accurate classification of 
the sporadic tumors that cluster into this group.

The NF1 tumor-predisposing syndrome is associated with a het-
erogeneous pattern of glioma in children and adults57. Therefore, 
the dissection of the molecular landscape of glioma in NF1 patients 
required a comprehensive molecular study of brain tumors that 
could not be limited to a particular age and/or glioma grade. We 
observed several features that differentiate low-grade gliomas—
which are relatively more common in children—from the high-
grade tumors that instead predominate in adults with NF1. Pediatric 
low-grade NF1-gliomas exhibit a very low overall mutation rate 
in comparison to high-grade tumors, with few recurrent somatic 
mutations. The only set of recurrently mutated genes in low-grade 
NF1-glioma are genes involved in the MAPK pathway, thus reca-
pitulating the genetic features of sporadic pilocytic astrocytoma. 
Conversely, the mutation burden of high-grade glioma in NF1 
patients was higher and was characterized by recurrent alterations 
composing a genetic module that includes loss-of-function events 
targeting ATRX, TP53, and CDKN2A. Loss of ATRX in high-grade 
NF1-glioma is unique when considered within the genetic contexts 
associated with ATRX mutations in sporadic gliomas, in which they 
are typically associated with mutations of H3.3 in children or IDH1 
in adults. The inactivating mutations of the ATRX gene result in loss 
of a functional ATRX protein with at least two important mecha-
nistic consequences: development of the ALT phenotype and acti-
vation of a transcriptional/chromatin remodeling gene expression 
signature in ATRX mutant NF1-glioma.

Previous work reported that mouse models of low-grade glioma 
sustained by loss of NF1 manifest specific alterations of the immune 
microenvironment58. The analysis of human NF1-glioma confirms 
and extends this notion. We found that, compared with high-grade 
tumors, the gene expression signature more strongly enriched in 
low-grade NF1-glioma is an immune signature including several 
effector lymphocyte categories. This has been confirmed by the 
finding that the high-immune group of low-grade NF1-glioma 
contains both rich infiltrates of T lymphocytes, some of which are 
endowed with cytolytic activity, and mutation-derived neoantigens 
that exhibited enhanced HLA binding. The reduced DNA meth-
ylation of immune genes expressed in low-grade/high-immune 
NF1-glioma is consistent with previous studies in which reduced 
methylation and increased expression of immune genes in human 
tumors was linked to tumor infiltration by lymphocytes character-
ized by demethylated and transcriptionally active genes involved in 
T lymphocyte functions that, on the contrary, were highly meth-
ylated and transcriptionally repressed in cancer cells51,52. Taken 
together, our findings suggest that the long indolent course of low-
grade NF1-gliomas that rarely progress to high-grade disease9,13,57 
may be preserved by the checks imposed by the adaptive immunity 
acquired by some low-grade tumors.

DNA methylation profiling classified NF1-gliomas within the 
LGm6 IDH wild-type cluster of sporadic gliomas from our recent pan-
glioma TCGA study10. Prompted by the discovery that high-grade 
IDH wild-type gliomas in NF1 patients harbor frequent mutations of 
ATRX, we re-analyzed the LGm6 subgroup of sporadic tumors. We 
found that the original definition of pilocytic astrocytoma-like, which 
combined histological grade II and grade III tumors in the LGm6 clus-
ter, is not an accurate representation of the biology of these tumors. 
Indeed, mutation pattern and clinical outcome of grade II-LGm6 
gliomas diverge markedly from those of grade III-LGm6 tumors har-
boring ATRX mutations, which are more similar to LGm6-GBM. This 
finding calls for a re-evaluation of the guidelines for the classification 
of IDH wild-type gliomas, whereby the LGm6 group exhibits a larger 
heterogeneity than previously described and requires analysis of the 
ATRX status for the accurate qualification of the clinical features. As 
previous studies have shown that loss of ATRX increases sensitivity 
to DNA-damaging agents59,60, ATRX mutations may represent a point 
of therapeutic intervention for high-grade NF1-gliomas and LGm6 
sporadic gliomas. Our study also argues that, similar to NF1-glioma, 
the comparative genomic analysis of other NF1-associated neoplasms 
with the sporadic counterpart may reveal distinct pathogenic mecha-
nisms that could have therapeutic implications.

Online content
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Methods
Sample cohort. Glioma frozen samples and matched peripheral blood samples 
were available from NF1 patients who underwent surgical treatment. Samples were 
obtained from the Onconeurotek Tumorbank-Hôpital Pitié-Salpêtriere (Paris, 
France), Istituto Neurologico Besta (Milano, Italy), MD Anderson Cancer Center 
(Houston, Texas, USA), and from collaborators in the United States, France, Spain, 
South Korea, Germany, and the United Kingdom. All samples were obtained with 
informed consent after approval of the institutional review boards (IRBs) of the 
respective hospitals where patients were treated and consisted of material in excess 
of what was required for diagnostic purposes. Material was anonymized at the 
time of collection. Progressive numbers were used to label specimens coded to 
preserve the confidentiality of the subjects. Genome sequence analyses with these 
materials were designated as IRB exempt under paragraph 4 and are covered under 
Columbia University IRB protocol no. IRB-AAAI7305.

All samples were from patients diagnosed with NF1 syndrome according to 
the National Institutes of Health Consensus Development Conference11. Clinical 
and sequencing information (case-assay overlap for WES, RNAseq, and DNA 
methylation array) are provided in Supplementary Table 1. Samples were collected 
from 56 NF1 patients. From 1 patient 4 spatially distinct samples were obtained, 
giving a total of 59 samples included in the analyses. Blood DNA was available 
from 43 of the 56 patients and was used for WES and NF1 germline mutation 
calling to confirm the clinical diagnosis, and to identify SNVs from matched 
tumor-normal pairs. The patient cohort includes 35 low-grade gliomas  
(23 pilocytic astrocytoma, 5 ganglioglioma, 3 xanthoastrocytoma, 2 optic pathway 
glioma, 1 diffuse glioma, and 1 low-grade calcifying astrocytoma) and 24 high-
grade gliomas (13 glioblastoma multiforme, 6 anaplastic astrocytoma, 1 anaplastic 
diffuse glioma, 1 anaplastic ganglioglioma, 1 anaplastic xanthoastrocytoma, 1 
gliosarcoma, and 1 classified as grade III astrocytoma). The median age of the 
patients at time of surgery was 20 years, with 22 pediatric patients (< 16 years) and 
33 adult patients (> 16 years). For one patient age was unknown.

WES. Sequencing libraries were generated from 1 μ g genomic DNA using Agilent 
SureSelect Human All Exon kit (Agilent Technologies, California, USA) following 
the manufacturer’s recommendations. Libraries were sequenced using Illumina 
HiSeq platform (150-bp paired end). We performed quality control according to 
the following procedure and discarded: (1) a read pair if either 1 read contained 
adapter contamination, (2) a read pair if more than 10% of bases were uncertain 
in either 1 read, and (3) a read pair if the proportion of low-quality bases was over 
50% in either 1 read. Cleaned sequencing reads had an average error rate lower 
than 1% and a Phred quality score of Q30. Burrows–Wheeler Aligner61 was used to 
map the paired-end clean reads to the human reference genome (GRCh37/hg19). 
After sorting with SAMtools62 and marking duplicates with the Broad Picard, 
we computed the coverage and depth based on the BAM files. Sequencing depth 
had a mean of 103 ×  and a median of 91 × , with 99.78% of coverage mean in the 
target region. Aligned reads were further processed using GATK63 to remove low 
mapping quality reads (mapping quality score ≥ 20) and re-aligned in the genomic 
regions around potential indels. The quality scores were then recalculated for 
the cleaned BAM files. To eliminate additional potential mapping artifacts, we 
excluded variants within 50-bp intervals whose sequences aligned more than 3 
times within the whole genome. To confirm that tumor and blood samples from 
the same patient were properly paired, we performed a ‘fingerprint’ analysis using 
NGSCheckMate21, a model-based method evaluating the correlation between the 
variant allele fractions, defined as the ratio of the number of reads supporting a 
non-reference allele to the total number of reads, estimated from two samples at 
known SNP sites.

Mutation calling and pathogenicity prediction. Somatic SNVs and indels were 
identified in tumors with matched normal samples by integrating the results from 
five algorithms for variant calling: VarScan216, Freebayes14, Strelka17, MuTect18, and 
VarDict19. In tumor samples for which blood DNA was unavailable, nucleotide 
variants were identified using GATK HaplotypeCaller63 followed by the correction 
with a virtual normal as a substitute for the missing matched normal to filter out 
germline variants20. The virtual normal was built from a set of 433 public samples 
from healthy, unrelated individuals sequenced to high depth in the context of the 
1000 Genomes Project64. The virtual normal approach outperforms the standard 
matched normal algorithms to remove germline variants, and offers significant 
improvement over the use of public polymorphism databases alone20. To reduce 
false positive events, all somatic variants detected by matched normal and virtual 
normal methods were further filtered according to the following criteria:

•	 variant-supporting read count ≥ 2
•	 variant allele frequency ≥ 0.05
•	 average variant position in variant-supporting reads (relative to read length) ≥ 

0.1 and ≤ 0.9
•	 average distance to effective 3′  end of variant position in variant-supporting 

reads (relative to read length) ≥ 0.2
•	 fraction of variant-supporting reads from each strand ≥ 0.01
•	 average mismatch quality difference (variant - reference) ≤ 50
•	 average mapping quality difference (reference - variant) ≤ 50

Somatic variants were annotated using AnnoVar65 algorithm, which aggregates 
information from genomic and protein resources (GENECODE, UniProt, dbNSFP) 
with cancer (COSMIC, ClinVar) and non-cancer variant databases (dbSNP, 
1000 Genomes, Kaviar, Haplotype Reference Consortium, Exome Aggregation 
Consortium, NHLBI Exome Variant Server). Among the annotated variants, we 
selected only those producing a direct effect on the protein sequence (missense, 
truncating, stoploss, splicing variants, frameshift, and in-frame indels).  
Variants reported in the non-cancer databases with a minor allele frequency  
≥ 0.05 were classified as germline polymorphisms and excluded. Additionally, 
variants occurring in very large genes (for example, TTN and USH2A) and highly 
paralogous genes (for example, mucins and keratins) were filtered out as common 
sequencing artifacts.

GATK HaplotypeCaller63 was used to call germline variants occurring in NF1 
and in genes previously implicated in NF1-like syndromes. Identified variants were 
processed to remove false positives as described above.

The functional effect of missense SNVs and in-frame indels was determined 
using multiple prediction algoritms. MutationTaster266, Polyphen267, Provean68, and 
SIFT69 were applied to predict the pathogenicity of missense SNVs. The pathogenic 
effect of in-frame indels was determined by FATHMM-Indel70, Provean68, 
SIFT-Indel71, and VEST-Indel72. Variants predicted as damaging by two or more 
algorithms were classified as pathogenic mutations.

Germline somatic log odds filter for NF1 mutations in samples without 
matched normal DNA. To distinguish between germline and somatic events 
of the NF1 gene detected in tumor without a matching normal, we used the 
algorithm implemented by Chapuy et al.22. The algorithm computes the log ratio 
of the probability that the allele fraction of a genomic event is consistent with the 
allele fraction modeled for a hypothetical germline event or a modeled somatic 
event. Given the model of allele fraction x in one of eight possible scenarios (two 
possibilities for germline events and six cases for somatic events), the probability 
that the observed allele fraction is consistent with this model is calculated using 
a Beta probability distribution function, where the modeled hypothesis is tested 
against the actual count of reference (nREF) and variant (nALT) reads: p(x) =  
β(x;nALT +  1,nREF +  1). The algorithm defines two models, xg1 and xg1, for the allele 
frequency x in the case of germline events, depending on whether the germline 
event is on the minor or major allele of a copy number event, respectively. The 
algorithm defines six models of the allele frequency for somatic events accounting 
for the minor and major allele when a somatic event co-occurs with a copy number 
event (xs1 and xs2), occurs before a copy number event (xs3 and xs4), occurs after a 
copy number event (xs5), or if it occurs in a different subclone (xs6). The formulas 
for the computation of each model of allele fraction depend on the cancer cell 
fraction, purity, ploidy, and local copy number computed by ABSOLUTE73, as 
reported by Chapuy et al.22

The log odds ratio of the most likely germline and somatic model is then 
defined as:

=
…

L
p x p x

p x p x p x
log

max{ ( ), ( )}
max{ ( ), ( ), , ( )}

g1 g2

s1 s2 s6

If L is greater than a given threshold, the event is considered germline; otherwise, 
it is considered somatic. In the ideal case a threshold of 0 can be selected; however, 
given the variability in purity this cut-off must be suitably calibrated. Here, we used 
the NF1 genomic events in tumors with matched normal, all of which have been 
validated via Sanger sequencing, for calibration. The threshold on the log ratio was 
set in such a way to have 100% precision on the validated mutations. The value of 
the log ratio L is reported in Supplementary Table 3.

DNA copy number analysis. Somatic copy number was estimated from WES 
reads by GATK copy number protocol74. The coverage depth of aligned reads was 
analyzed to detect CNVs using a hidden Markov model for change-point detection. 
A normal DNA reference was created by integrating copy number from NF1 
patient blood samples and used for the comparison with CNVs detected in tumor 
samples to encapsulate sequencing noise and identify somatic events. Telomeric 
regions were excluded from the analysis, as they tend to generate artifacts in the 
CNV calls. GISTIC215 was used to integrate results from individual patients and 
identify genomic regions recurrently amplified or deleted in NF1-glioma.

Chromosomes X and Y copy numbers in normal and tumor samples were 
estimated from WES data using CNVkit75 to confirm patient gender and to 
compute chromosome X tumor ploidy.

mRNA sequencing and unsupervised cluster analysis. mRNA was purified 
from total RNA using poly-T oligo-attached magnetic beads. The mRNA was first 
fragmented randomly by addition of fragmentation buffer. First-strand cDNA was 
synthesized using random hexamer primers and M-MuLV reverse transcriptase 
(RNase H-). Second-strand cDNA synthesis was subsequently performed using 
DNA polymerase I and RNase H. Double-stranded cDNA was purified using 
AMPure XP beads. Remaining overhangs of the purified double-stranded cDNA 
were converted into blunt ends via exonuclease/polymerase activities. After 
adenylation of 3′  ends of DNA fragments, NEBNext Adaptor with hairpin loop 
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structure was ligated to prepare for hybridization (NEB Next Ultra RNA Library 
Prep Kit). Libraries were sequenced on the Illumina HiSeq platform (150-bp 
paired end). Sequencing quality was assessed through error rate and base quality 
distributions of reads for each sample. We filtered the raw data, removing reads 
containing adaptors and reads containing more than 10% of bases that could not 
be determined, and reads including over 50% bases with a Phred quality score 
≤ 5. Cleaned reads had error rate mean ≤ 2% and Q30 ≥ 90% for all samples. 
The reads were aligned to the human reference genome (GRCh37/hg19) using 
STAR76 and the expression was quantitated at gene level using featureCounts, a 
count-based estimation algorithm77. Downstream analysis of gene expression was 
performed in the R statistical environment. We applied GC-correction for the 
within normalization step and upper-quantile for the between phase, according to 
a described pipeline78. Most variable genes (1,330) among 29 NF1-glioma samples 
were used for consensus clustering on the Euclidean distance matrix (10,000 
random samplings using 70% of the 29 samples). Best sample clustering (Calinski 
and Harabasz criterion) was obtained with k =  2 groups. Differential expression 
analysis was then performed between the two groups of samples, and the list of the 
100 most differentially expressed genes (two-sided MWW test, top and bottom 50 
genes of the test statistics) was used to construct a heat map comprising the whole 
data set. Samples were clustered using the hierarchical clustering algorithm based 
on the Ward linkage method and Euclidean distance as implemented in R.

Gene ontology networks. Gene ontology enrichment was computed using either: 
(1) MWW-GST, when a full ranked list of genes was available44; or (2) Fisher’s exact 
test, when only a list of significant genes was available (that is, down-regulated 
and hyper-methylated genes, lists of genes in the regulons of the top 10 ATRX 
mutant, and wild-type-specific master regulators). The significant gene ontology 
terms from MWW-GST (q < 0.001, absolute NES > 0.6) or Fisher's exact test 
(q <  0.01) analysis were further analyzed using the Enrichment Map application of 
Cytoscape79. In the network, nodes represent the terms and edges represent known 
term interactions and are defined by the number of shared genes between the pair 
of terms. Size of the nodes is proportional to the number of genes in the category. 
A cut-off was set to the overlapping coefficient (> 0.5) to select the overlapping 
gene sets.

Assembly of the transcriptional interactomes and master regulator analysis. To 
identify master regulators of the gene expression signature activated in the high-
grade LGm6 IDH wild-type pan-glioma ATRX mutant (8 samples) versus ATRX 
wild-type (40 samples) subgroup, we used the transcriptional network assembled 
from gene expression profiles of the IDH wild-type pan-glioma data set using the 
RGBM algorithm from our previous works44,56. The transcriptional interactome 
comprised 300,969 (median regulon size: 141) interactions between a predefined 
set of 2,137 transcriptional regulators and 12,656 target genes. We also used the 
same workflow for master regulator analysis and activity, described in the same 
papers. As a result, we obtained 89 master regulators, 41 of which were enriched 
in ATRX mutant samples (two-sided MWW-GST adjusted P <  0.01, absolute 
NES>  0.6, and two-sided MWW test for differential activity adjusted P <  0.01).

DNA methylation analysis and integrative analysis with the TCGA IDH wild-
type cohort. Methylation analysis of NF1-glioma genomic DNA was performed 
using the Illumina Human 850K EPIC Infinium Methylation BeadChip. Array 
data were imported in the R statistical framework using the Minfi package14 
and normalized using functional normalization. NF1-glioma DNA methylation 
profiles were classified in one of the pan-glioma methylation clusters10 by a 
nearest neighbor classifier using the 1,233 cancer-specific DNA methylation 
probes obtained by intersecting the 1,300 probes used by Ceccarelli et al.10 and 
those available on the 850K EPIC Infinium Methylation platform. For the joint 
unsupervised analysis of the TCGA cohort and the NF1 tumors reported in 
Supplementary Fig. 5, we first dichotomized the data using a β  value >  0.25 as a 
threshold for positive DNA methylation. This binarization tends to mitigate the 
effects of variable tumor purity between the TCGA cohort and the NF1 cohort. 
Unsupervised hierarchical clustering on the 1,233 CpG sites was then applied 
using a binary distance metric for clustering and Ward’s method for linkage. The 
dendogram has two main branches, one corresponding to IDH mutant tumors and 
one corresponding to IDH wild-type tumors. The Calinski and Harabasz curve 
had two local maxima at k =  2 and k =  5. Cutting the tree with 5 groups resulted 
in cluster 3 containing 100% of the NF1 tumors (31 of 31 samples with DNA 
methylation assay) and 95% (62 of 65) sporadic LGm6 tumors.

Integrative expression and DNA methylation analysis. We analyzed differences 
in DNA methylation level between the subgroups of low-grade NF1-gliomas 
characterized by differential activation of immune cells. After removing probes 
targeting X and Y chromosomes and probes not associated with promoters, the 
final methylation data matrix comprised 11 low-grade gliomas (5 low-immune and 
6 high-immune) and 105,956 probes. Differential methylation analysis was then 
performed between low- and high-immune samples of the low-grade cohort using 
the two-sided MWW test (P <  0.01 and absolute methylation fold-change  
> 0.3) and the list of the 259 most differentially methylated probes (229 hyper- and 
30 hypo-methylated) was used to construct a heat map comprising the whole data 
set. Samples were clustered using the hierarchical clustering algorithm based on the 

Ward linkage method and Euclidean distance as implemented in R. Furthermore, 
differential expression analysis was also performed on the two groups of samples 
(9 low-immune and 10 high-immune) using the two-sided MWW test (P <  0.01 
and absolute expression fold-change > 1; 15 up- and 109 down-regulated) for 
integrative analysis. The primary probe for each gene was chosen as the one 
located closest to the –100-bp position in the promoter relative to the transcription 
start site; this location should be in a key region of the promoter to correlate 
with expression changes. Integration of the normalized gene expression and 
DNA methylation gene lists identified a total of 115 of 11,979 unique genes 
with both significant DNA methylation and RNAseq gene expression changes 
between low- and high-immune lower-grade samples. In particular, 68 of the 115 
genes were significantly hyper-methylated and down-regulated in low-grade/
low-immune compared to low-grade/high-immune samples. Finally, a starburst 
plot80 for comparison of DNA methylation and RNAseq gene expression data was 
constructed using log10(P value) for DNA methylation (x axis) and gene expression 
(y axis) for each gene. In the plot, the P values are multiplied by the sign of 
difference of beta values. The dashed black lines indicate the P value at 0.05.

Pairwise mutual exclusivity and co-occurrence of somatic alterations. Pairwise 
mutually exclusive somatic alterations were identified using CoMEt81 with the 
‘exhaustive’ option. Pairwise co-occurrence was tested by Fisher’s exact test. 
Statistically significant exclusion and co-occurrence patterns were visualized using 
Cytoscape with edge thickness representing –log10(P value).

Mutational signatures. The R package DeConstructSigs was used to determine the 
proportion of COSMIC signatures as defined by Alexandrov et al.55.

Dirichlet-multinomial regression for mutational spectra. The correlation 
between mutational spectrum as response variable (C > T, C > A, C > G, T > C, T > 
A, and T > G) and age, grade, and ATRX mutational status as predictor variable was 
determined by a Dirichlet-multinomial model82.

Clonality estimation. Allele mutations and copy number calls for each 
sample were loaded into maftools83 to obtain mutational clones using the 
inferHeterogeneity function.

Neoantigen prediction. For all samples analyzed with both Exome-seq and 
RNAseq available, the four-digit HLA type was predicted using Polysolver84, 
Optitype85, Phlat86, and Seq2hla87, respectively. HLA type was determined if 
predictions were consistent in any one of following conditions: (1) Polysolver 
and Optitype, (2) Polysolver and Phlat, (3) Polysolver and Seq2hla, (4) Optitype 
and Phlat, or (5) Optitype and Seq2hla. Missense mutations were then used to 
generate a list of all possible 9-mers. Binding affinity of mutant and corresponding 
wild-type peptides to the patient’s germline HLA alleles was predicted using 
netMHCpan-4.031. High-affinity binders were defined as those with a half-
maximum inhibitory concentration (IC50) equal to or less than 500 nM. Low-
affinity wild-type allele binders were defined as having an IC50 greater than 500 nM. 
Accordingly, a mutant-specific binder was referred to as a neoantigen when the 
mutant IC50 was less than 500 nM and the wild-type IC50 was more than 500 nM.

In vitro peptide-HLA I binding assay. Peptide-HLA class I in vitro binding 
affinities were determined as described previously54. Purified recombinant HLA 
class I heavy chains were diluted into a refolding buffer (tris-maleate buffer, pH 
6.6) containing β 2-microglobulin and serial 10-fold dilutions (0.01 nM to 200 μ M)  
of the test peptide, and incubated for 48 h at 18 °C to allow for equilibrium to 
be reached in PBS. The HLA concentration was 1.25 nM, and β 2-microglobulin 
concentration was 10 nM. Complex formation was detected using a proximity-
based luminescent oxygen channeling immunoassay. Donor beads were 
obtained preconjugated with streptavidin from Perkin Elmer; acceptor beads 
were conjugated in house with W6/32, a pan-specific anti-HLA class I mouse 
monoclonal antibody (Sigma-Aldrich, MABN1783, 1 mg ml-1) using standard 
procedures as described by the manufacturer. Binding affinity (Kd) was determined 
as described previously54,88,89 using the GraphPad Prism software 6.0. Data are 
means ±  s.d. of counts per second. Amino acid abbreviations: A, Ala; C, Cys;  
D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; 
Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.

C-circle assay. The C-circle assay was done as previously described43. Briefly, 
standard curves for quantitative analysis were prepared with serially diluted 
QuickPreps of ALT[+ ] U2OS and ALT[-] HEK293 cell lines. DNA concentration 
in the QuickPrep was determined using Qubit HS dsDNA assay. Samples were 
subjected to rolling circle amplification (RCA) with or without ϕ 29 polymerase for 
14 h at 30 °C followed by SYBR Green qPCR. Total RCA reaction volume was 20 μ l. 
The reaction was stopped by incubation at 70 °C for 20 min. We used 36B4 primers 
to quantitate telomere content level and determine telomere per single-copy gene 
ratio, telomere, and single-copy gene. Real-time qPCR amplification with telomere 
primers in the sample subjected to RCA in the presence of ϕ 29 polymerase detects 
total telomere content (linear chromosomal telomeres plus extrachromosomal 
telomere C-circle DNA). Amplification with telomere primers of RCA without 
ϕ 29 polymerase detects only linear chromosomal telomeres. The presence of 
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extrachromosomal circular DNA in the sample causes a downward shift of the 
standard curve with telomere primers and ϕ 29. Amplification with 36B4 primers 
determines the single-copy gene quantity in the reaction. C-circle content was 
calculated using the following formulas: C-circle content =  2-∆∆CT, where ∆ ∆ CT =   
Norm∆ CT(+ ) - Norm∆ CT (-), while Norm∆ CT (+ ) =  CT(+ ) - CT(36B4) and Norm∆ 
CT(-) =  CT(-) - CT(36B4) (CT, threshold cycle). Data are presented as the average of 
three technical replicates for each DNA sample.

RT–qPCR. Total RNA was prepared using the AllPrep DNA/RNA/Protein 
Mini Kit (Qiagen) according to the manufacturer’s instructions, and cDNA was 
synthesized using SuperScript II Reverse Transcriptase (Invitrogen). RT–qPCR 
was performed with a 7500 Real Time PCR thermal cycler system (Applied 
Biosystems), using SYBR Green PCR Master Mix (Applied Biosystems). Primer 
sequences are reported in Supplementary Table 17a. Data are presented as -∆ CT 
(CT18S - CT selected gene) of triplicate samples (CT, threshold cycle). Bar graphs 
show mean ±  s.d. of three technical replicates for each glioma sample. Experiments 
were repeated three times with similar results.

Genomic qPCR. Genomic DNA from blood and tumor samples was assayed 
by qPCR using SYBRGreen PCR Master Mix (Applied Biosystems). Dimethyl 
sulfoxide was added at a final concentration of 5% for amplification of the INK4A 
gene. Fluorescence intensities were detected using 7500 Real Time PCR thermal 
cycler (Applied Biosystems), and CT values were calculated using High-Resolution 
Melt Software v2.0 (Applied Biosystems). Primer sequences are reported in 
Supplementary Table 17b. Standard curves for test and reference primers were 
generated using dilution series of genomic DNA. Each dilution was tested in 
triplicate. The CT values (the cycle at which the change in fluorescence for the 
SYBR dye passes a significance threshold) were used for data normalization. ∆ CT 
values (CT18S - CT selected gene) of triplicate samples were used to calculate copy 
number changes relative to control DNA using Microsoft Excel. Bar graphs show 
mean ±  s.d. of three technical replicates for each glioma sample. Experiments were 
repeated three times with similar results.

Bi-allelic mutation analysis of NF1. To determine whether the two different 
mutations detected in an individual tumor were on the same or on separate 
alleles, the genomic DNA or cDNA (obtained from reverse transcription using 
Superscript II reverse transcriptase, Invitrogen) fragments that included the two 
mutations were amplified using AccuPrime taq DNA polymerase high fidelity 
(primers designed to target each specific amplicon and amplicon size for each 
tumor sample are listed in Supplementary Table 5). PCR products of the corrected 
size were purified using QIAquick PCR Purification Kit (Qiagen), subcloned 
into plasmid pCR Blunt II TOPO, and used to transform Escherichia coli. DNA 
was isolated from individual colonies resistant to kanamycin and subjected to 
Sanger sequencing reaction using sense or anti-sense primers to detect one of the 
two mutations in the sense or the anti-sense sequence, respectively. Results were 
analyzed using Sequencer 5.4.6 (Gene Codes Corporation). The sequence of each 
identified mutation was confirmed in at least two independent plasmid clones 
(Supplementary Table 5).

Immunohistochemistry. NF1-glioma samples analyzed by immunostaining had 
been stored in the Onconeurotek tumor bank (certified NF S96 900) and received 
authorization for analysis from the Ethics Committee (CPP Ile de France VI,  
ref. A39II) and the French Ministry for Research (AC 2013–1962). 
Immunostaining was performed as previously described44. For ATRX 
immunohistochemistry, deparaffinization and immunolabeling of sections 
were performed by a fully automatic immunohistochemistry system, Ventana 
BenchMark XT (Roche), using a streptavidin–peroxidase complex with 
diaminobenzidine as chromogen and hematoxylin counterstaining of nuclei. 
Primary ATRX antibody was from Sigma-Aldrich (HPA001906) and was used at 
1:200 dilution. Images were acquired under 20 ×  magnification using an Olympus 
IX70 microscope equipped with a digital camera.

For immune cell marker analysis, tumor sections were deparaffinized in 
xylene and rehydrated in a graded series of ethyl alcohol. Antigen retrieval was 
performed in citrate solution pH 6.0 (CD20 and CD68) or Tris-EDTA solution pH 
9.0 using a decloaking chamber (7 min for CD3 and CD8 and 15 min for GZMB). 
After peroxidase blocking in 3% H2O2 for 15 min, slides were blocked for 1 h in 
10% horse or goat serum, 0.25% Triton X-100, and 1 ×  PBS. Primary antibodies 
were incubated at 4 °C overnight: CD3 (Dako, A0452, 1:200), CD8 (Leica NCL-
L-CD8-4B11, 1:200), GZMB (Leica, PA0291, ready to use), CD20 (Leica, NCL-
L-CD20-L26, 1:200), and CD68 (Sigma, HPA048982, 1:2,000). Sections were 
incubated in horseradish peroxidase-conjugated secondary antibody (Dako 
Envision+  System HRP Labelled Polymer ready to use anti-mouse and anti-rabbit, 
K4000 and K4003, respectively) for 30 min and 3,3-di-amino-benzidine (Vector) 
was used as substrate. Nuclei were counterstained with hematoxylin (Sigma). Slides 
were dehydrated and mounted. Five to 11 images for each section were acquired 
under 20 ×  magnification using an Olympus IX70 microscope equipped with 
a digital camera. Positive cells were counted in an area of 0.15 mm2. Results are 
shown as average number of positive cells per 0.15 mm2. Box plots span the first 
quartile to the third quartile and whiskers indicate the smallest and largest values. 
Comparisons between two groups were analyzed by t-test with Welch correction 

(two-sided, unequal variance). Statistical analyses were performed and P values 
were obtained using the GraphPad Prism software 6.0.

Statistical analysis. In general, two to four independent experiments were 
performed. Comparisons between groups were analyzed by t-test with Welch 
correction (two-sided, unequal variance) and/or the MWW non-parametric 
test when appropriate. Results in bar graphs are expressed as mean ±  s.d. for the 
indicated number of observations. Box plots and scatter plots show median with 
the first quartile to the third quartile, and whiskers indicate the smallest and largest 
values. All statistical analyses were performed and P values were obtained using the 
GraphPad Prism software 6.0 or the R software (https://www.r-project.org) and are 
reported in the Source Data.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genomic, epigenomic, and transcriptomic data supporting the findings of this 
study have been deposited at the European Genome-phenome Archive database 
(https://ega-archive.org), which is hosted by the EBI and the CRG, under accession 
number EGAS00001003186. All other data are available within the article, 
Supplementary Information, and Supplementary Data file.
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Extended Data Fig. 2 | Fingerprint analysis of WES NF1 samples. 
Dendrogram of hierarchical clustering of 59 tumor and 43 normal samples 
based on Pearson correlation coefficients of SNPs allele fractions. Case 
ID and the tissue specimen are indicated (blood DNA, red; tumor with 
available matched blood DNA, blue; tumor without matched normal 
DNA, yellow). The analysis confirmed proper matching of samples for 
each of the 43 tumor-blood DNA pairs. Thirteen tumors without available 
paired normal DNA (yellow) showed individual branches in the clustering 
dendrogram.

http://www.nature.com/naturemedicine


Ex
te

nd
ed

 D
at

a 
Fi

g.
 3

 | 
Va

lid
at

io
n 

of
 re

cu
rr

en
t C

N
Vs

. G
en

om
ic

 q
PC

R 
w

as
 p

er
fo

rm
ed

 to
 a

ss
ay

 c
op

y 
nu

m
be

r c
ha

ng
es

 fo
r T

ER
T 

(n
 =

  10
 g

lio
m

a 
sa

m
pl

es
), 

b,
 IL

-1
5 

(n
 =

  8
 g

lio
m

a 
sa

m
pl

es
), 

c,
 F

GF
1 (

n =
  17

 g
lio

m
a 

sa
m

pl
es

) a
nd

 d
, C

D
KN

2A
 (n

 =
  11

 g
lio

m
a 

sa
m

pl
es

). 
Re

d 
an

d 
bl

ue
 b

ar
s 

in
di

ca
te

 W
ES

-in
fe

rr
ed

 g
en

e 
ga

in
 a

nd
 lo

ss
, r

es
pe

ct
iv

el
y.

 A
na

ly
si

s 
of

 n
or

m
al

 D
N

A
 (g

re
en

 b
ar

s)
 w

as
 in

cl
ud

ed
 to

 d
ef

in
e 

di
pl

oi
dy

 (d
ot

te
d 

lin
e)

. 
Tu

m
or

 s
am

pl
es

 d
ip

lo
id

 fo
r t

he
 te

st
ed

 g
en

e 
w

er
e 

in
cl

ud
ed

 a
s 

co
nt

ro
l (

w
hi

te
 b

ar
s)

. B
ar

 g
ra

ph
s 

sh
ow

 m
ea

n 
±

  s.
d.

 o
f 3

 te
ch

ni
ca

l r
ep

lic
at

es
. E

xp
er

im
en

ts
 w

er
e 

re
pe

at
ed

 th
re

e 
tim

es
 w

ith
 s

im
ila

r r
es

ul
ts

.

http://www.nature.com/naturemedicine


Ex
te

nd
ed

 D
at

a 
Fi

g.
 4

 | 
So

m
at

ic
 m

ut
at

io
n 

bu
rd

en
 o

f N
F1

-g
lio

m
a 

an
d 

pe
di

at
ric

 a
nd

 a
du

lt 
ca

nc
er

 g
en

om
es

. D
is

tr
ib

ut
io

n 
of

 s
om

at
ic

 n
on

-s
yn

on
ym

ou
s 

co
di

ng
 m

ut
at

io
n 

ra
te

 is
 re

pr
es

en
te

d 
on

 a
 lo

ga
rit

hm
ic

 s
ca

le
 fo

r N
F1

- a
nd

 s
po

ra
di

c 
gl

io
m

a 
(b

ol
d)

 a
nd

 o
th

er
 fr

eq
ue

nt
 c

an
ce

r t
yp

es
, i

nc
lu

di
ng

 p
ed

ia
tr

ic
 tu

m
or

s.
 

C
an

ce
r t

yp
es

 a
nd

 s
ub

gr
ou

ps
 a

re
 o

rd
er

ed
 b

y 
in

cr
ea

si
ng

 m
ut

at
io

n 
fre

qu
en

cy
 m

ed
ia

n,
 w

ith
 th

e 
lo

w
es

t f
re

qu
en

ci
es

 (l
ef

t)
 fo

un
d 

in
 p

ed
ia

tr
ic

 tu
m

or
s 

an
d 

lo
w

-
gr

ad
e 

N
F1

-g
lio

m
a.

 S
om

at
ic

 m
ut

at
io

ns
 u

se
d 

to
 c

al
cu

la
te

 th
e 

m
ut

at
io

na
l b

ur
de

n 
fo

r d
iff

er
en

t c
an

ce
r t

yp
es

 w
er

e 
re

tr
ie

ve
d 

fro
m

 T
CG

A
 (a

du
lt 

tu
m

or
s)

 a
nd

 
TA

RG
ET

 (p
ed

ia
tr

ic
 tu

m
or

s)
 d

at
ab

as
es

.

http://www.nature.com/naturemedicine


Ex
te

nd
ed

 D
at

a 
Fi

g.
 5

 | 
M

ut
at

io
na

l c
lo

na
lit

y.
 A

na
ly

si
s 

of
 m

ut
at

io
na

l c
lo

na
lit

y 
in

 5
5 

N
F1

-g
lio

m
a 

sa
m

pl
es

. a
, N

um
be

r 
of

 m
ut

at
io

n 
cl

on
es

 r
el

at
iv

e 
to

 a
ge

 
(P

ea
rs

on
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

 =
  –0

.12
6 

an
d 

p =
  0

.3
63

), 
an

d 
b,

 tu
m

or
 g

ra
de

 (P
ea

rs
on

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
 =

  0
.0

31
 a

nd
 p

 =
  0

.8
20

). 
Bl

ue
 li

ne
: l

in
ea

r r
eg

re
s-

si
on

; s
ha

de
d 

ar
ea

: 9
5%

 c
on

fid
en

ce
 in

te
rv

al
.

http://www.nature.com/naturemedicine


Extended Data Fig. 6 | Analysis of DNA Copy Number Variations. Schematics of chromosome location peaks (gain, red; loss, blue) identified using 
GISTIC2. Peaks are designated by candidate targets for each region, selected according to criteria described in Methods. The complete list of chromosome 
location peaks is included in Supplementary Table 6a, b.
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Extended Data Fig. 7 | Mutual exclusivity and co-occurrence of genetic alterations in NF1-glioma. a, Mutually exclusive and b, co-occurring genetic 
alterations in NF1-glioma were evaluated using CoMEt and two-sided Fisher’s exact test, respectively. Significant mutual relationships between two gene 
alterations are indicated by a line (green, exclusion; red, co-occurrence) whose thickness represents -log10 of p-value (reported in Supplementary Table 7).
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Extended Data Fig. 9 | Somatic alterations in PI3K and Transcription/Chromatin regulation pathways in NF1-glioma. Integrated matrix of 59 NF1-
glioma samples (56 patients) and somatic alterations (SNVs and indels, and significant copy number variations) occurring in genes linked to PI3K and 
transcription/chromatin regulation pathways (left panel, high-grade glioma; right panels low-grade glioma). Rows and columns represent genes and 
tumor samples, respectively. NF1-glioma samples are sorted in the same order of Fig. 2. Genes are grouped by PI3K (purple) and transcription/chromatin 
regulation (blue) pathways. Genomic alterations, age, the histology of glioma and the identification of NF1 germline mutation are shown by the indicated 
colors. Validation by Sanger sequencing (SNVs) and quantitative-genomic PCR (gains and losses) are indicated by yellow and green triangles, respectively.
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Extended Data Fig. 10 | Somatic alterations in splicing, MAPK and cilium/centrosome pathways in NF1-glioma. Integrated matrix of 59 NF1-glioma (56 
patients) and somatic alterations (SNVs and indels, and significant copy number variations) occurring in genes included in splicing, MAPK and cilium/
centrosome pathways (left panel, high-grade glioma; right panels low-grade glioma). Rows and columns represent genes and tumor samples, respectively. 
NF1-glioma samples are sorted in the same order of Fig. 2. Genes are grouped by splicing (red), MAPK (yellow) and cilium/centrosome (green) pathways. 
Genomic alterations, age, the histology of glioma and the identification of NF1 germline mutation are shown by color as indicated. Validation by Sanger 
sequencing (SNVs) and quantitative-genomic PCR (gains and losses) are indicated by yellow and green triangles, respectively.
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