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As a bubble grows outside of a cavity during nucleate boiling, viscous effects can be
large enough compared to surface tension to impede liquid motion and trap a thin
liquid layer, referred to as liquid microlayer, underneath the growing bubble. In practice,
numerical simulations of nucleate boiling resolve the macroscopic liquid-vapor interface
of the bubble, but resort to subgrid models to account for micro scale effects, such as
the evaporation of the liquid microlayer. Evaporation models require initialization of the
microlayer shape and extension, but models for microlayer formation are either physically
incomplete or purely empirical. In this work, the Volume-Of-Fluid (VOF) method,
implemented in the Gerris code, is used to numerically reproduce the hydrodynamics
of hemispherical bubble growth at a wall, and resolve the formation of the liquid
microlayer with an unprecedented resolution. Simulations are validated against the latest
experimental data and compared to existing analytical models. Lastly, remaining gaps in
building a generally applicable model for the formation of the microlayer are presented.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction and motivation

The transport of latent heat makes boiling one of the most efficient mode of heat
transfer, allowing a wide range of systems to improve their thermal performance, from
nuclear power plants to microelectronic devices - see reviews by Yeh (1995), Manglik
(2006), and Kandlikar (2012). Subcooled boiling heat transfer for example is able to
accommodate very high heat fluxes, thus cooling components very efficiently.

Predicting boiling heat transfer has therefore garnered significant attention, but re-
mains complicated by the need to consider phenomena occurring over multiple scales -
see Figure 1, from the adsorbed liquid layer at the wall at the nanometer scale - see
Churaev (1975) and Chung et al. (2011), up to the bubble diameter at the millimeter
scale, see Dhir (1998), Stephan & Kern (2004), Kim (2009), Kunkelmann & Stephan
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(2010), Guion et al. (2013), Jiang et al. (2013), Jung & Kim (2014), Sato & Niceno
(2015), Giustini et al. (2016), Zou et al. (2016a), and Zou et al. (2016b).

1.1. Physical phenomena

During nucleate boiling a bubble grows outside of a surface imperfection, referred
to as cavity, and from a preexisting embryo of vapor initially trapped in that surface
imperfection. Boiling starts at the wall when the local temperature is sufficiently high to
allow the vapor bubble to exist and grow outside of the cavity and into the surrounding
liquid, see Bankoff (1958).
At the inception of nucleate boiling at a cavity, the liquid in the vicinity of the heated wall
is superheated and mass transfer occurs at the liquid-vapor interface of the bubble. The
growth of the bubble is also fueled by the overpressure within the vapor, and impeded
by the inertia of the liquid. During this initial phase of rapid growth, often referred to
as the inertia-controlled phase of bubble growth, the bubble grows hemispherically, see
Figure 2: bubble growth rates, Ub, based on bubble cross section area, bubble height,
and bubble width are identical.
We define a capillary number Ca associated with bubble growth rate as:

Ca = µlUb/σ

with µl the liquid viscosity and σ the surface tension coefficient. As the bubble grows
outside of the cavity, Ca can be large enough to impede liquid motion at the wall and
trap a thin liquid layer underneath the bubble: the liquid microlayer - see experimental
evidence by Moore & Mesler (1961), Hendricks & Sharp (1964), Hospeti & Mesler
(1965), Jawurek (1969), Foltz & Mesler (1970), Judd (1975), Judd & Hwang (1976),
Koffman & Plesset (1983), Moghaddam & Kiger (2009), Golobic et al. (2009), Kim &
Buongiorno (2011), Gao et al. (2013), Jung & Kim (2014), Jung & Kim (2015), Bigham
& Moghaddam (2015), Yabuki & Nakabeppu (2014), Yabuki & Nakabeppu (2016), and
Zou et al. (2016a).
Once the bubble has reached a certain size, referred to as departure diameter, the bubble
departs from its initial position at the heated wall and additional cooling mechanisms
can occur.

From measurements of microlayer thickness over time by Kim & Buongiorno (2011) in
the case of water at atmospheric pressure, we identify two separate time scales τ1 and τ2
representative of microlayer formation and evaporation, respectively: τ1 ∼ 10 − 100µs,
and τ2 ∼ 1− 10ms. Hemispherical bubble growth was observed at both time scales - see
Figure 2.

1.2. Modeling of boiling heat transfer

In the past, various empirical correlations and mechanistic models have been proposed
to describe and predict boiling heat transfer - see reviews by Dhir (1998), Manglik
(2006), and Warrier & Dhir (2006). A wide range of boiling surface geometries, materials,
working fluids, and operating conditions have been investigated. In particular, heat
partitioning models by Judd & Hwang (1976), Kurul & Podowski (1990), and Gilman
(2014) provide a mechanistic description of the wall boiling phenomena: the total heat
flux at the wall is divided into separate heat flux components that account for various
modes of heat transfer at the wall, such as forced convection, evaporation, quenching,
and sliding conduction. In this context, recent advanced diagnostics (Infrared Imagery,
Particle Image Velocimetry, High Speed Video Imagery, and etc.) provide new and highly-
resolved experimental data that can inform and validate models or correlations describing
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Figure 1: Multiple scales involved in nucleate boiling: from the millimeter scale at the
bubble cap (top) to the nanometer scale at the adsorbed liquid layer (Region I, right
insert). Region I: adsorbed layer region of thickness h0 ∼ 1−10nm. Region II: transition
region between the non-evaporating adsorbed layer and the evaporating liquid microlayer
(h > h0 and h . 100nm). Region III: central microlayer region of typical thickness
δ ∼ 1− 10µm. Note in the insert the black dotted line that represents the Triple Phase
Line (TPL) where the three phases (liquid, vapor, and solid) are in apparent contact. The
contact angle θ represents the angle between the contact line and the substrate at the
microscopic scale. Region IV: microlayer outer-edge region of typical thickness δ > 10µm,
where the thickness rapidly increases from the central region to the bubble cap.
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Figure 2: Bubble growth rate Ub as a function of time based on bubble cross section area,
bubble height, and bubble width recorded by a High Speed Video camera on the side
of the growing bubble (Courtesy of Prof. Hyungdae Kim). Fluid is water at saturation
and atmospheric pressure. Typical time scales τ1 ∼ 10 − 100µs, and τ2 ∼ 1 − 10ms
are representative of microlayer formation and evaporation, respectively. Hemispherical
bubble growth was observed at both time scales.

each individual component of the wall heat flux, as they individually represent a single
specific physical phenomenon at the wall - see the review by Buongiorno et al. (2014).
Through careful calibration and post-processing, it is possible to accurately measure
the temperature and heat flux distributions on the boiling surface which reveals detailed
features, including the effects of evaporation of the liquid microlayer as shown by Gerardi
(2009) and Kim (2009). Depending on the fluid, flow and nucleation temperature, the
contribution from microlayer evaporation to overall heat transfer and bubble growth
can be large in the case of water, see Gerardi (2009), or relatively small in the case
of refrigerants, see Kim (2009). Typical microlayer models focus on evaporation at the
Triple-Phase-Line (TPL) region where the three phases (liquid, solid, and vapor) are in
apparent contact, see Dhir (2009) and Kunkelmann & Stephan (2010), or in the extended
microlayer region, see Guion et al. (2013), Jiang et al. (2013), and Sato & Niceno (2015).
In practice, numerical simulations of boiling resolve the macroscopic liquid vapor interface
of boiling bubbles, but typically resort to subgrid models to include contributions at the
microscopic scale such as from evaporation of the microlayer, which requires initialization
of the microlayer shape and extension.

1.3. Current gaps and proposed strategy

Existing models of microlayer formation are either physically incomplete, e.g. do not
include the effect of surface tension or contact angle, see Van Stralen et al. (1975),
or are purely empirical, see Sato & Niceno (2015). The objective of the present work
is to leverage existing numerical methods to build a large numerical database and
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inform mirolayer formation, clarify remaining modeling challenges, and eventually build
a generally applicable model for the formation of the microlayer. Existing experimental
data that directly measures microlayer thickness profiles, see work from Judd (1975),
Koffman & Plesset (1983), Kim & Buongiorno (2011), Jung & Kim (2014), and Jung
& Kim (2015), does not cover a wide range of fluids and surfaces, which makes it
difficult to generate or validate a general model on microlayer formation. In practice,
measurements of microlayer thickness profiles are mostly obtained at times where the
microlayer has already started to evaporate, with little insight on its formation dynamics.
Recent advances by Yabuki & Nakabeppu (2016) in indirect measurements of microlayer
thickness at short time scales can offer new insights and will be discussed.
In the present work, we use Computational Fluid Dynamics with Interface Tracking
Methods to numerically reproduce the hydrodynamics of bubble growth at a wall, and
resolve the formation of the liquid microlayer at the wall for a wide range of conditions and
fluids. For all simulated cases, the Volume-Of-Fluid Method implemented in the Gerris
flow solver from Popinet (2009) is used to accurately track the liquid vapor interface over
time, and predict the formation of the microlayer.

1.4. Assumptions made in this work

In this work, we focus on the mechanisms of microlayer formation. In particular, we
only consider the hydrodynamics of bubble growth at the wall, and neglect thermal
effects, separating microlayer formation (τ1 ∼ 10 − 100µs) from microlayer evaporation
(τ2 ∼ 1− 10ms� τ1). Part of the liquid layer that forms at the wall may also evaporate
during such short time scales τ1, hence affecting its shape over time. However, we estimate
that only 10% or less of the thickness of the liquid microlayer would be affected by
evaporation during the formation phase, for a typical wall superheat at the wall ∆T
(∆T = 1 to 10K) observed experimentally at atmospheric pressure, and considering
evaporation from pure conduction through the liquid layer, for various growth times (1
to 100µs), and various layer thicknesses (0.1 to 10µm). Thermal effects, including the
effect of mass transfer, on the motion of the contact line at short time scales are not
included in the scope of the present work. Long range interaction forces of the liquid
film with the substrate are also neglected as they may be relevant only at very short
time scales where the film is very thin - see for example Rednikov & Colinet (2013).
In this work, we implement a static contact angle at a wall for simplicity, which allows
the contact line to move. However, one could replace it with a specific mobility law that
would describe the behavior of the microscopic contact angle in the conditions of interest.
Mesh dependence of moving contact lines simulations with grid size as previously shown
by Moriarty & Schwartz (1992), Weinstein & Pismen (2008), and Afkhami et al. (2009)
is reported elsewhere, see Afkhami et al. (2017).

1.5. Contributions and structure of the paper

This work focuses on three main contributions: (i) identify the minimum set of dimen-
sionless parameters that controls the hydrodynamics of microlayer formation at a wall
during nucleate pool boiling (ii) generate a numerical database that resolves the dynamics
of microlayer formation for all conditions of interest (e.g. water in lab experiment at
atmospheric pressure, water at nuclear reactor pressure conditions), and (iii) identify
remaining gaps in building a generally applicable model for microlayer formation, to be
used during the initialization of boiling simulations. This paper specifically focuses on
the central microlayer region, see region III in Figure 1. Future work includes modeling
the outer-edge region, see region IV in Figure 1, using the present numerical database,
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and modeling the particular contact line dynamics using experimental data for specific
wall conditions and for the fluid/solid pair of interest.

In section 2 we provide a dimensional analysis and general functional dependence
for the microlayer formation dynamics. In section 3 we describe the computational
framework used to simulate microlayer formation, and verify the correct implementation
and convergence of the methods used. In section 4 we discuss the reduction of the
parameter space, qualitative trends, and numerical results used to model microlayer
formation, in particular we compare our results in the central region (region III, Figure
1) with the analytical model from Cooper & Lloyd (1969) and with latest experimental
results measuring microlayer thickness at early times. In section 5 we conclude by
discussing the contributions of this present work and the remaining opportunities for
future work.

2. Problem statement and dimensional analysis

We consider the early growth of a steam bubble near the wall of a pool of initially
stagnant liquid. We take advantage of the symmetry of the growth and consider the
problem to be axisymmetric. Ten physical variables are involved in describing the hydro-
dynamics of microlayer formation: liquid and vapor viscosities, µl and µv, respectively;
liquid and vapor densities, ρl and ρv, respectively; surface tension, σ; bubble growth rate,
Ub, the velocity at which the liquid/vapor interface moves inside the surrounding liquid;
microscopic contact angle between the liquid vapor interface and the wall at a given
reference length scale dx, the minimal mesh size, θ; radial distance from bubble root, r;
time, t; and the unknown local thickness of the liquid microlayer forming at the wall, δ.
Altogether, these ten variables involve three physical dimensions, and seven dimensionless
Pi-groups can fully describe microlayer formation. The proposed dimensionless Pi-groups
are:

Π1 = δ/rc = δ∗

Π2 = µl/µv = µ∗

Π3 = ρl/ρv = ρ∗

Π4 = r/rc = r∗

Π5 = t/tc = t∗

Π6 = θ

Π7 = Ca = µlUb/σ

where the reference length and time scales rc and tc were defined as follows:

rc = µl/(ρlUb) (2.1)

tc = rc/Ub = µl/(ρlU
2
b ) (2.2)

with rc based on Reynolds number Re = 1, for which inertia of the liquid surrounding
the bubble and viscous forces at the wall would be comparable. A unique functional form
describes the microlayer shape δ∗ as a function of the six other Pi-groups, which can be
written as follows:

δ∗ = f(µ∗, ρ∗, r∗, t∗, Ca, θ) (2.3)

In this study we have performed numerical simulations of microlayer formation to
quantify f (Eq. 2.3). The relevant parameter space for liquid water boiling in lab
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and industrial conditions (Pressurized Water Reactors, or PWR) is as follows: µl/µv ∈
[3.2; 23.3], ρl/ρv ∈ [5.9; 1650], Ca ∈ [0.001; 0.1], θ ∈ [0; 90◦]. The range of capillary
number, Ca, is obtained from water properties at saturation (µl and σ) for both pressures
(0.101MPa and 15.5MPa), and estimates of bubble growth rates Ub from Mikic et al.
(1970), including a range of cavity mouth radius rb:

Ub =
√
πhfgρv∆Tsat/(7ρlTsat) (2.4)

where ∆Tsat is the so-called wall superheat at the inception of boiling:

∆Tsat = 2σTsat/(rbρvhfg) (2.5)

with Tsat the saturation temperature, and hfg the latent heat of vaporization. In practice,
bubble growth rate Ub and wall superheat ∆Tsat, estimated using Eq. 2.4 and 2.5, are
experimentally measured.

3. Computational framework

A myriad of methods are available today to simulate two phase flows while tracking the
interface between two fluids - see recent review by Kharangate & Mudawar (2017). The
Volume-Of-Fluid (VOF) method, see Scardovelli & Zaleski (1999), tracks the interface
using a color function C that represents the volume fraction of one phase in each cell of
the computational domain. Starting from an initial distribution, the color function C is
then advected by the flow:

∂Cρ/∂t+∇.(Cρ~U) = S (3.1)

The Gerris Flow Solver by Popinet (2009) (gfs.sourceforge.net/) solves the incompressible
Navier-Stokes equations, and implements the VOF method to track the interface and
compute the surface tension force:

ρ(∂~U/∂t+ ~U.∇~U) = −∇p+∇.(2µ ¯̄D) + σκδs~n+ ~Fexternal (3.2)

∂ρ/∂t+∇.(ρ~U) = S (3.3)

∇.~U = S (3.4)

where S is a volume source such that ∇.~U = S; ~U is the velocity field; p is the pressure;
κ is the curvature of the liquid vapor interface; ~n is the unit vector normal to the
liquid vapor interface; ¯̄D is the rate of strain ¯̄D = ∇U + (∇U)T ; ρ is the fluid density,
ρ = Cρl + (1− C)ρv; µ is the fluid viscosity, µ = Cµl + (1− C)µv.

The computational domain in Gerris is spatially discretized using a quad mesh, which
allows refining specific regions in space while coarsening others. In this work, we typically
refine in the vicinity of the wall and at the interface to resolve microlayer formation, while
coarsening away from the wall and the bubble interface where such refinement is not
necessary. We include a time-dependent volumetric source of vapor within the vapor phase
to reproduce the growth observed in lab experiments. The source of vapor fuels bubble
growth uniformly inside the bubble, and pushes the liquid vapor interface at the desired
rate Ub, hence reproducing the hydrodynamics of hemispherical bubble growth. A time-
dependence of the source is necessary to reproduce the sustained growth of the bubble as
its volume increases. For a given constant bubble growth rate Ub (Ub = dRb/dt) during
the initial inertia-controlled phase of bubble growth, one can compute the volumetric
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Figure 3: Computational domain for implementing a volumetric source of vapor to control
the growth of the bubble in the presence of a wall.

growth rate dVb/dt of the equivalent hemispherical bubble as follows:

dVb/dt = 2πR2
b(dRb/dt) = 2πR2

bUb (3.5)

The rate of change of the equivalent hemispherical bubble dVb/dt is obtained by imposing
a volumetric source term S in the vapor phase of volume Vb:

SVb = dVb/dt (3.6)

Rearranging Eq. 3.6, we obtain an explicit expression for the volumetric source term
S to impose in the vapor phase:

S = (dVb/dt)/Vb = 3Ub/(Rb,0 + Ubt) (3.7)

Note the volumetric source term S is uniform in space within the vapor phase at all
times, yet time dependent, and function of three parameters: the bubble growth rate
Ub known from experiments or derived from Mikic’s theory, see Mikic et al. (1970), the
initial bubble radius Rb,0 prescribed during the initialization of the numerical simulation,
and the physical time t. We typically simulate the growth of the bubble outside of the
cavity, and initialize the bubble radius Rb,0 as the cavity mouth radius rb (see Eq. ??).

Method verification

We verify the implementation of the volumetric source term in axisymmetric configu-
ration in Gerris in the absence of a wall, for the special case of a spherical bubble growth
in a (semi)-infinite medium. We compare the volume and shape of the bubble to its
simple analytical and spherical reference, and confirm convergence with grid size.

We also verify the convergence of the proposed method in the presence of a wall -
see Figure 3. Two figures of merit are considered: the shape of the liquid microlayer
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(a) (b)

Figure 4: Axisymmetric shapes of the macroscopic bubble (a) and liquid microlayer (b)
obtained in four simulations of bubble growth at a wall, with increased refinement dx∗ ∈
{1, 1/2, 1/4, 1/8} in the band: 0 6 δ∗ 6 160 at the wall, while the refinement elsewhere
at the interface is kept identical: dx∗ = 4, with R∗

b,0 = 40 and rc = 0.025 µm.

forming at the wall, and the macroscopic bubble growth rate obtained from imposing
the volumetric source of vapor inside the bubble. Four simulations of bubble growth at
a wall are reported here, with increased refinement in the microlayer region: dx/Rb,0=
1/40, 1/80, 1/160, 1/320 (Rb,0 = 10µm), specifically in a band of thickness 0.4Rb,0 at
the wall. Refinement elsewhere at the interface is kept identical: dx/Rb,0=1/10. All four
simulations yield identical macroscopic bubbles shapes - see Figure 4(a). In Figure 4(b),
the microlayer shape converges to a single profile as we refine the mesh in the microlayer
region, from dx = 250 nm down to 125 nm, 62.5 nm, and 31.25 nm.

4. Numerical simulation results

Four regions (and scales) can be identified based on the curvature of the bubble
interface, see Figure 5: (i) the contact line region where the interface meets the wall
(negative curvature), (ii) the central region of the liquid microlayer (≈ zero curvature),
(iii) the microlayer outer-edge region that connects the central region with the macro-
scopic bubble cap (up to the bubble nose where the curvature peaks), (iv) the macroscopic
hemispherical bubble cap (uniform curvature along the interface).

4.1. Reducing the parameter space

We perform simulations with all four bounding values for both viscosity and density
ratios, and we note the weak dependence of the microlayer shape within both ranges of
interest. This weak dependance is supported by the argument that the properties of the
liquid phase affect the hydrodynamics of this problem much more than those of the vapor
phase, which in practice can be considered as an inviscid and massless fluid. Therefore,
in the rest of the study, we will no longer consider the dependence of the microlayer
formation on the viscosity and density ratios, which simplifies the function in Eq 2.3 for
the conditions of interest.
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Figure 5: Typical axisymmetric shape of a growing bubble at a wall. Interface is solid
black line. Curvature κ is given by the colormap: blue in the contact line region is negative
curvature (minimum reached at the contact point κ = −6.6 10−1 [1/µm]), green in the
central linear region is approaching zero curvature (κ ≈ 10−3 [1/µm]), red at the bubble
nose is maximum curvature (κ = 5.8 10−2 [1/µm]), and yellow is the uniform curvature
along the interface at the bubble cap as the bubble grows hemispherically (κ ≈ 1.5 10−2

[1/µm]). The range used in the color map does not reflect the maximum positive value
and minimum negative value taken by the curvature, but rather is centered around 0
to allow easier identification of all four regions, also denoted in the image with direct
labeling.

4.2. Modeling the microlayer inner edge

A general model of moving contact lines is out of the scope for the present paper.
However, we identify multiple scenarios that could take place at the inner edge of the
microlayer, where the liquid/vapor interface meets the solid surface: i) no motion of
the contact line, pinned either at the cavity mouth or elsewhere on the wall surface, ii)
intermittent motion of the contact line, where pinning and depinning of the contact line
occurs at the wall, and iii) continuous motion of the contact line, that could be described
by a mobility law θ = g(Cacl), with Cacl the capillary number associated with the motion
of the contact line, and θ the contact angle. When the contact line is free to move (no
pinning), its motion relative to the bubble growth dictates whether a microlayer forms
at the wall or not.

Qualitatively, the radial component of the surface tension force applied to a liquid
wedge decreases in magnitude for increasing contact angles. Hence the contact line is
expected to move faster at higher contact angles and the wetted fraction underneath
the bubble is expected to be reduced at higher contact angles. Quantitatively, physical
models or experimental data on contact line motion are needed to conclude on whether a
microlayer is expected to form or not, for a given fluid/solid pair and surface condition,
which cannot be resolved by the Gerris flow solver alone. In this work, we simulate moving
contact lines for a wide range of constant and uniform contact angles at the wall, ranging
from 20◦ to 90◦. An extension of this work could include a physical mobility law to apply
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Figure 6: Microlayer thickness profiles δ∗ for two contact angles θ = 20◦ (blue solid line)
and θ = 80◦ (black dashed line), as a function of dimensionless radial distance r∗−R∗

b,0.

Ca=0.1, t∗ = 3.6 103 (rc = 10nm, tc = 1ns).

the proposed methodology to a specific application for which the physical motion of the
contact line is known.

The simulation of moving contact lines is made possible with Gerris through the use
of a height-function based model of contact angle implemented by Afkhami & Bussmann
(2008), where a numerical contact angle θ is imposed in the cell at the wall containing
the contact line. This microscopic contact angle is used to define the normal to the
interface at the contact line, and therefore impacts both the computed curvature and
the resulting surface tension force at the contact line. Cell normal velocities are used to
advect volume fractions, resulting in an implicit slip along no-slip boundaries such as
along the wall, which allows the contact line to move at the wall with the prescribed
microscopic contact angle θ. As a consequence, the dynamics of the simulated moving
contact line depend both on the microscopic contact angle prescribed and on grid size.
Specific mesh convergence studies are reported in other papers, including most recently
in Afkhami et al. (2017).

Typical simulation results are shown in Figure 6: we confirm that the wetted fraction
underneath the bubble is reduced for higher contact angles, and we note the formation
of a bulge of liquid at the inner edge of the microlayer. The surface tension force acts at
the inner edge against the viscous force at the wall and pushes the contact line outwards,
similar to the classic hole expansion problem, see Taylor & Michael (1973), Brenner &
Gueyffier (1999), Savva & Bush (2009), Gordillo et al. (2011), and Agbaglah et al. (2013).
The Ohnesorge number Oh is defined as:

Oh = µl/
√
δρlσ =

√
Ca/δ∗

Three regimes are identified based on the Ohnesorge number: Oh < 0.1, Oh ∈ [0.1; 10],
and Oh > 10. As Oh increases, the capillary waves found at the tip disappear through
the action of viscosity. In all simulations presented in this paper, we find that Oh ranges
from 0.001to0.1, which corresponds to the first regime where capillary waves are expected
in the vicinity of the tip, and damped away from the tip due to viscous effects, leaving
the rest of the extended liquid layer unaffected by the motion of the rim, as confirmed
in Figure 6.

The microscopic contact angle θ used in Gerris allows us to represent the behavior of



12 A. Guion, S. Afkhami, S. Zaleski, J. Buongiorno

the moving contact line as a boundary condition, or subgrid model, without attempting
to resolve the complex physics at play at the scale of the contact line. For simplicity in
the rest of the paper, we present results for low microscopic contact angles in order to
observe microlayer formation. However, the informed reader would need to consider the
specific motion of the contact line for the wall condition and solid/fluid pair of interest
in order to determine whether a microlayer forms or not in such conditions, and quantify
the relative motion of the contact line with respect to the macroscopic bubble.

4.3. Modeling the microlayer central region

An analytical model for microlayer formation has been proposed by Cooper & Lloyd
(1969), using a simplified, single-phase boundary layer description of the two phase flow
problem:

δ = C0

√
νltg (4.1)

where tg is the growth time, C0 a dimensionless constant, and νl = µl/ρl. Under constant
bubble growth rate Ub, we obtain the dimensionless form:

δ∗ = C0

√
(µl/ρl) ∗ (r/Ub) = C0

√
r∗ (4.2)

With an initial bubble dimensionless radius R∗
b,0, and assuming that the contact line is

either pinned at its initial position (r∗ = R∗
b,0) or that its outward motion is negligible

compared to the macroscopic bubble growth, then the square root model becomes:

δ∗ = C0

√
r∗ −R∗

b,0 (4.3)

We present in Figure 7 the square root model along with our numerical simulation
results, for the range of capillary numbers of interest, Ca ∈ [0.001; 0.1], and for a
low contact angle θ = 10◦ for which we observe the formation of the microlayer with
negligible motion of the contact line compared to the radial extension of the bubble
growth. Numerical simulations at higher contact angles were also performed for sake of
generality, with contact angles ranging from 10◦ to 90◦. As long as a microlayer forms,
higher contact angle conditions yield identical microlayer profiles away from the contact
line region, and do not affect the overall volume of liquid trapped underneath the bubble,
as shown in the previous section and in Figure 6.

More specifically, we plot the simulated microlayer profiles δ∗ as a function of dimen-
sionless radial distance r∗−R∗

b,0 on the left panels of Figure 7, for three consecutive times,
and for capillary numbers spanning the range of interest: Ca=0.001 (a), Ca=0.01 (c)
and Ca=0.1 (e). We note that the microlayer continuously grows over time, and that the
portion of the thickness profile that has already formed at a given time remains unchanged
at later times, with the exception of the contact line region where the dewetting process
increases liquid build-up over time at the inner-edge.

The volume of liquid Vin associated with the build-up at the inner edge is typi-
cally negligible compared to the total volume of liquid Vtot trapped under the bubble
(Vin/Vtot < 0.1%), and will not be modeled in the later portion of the paper. This
simplification only applies if the contact line’s outward motion is negligible compared to
the bubble growth, which depends on the physical behavior of the contact line for a given
fluid/solid pair and surface condition. In our numerical experiments, and for the contact
angle model described earlier, we note in Guion (2017) that the simplification breaks
down for very low capillary numbers (Ca→ 0) and large contact angles (θ → 90◦), where
the velocity of the contact line approaches the bubble growth rate, and no microlayer is
left behind.
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In Figures 7 (b) (d) (f), we plot the ratio δ∗/
√
r∗ −R∗

b,0 as a function of dimensionless

radial distance r∗ − R∗
b,0. We note that the ratio is constant in the central region of

the microlayer, and that the magnitude of the ratio is close to 0.5 for all the considered
capillary numbers. From this observation, we use C0 = 0.5 in the square root model
prediction, and compare it with our simulation results in Figures 8, 9 and 10, for various
times and all Ca of interests.

Modeling microlayer formation is particularly important to capture two key boiling
characteristics: i) the wall heat flux, and ii) the total volume of liquid trapped underneath
the bubble that evaporates and that fuels bubble growth up to its departure from the
heated surface. The square root model is able to capture both thickness and volume of
the microlayer in the central region, which corresponds to the thin part of the microlayer.

We also conclude from Figures 8, 9 and 10 that the square root model does not capture
the outer-edge region of the microlayer, and therefore the total volume of liquid trapped
underneath the bubble is underestimated. This conclusion suggests the need for specific
modeling of the transition from the central (thin) region of near-zero curvature, to the
outer-edge (thick) region, of non-zero curvature which is left for future work.

4.4. Validating numerical results with experimental data and existing models

Initially in Cooper & Lloyd (1969), experimental data on organic liquids boiling at
low pressures provided estimates of C0, in the range of 0.5 to 1.0, for which experimental
data and square root model were found to agree within ±25%.

Recent advances in microlayer thickness measurements at different radial locations
and short time scales by Yabuki & Nakabeppu (2016) uncovered two regimes based on
a modified Bond number B̂o:

B̂o < 13 : Cexp = 0.13Bo0.38 (4.4)

B̂o > 13 : Cexp = 0.34 (4.5)

with B̂o = ρlr
2U/tσ, and Cexp the experimental measurement of C0. Rearranging B̂o

we obtain B̂o = ρlU
2tU/σ = t∗/Ca. The transition at B̂o = 13 correspond to physical

times t = B̂o Ca tc in the range of 10−3µs to 10−1µs for the case of boiling water at
0.101MPa (Ca ∈ [0.001; 0.1], and tc ∼ 0.1µs). Therefore, only the second regime is
relevant to microlayer formation, which occurs over tens of µs, and we note Cexp = 0.34
the corresponding experimental measurement of C0 from Yabuki & Nakabeppu (2016),
which is of the same order of magnitude as the value of 0.5 we obtain in our numerical
simulations.

Lastly, we use experimental measurements of microlayer thickness to validate our
numerical results, for the case of water at saturation at 0.101MPa (data courtesy
of Prof. Hyungdae Kim). In the experiment, a high-speed video camera was used to
measure bubble radius over time, and an IR camera was used to measure the wall
temperature distribution underneath the bubble. From the bubble height and width
measurements shown in Figure 2, we conclude that the bubble grew hemispherically.
An additional high-speed video camera was used to measure microlayer thickness. The
measurement error was assessed using a solid convex lens of known curvature: the error
in thickness measurement is found to be ∼ 10% for thicknesses greater than 0.5µm, and
∼ 30% otherwise. The earliest bubble growth rate was measured at t = 20µs, see in
Figure 11, and drops dramatically at early times which indicates that the initial bubble
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Microlayer dimensionless profiles δ∗ plotted in left column: (a), (c), (e), and

ratios δ∗/
√
r∗ −R∗

b,0 plotted in right column: (b), (d), (f), as a function of dimensionless

radial distance r∗ − R∗
b,0, with R∗

b,0 the initial dimensionless bubble radius. Each row
corresponds to a different Ca number: Ca=0.001 in top row (a)(b), Ca=0.01 in middle
row (c)(d), Ca=0.1 in bottom row (e)(f). Microscopic contact angle is θ = 10◦, and finest
mesh size at the wall is 31.25nm. Same physical times are plotted in all panels: t = 10µs
(blue solid line), t = 20µs (black dashed line), t = 30µs (red dot-dashed line). In each row,
the following characteristic length and time scales are imposed: (rc = 1nm, tc = 1ns) in
top row (a)(b), (rc = 10nm, tc = 10ns) in middle row (c)(d), (rc = 0.1µm, tc = 0.1µs)
in bottom row (e)(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Microlayer dimensionless profiles δ∗ (left column) and subsequent volume V ∗

(right column) with V ∗ = V/Vtot, where Vtot is the total volume of liquid trapped
underneath the bubble), as a function of dimensionless radial extension (r∗ − R∗

b,0)/t∗,

from simulations (black solid line), and from the square root model: δ∗ = 0.5
√
r∗ −R∗

b,0

(blue dashed line). Ca=0.001 (top row), Ca=0.01 (middle row), Ca=0.1 (bottom row).
Physical time t = 10µs.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Microlayer dimensionless profiles δ∗ (left column) and subsequent volume V ∗

(right column) with V ∗ = V/Vtot, where Vtot is the total volume of liquid trapped
underneath the bubble), as a function of dimensionless radial extension (r∗ − R∗

b,0)/t∗,

from simulations (black solid line), and from the square root model: δ∗ = 0.5
√
r∗ −R∗

b,0

(blue dashed line). Ca=0.001 (top row), Ca=0.01 (middle row), Ca=0.1 (bottom row).
Physical time t = 20µs.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Microlayer dimensionless profiles δ∗ (left column) and subsequent volume
V ∗ (right column) with V ∗ = V/Vtot, where Vtot is the total volume of liquid trapped
underneath the bubble), as a function of dimensionless radial extension (r∗ − R∗

b,0)/t∗,

from simulations (black solid line), and from the square root model: δ∗ = 0.5
√
r∗ −R∗

b,0

(blue dashed line). Ca=0.001 (top row), Ca=0.01 (middle row), Ca=0.1 (bottom row).
Physical time t = 30µs.
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growth rate during the first tens of µs may have been much higher than its first available
measured value of 4.2m/s. We include this uncertainty in initial bubble growth rates
in our validation below through a sensitivity study on the initial bubble growth rate:
in blue, we assume the bubble growth rate to be constant during the first 20µs, and in
red we assume its acceleration to be constant during the first 20µs. We compare our
numerical results against experimental results in Figure 11 (b): black squares represent
the earliest experimental measurement of the microlayer thickness, which took place at
time t = 410µs; and grey triangles are obtained by deducing the microlayer thickness at
t = 20µs, assuming that the heat transfer within the microlayer is purely by conduction,
see Guion et al. (2013):

∂δ(r, t)

∂t
= −kl∆Tsat(r, t)

ρlhfgδ
(4.6)

with kl the liquid thermal conductivity, ∆Tsat the local and time-dependent wall super-
heat, ρl the density of the liquid and hfg the latent heat of vaporization. To simplify the
calculation of this estimate, we assume constant wall superheat:

∆Tsat(r, t) = ∆Tsat,0

for which a closed form exist:

δ(r, t0) =

√
δ(r, t1)2 +

2kl∆Tsat,0
ρlhfg

(t1 − t0) (4.7)

with t0 = 20µs, t1 = 410µs and ∆Tsat,0 = 11.7◦C in our case. Assuming constant wall
superheat results in under estimating the thermal coupling with the wall surface, and
therefore over estimating the volume of liquid evaporated, in particular in the region
of small thickness δ (e.g. low radial distance r). The comparison in Figure 11 between
modeled and measured microlayer thicknesses at t = 20µs show both qualitative and
quantitative agreements.

We also note in Figure 11 a departure from the model in the low thickness region. We
expect this discrepancy to be reduced if we no longer assume constant wall superheat, but
include the thermal coupling between the microlayer and the heated wall. Such coupling
would require to solve for the heat equation in the substrate, while using Eq. 4.6 as a
flux boundary condition at the wall surface, as shown in previous work by Guion et al.
(2013). The initial evaporation of the microlayer would locally reduce the wall superheat
and therefore slow down the rate of evaporation of the microlayer. This slow down effect
of the microlayer evaporation due to conjugate heat transfer with the solid surface is
currently not included in Figure 11, and could explain the over estimated values of the
microlayer thickness in the low thickness region at t = 20µs.

The following properties of water at saturation at 0.101MPa were used: µl =
3.5 10−4 Pa.s, ρl = 950kg/m3. The first measured value of bubble growth rate was
Ub(t ∼ 20µs) ∼ 4.2m/s.

5. Summary and conclusions

In this work, we used Computational Fluid Dynamics with Interface Tracking Methods
to numerically reproduce the hydrodynamics of bubble growth at a wall, and resolve the
formation of the liquid microlayer at the wall with high resolution in space and time.
We identified the minimum set of dimensionless parameters that controls microlayer
formation, and reduced the parameter space for the conditions and fluid of interest,
namely water at pressures ranging from 0.101MPa (lab conditions) and up to 15.5MPa
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(a) (b)

Figure 11: Measured bubble growth rates (black squares) over time (a), and two assumed
initial regimes: constant growth rate (blue dash-dotted line), or constant acceleration
(red dashed line). Thickness δ (in µm) measured in lab experiment (black squares) of
boiling water at saturation at 0.101MPa, 0.41ms after boiling inception. The deduced
microlayer thickness at t = 20µs (grey triangles) is obtained assuming that the heat
transfer within the microlayer is purely by conduction. The wall temperature at boiling
inception is 111.7◦C, and the wall heat flux is 209kW/m2 (courtesy of Prof. Hyungdae
Kim). Predictions from the square root model are plotted for the two initial profiles of
Ub showed in (a). The first measured value of Ub is Ub(t ∼ 20µs) ∼ 4.2m/s.

(reactor conditions):

δ∗ = f(r∗, t∗, Ca, θ) (5.1)

with δ∗ the shape of the extended liquid microlayer, rc = µl/(ρlUb) and tc = rc/Ub the
characteristic length and time scales used, respectively. The fluid analyzed in this study
is water, however because of the use of dimensionless parameters, the results presented
here are broadly applicable to other fluids with dimensionless parameters within the
same ranges.

We found that three regions need to be modeled in order to accurately represent
the thickness of the microlayer, and the total volume of liquid trapped underneath the
bubble:

(i) the inner region: our qualitative results confirm that the dynamics of the moving
contact line at the inner edge of the microlayer dictate whether a microlayer forms or
not. The proposed methodology can be used to include a physical mobility law in place
of the current static microscopic contact angle used, and simulate the liquid build-up at
the inner edge for a given fluid/solid pair and surface conditions for which the motion of
the contact line is known.

(ii) the central region: our simulation results indicate that the square root model
proposed by Cooper & Lloyd (1969) captures the central region of the microlayer
accurately in the case of hemishperical bubble growth:

δ∗ ≈ 0.5
√
r∗ −R∗

b,0 (5.2)

as long as the motion of the contact line is negligible compared to the bubble growth
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rate. In addition, we benchmark our results against the earliest microlayer thickness mea-
surements available (courtesy of Prof. Hyungdae Kim), and conclude on both qualitative
and quantitative match.

(iii) the outer region: we note that the square root model breaks down at the microlayer
outer-edge, where its curvature rapidly increases to meet the non-zero curvature of the
bubble cap.

These results clarify the remaining steps needed to build a general model on microlayer
formation that resolves the initial and rapid phase of bubble growth in nucleate boiling,
called inertia-controlled phase, which lasts a tens of µs in the case of water at atmospheric
pressure. The next phase of bubble growth, the thermal diffusion controlled phase, is
much slower and lasts tens of milliseconds in the case of water at atmospheric pressure.
In practice, the microlayer formation model allows initialization of boiling simulations
at the end of the rapid inertia-controlled phase of bubble growth during which the
microlayer forms.

Lastly, we conclude that the numerical methods used in this study have proved to
be mature enough to investigate microlayer formation and its parameter space of
interest, within reasonable simulation time while achieving sufficiently fine spatial and
temporal resolution. However, additional experimental data on moving contact lines and
microlayer thickness profiles at very short time and length scales relevant to microlayer
formation are still needed to continue to benchmark numerical simulations and unlock
potential predicting capabilities.
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