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Abstract 

■ A single word (the noun “elephant”) encapsulates a com- 
plex multidimensional meaning, including both perceptual 
(“big,” “gray,” “trumpeting”) and conceptual (“mammal,” 

“can be found in India”) features. Opposing theories make 

different predictions as to whether different features (also con- 

ceivable as dimensions of the semantic space) are stored in 

similar neural regions and recovered with similar temporal dy- 

namics during word reading. In this magnetoencephalography 

study, we tracked the brain activity of healthy human partici- 

pants while reading single words varying orthogonally across 

three semantic dimensions: two perceptual ones (i.e., the aver- 

age implied real-world size and the average strength of associ- 

ation with a prototypical sound) and a conceptual one (i.e., the 

 

 
semantic category). The results indicate that perceptual and 

conceptual representations are supported by partially segre- 

gated neural networks: Although visual and auditory dimen- 

sions are encoded in the phase coherence of low-frequency 

oscillations of occipital and superior temporal regions, respec- 

tively, semantic features are encoded in the power of low- 

frequency oscillations of anterior temporal and inferior parietal 

areas. However, despite the differences, these representations 

appear to emerge at the same latency: around 200 msec after 

stimulus onset. Taken together, these findings suggest that 

perceptual and conceptual dimensions of the semantic space 

are recovered automatically, rapidly, and in parallel during word 

reading. ■ 

 
 
 

 

INTRODUCTION 

Recovering the meaning of single words involves access- 

ing a rich set of representations, for instance, the word 

“elephant” evokes “a big gray mammal emitting a trum- 

peting sound, etc….” Decades of neuroimaging findings 

and neuropsychological observations have attempted to 

shed light onto where, when, and how this information 

is stored and recovered in the brain (Pulvermüller, 2018; 

Lambon Ralph et al., 2016). We recently adopted a geo- 

metrical perspective conceiving word meaning repre- 

sentations as points in a multidimensional space where 

distinct dimensions represent different features, such as 

color, shape, and taxonomic category. We proposed that 

these dimensions can be of two kinds: motor-perceptual 

or conceptual (Borghesani & Piazza, 2017). The former 

are apprehended by physically interacting with the ob- 

jects or via analogical representations, such as audiovisual 

recordings (e.g., that elephants are grayish and big), 

whereas the latter cannot be directly perceived through 

our senses but, rather, are learned through language 

(e.g., that elephants are mammals or that they can be 

found in India). Based on previous findings, we proposed 

 

that the motor-perceptual properties are stored in the 

same brain circuits that encode them when we physically 

interact with the objects whereas the declarative concep- 

tual properties are stored in higher-order areas of the 

semantic network (e.g., Borghesani et al., 2016). 

Our proposal does not assign any primacy of one kind 

of representation over the other, and thus, it does not 

predict a temporal hierarchy of information retrieval 

across the spatially distributed system, especially when 

task instructions and/or context do not prioritize one 

kind of representation over the others. This view is in 

line with the hub-and-spoke model, the most influential 

neurocomputational account of the organization of se- 

mantic knowledge (Chen, Lambon Ralph, & Rogers, 

2017). The hub-and-spoke model links semantic access 

to the orchestrated activity of a distributed network of 

brain regions encompassing modality-specific cortices 

as well as one transmodal center (the anterior temporal 

lobe [ATL]). This model does not predict any specific 

temporal hierarchy across systems supporting percep- 

tual versus conceptual representations. On the contrary, 

it associates the retrieval of semantic representations to 

   an early bidirectional recruitment of both the central 
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hub and its spokes. However, alternative views of the 

neural dynamics underlying semantic representations 

have been suggested. Some researchers believe that 

we, first of all, access conceptual declarative knowledge 



   

 

and that this constitutes the bulk of word meaning. 

According to this view, the recovery of perceptual features 

is only epiphenomenal (and thus successive in time) to 

semantic access (e.g., Mahon & Caramazza, 2008). 

Others claim that word meaning is mainly resolved by 

retrieving perceptual features and that the recovery of 

declarative information occurs later in time, reflecting 

the integration of all other features (Pulvermüller, 2013). 

To date, separate and complementary findings from a 

variety of time-resolved techniques provide partial and 

indirect support to the prediction made by the hub- 

and-spoke model. Chronometric TMSs and magneto- 

encephalography (MEG) findings indicate that ATL plays 

a crucial role in semantic processing 200–600 msec post- 

stimulus onset (Teige et al., 2018; Jackson, Lambon Ralph, 

& Pobric, 2015; Lau, Gramfort, Hämäläinen, & Kuperberg, 

2013). Although studies on the temporal features of 

word meaning access have traditionally focused on late- 

appearing ERPs, notably the N400 (Lau, Phillips, & Poeppel, 

2008; Kutas & Federmeier, 2000), there is now evidence 

that semantic information is recovered much earlier in 

time. ERP effects distinguishing gross taxonomic catego- 

ries have been reported around 250–270 msec (Hinojosa 

et al., 2001; Martín-Loeches, Hinojosa, Gómez-Jarabo, & 

Rubia, 2001; Dehaene, 1995). Coherently, direct record- 

ings of ATL activity via electrocorticogram allow read- 

out of semantic representations already 250 msec after 

stimulus onset (Chen et al., 2016). A separate body of 

research has highlighted sensory-motor effects (i.e., 

somatotopically organization of cortical responses in- 

duced by words referring to different body parts) as early 

as 220–240 msec for written words (Hauk & Pulvermüller, 

2004) and 170 msec for spoken words (Pulvermuller et al., 

2005). Finally, a recent MEG evidence suggests that 

both ATL and modality-specific spokes are recruited within 

200 msec poststimulus onset to allow semantic processing 

of simultaneously presented pictures and words (Mollo, 

Cornelissen, Millman, Ellis, & Jefferies, 2017). Importantly, 

brain oscillations ranging from theta to gamma band 

appear to play a relevant role in accessing word semantic 

content (for a review, see Bastiaansen & Hagoort, 2006). In 

particular, early theta power increase (100–400 msec) has 

been linked to the dissociation between words explicitly 

referring to visual versus auditory features (Bastiaansen, 

Oostenveld, Jensen, & Hagoort, 2008). Similarly, semantic 

priming has been associated with early (250–350 msec) 

theta power and intertrial phase coherence (ITC) increase 

(Salisbury & Taylor, 2012) and with oscillatory interactions 

centered at 8 Hz and starting around 200 msec between 

the superior temporal cortex and the middle and anterior 

temporal cortex (Kujala, Vartiainen, Laaksonen, & Salmelin, 

2012). Lastly, intracranial recordings with microelectrode 

arrays in the anteroventral temporal lobe have shown that 

the first wave of activation elicited by reading a word is 

an excitatory feedforward wave along the ventrotemporal 

visual cortex coupled with an almost simultaneous inhibi- 

tory cortical feedback (Halgren et al., 2006), a process that 

corresponds to a widespread reset of the phase of ongoing 

theta oscillations (Halgren et al., 2015). Crucially, semantic 

category effects (animals vs. objects) already emerge at the 

end of this “first pass” cycle, starting around 150 msec, as 

revealed by measures of both synaptic activity (local field 

potentials, gamma-band power, and current source den- 

sity) and neuronal firing (multiunit activity and single-unit 

recordings; Chan et al., 2011). 

However, conclusive evidence in favor of an early simul- 

taneous recruitment of both hub and spokes is missing: To 

date, no study has directly compared (within participant 

and using the same symbolic stimuli) the spatiotemporal 

dynamics of conceptual and perceptual dimensions of 

the semantic space. Do we access conceptual representa- 

tions earlier, later, or concurrently with perceptual ones? 

For example, do we recall that “elephant” refers to an ani- 

mal before, after, or at the same time as recalling that it is 

large and gray and makes a prototypical trumpeting sound? 

In this study, we aimed to address this question by design- 

ing an MEG experiment where we presented adult partici- 

pants with written words varying orthogonally along three 

semantic dimensions: visuoperceptual (the average real 

word size of the item referred to by the word), audio- 

perceptual (the strength of its association with a proto- 

typical sound), and conceptual (the taxonomic category; 

see Figure 1A). If semantic representations were depen- 

dent on the reactivation of motor-perceptual features, 

then perceptual effects, emerging from the activity of 

sensory-motor cortices, should appear earlier than con- 

ceptual ones. Alternatively, if semantic information is pri- 

marily coded by an abstract linguistic code in transmodal 

hubs, conceptual information should be decoded first, 

localized in multimodal convergence regions. Finally, a 

third option is that all nodes supporting perceptual and 

conceptual information are activated simultaneously 

through an integrated involvement of associative language 

and sensory-motor areas. 

Guided by the previously described studies showing 

early semantic effects in different aspects of the signal, 

we expected that brain activations relative to different se- 

mantic dimensions might emerge as both phase-locked 

and non-phase-locked changes in the MEG signals, pri- 

marily in the theta and alpha frequency range. To capture 

these effects, we analyzed stimulus-related changes in 

terms of both the amplitude of brain oscillations (by 

computing event-related spectral power) and the distri- 

bution of the phase of these oscillations across trials 

(by computing the ITC). These two measures form a 

homogeneous “time–frequency state space” that includes 

both the “evoked” and “induced” components of event- 

related EEG changes (Makeig et al., 2004) and within which 

any potential event-related field (ERF) effect emerges as a 

variable combination of event-related phase-locking (cap- 

tured by ITC) and increase of oscillatory power (captured 

by spectral power changes). The advantage of ITC over 

ERF is that the former decomposes the latter into its con- 

stituent phase-locked frequency bands (Makeig et al., 



 

 

 

 

 
Figure 1. Stimuli space investigated and experimental setting. (A) Schematic representation of the 3-D space governing the stimuli used in the 

experiment, along with seven exemplar words. Thirty-two words were selected to orthogonally vary along three dimensions: one conceptual 

(i.e., taxonomic category) and two perceptual, involving visual (i.e., implied real-world size) and auditory (i.e., implied real-world prototypical sound) 

stimuli. (B) Example of a sequence of stimuli: During the experiment, participants were instructed to silently read the target stimuli and to press 

a button, as fast and accurately as possible, at the presentation of rare odd stimuli. The odd stimuli consist of two diagnostic words referring to 

1 of the 32 targets. 

 

2004), providing in some cases an increased sensitivity 

(e.g., Salisbury & Taylor, 2012; Mormann et al., 2005). 

Even though we expected the main effects of semantic 

access in theta and alpha range, given previous reports of 

higher frequencies involvement in semantic processing 

(e.g., Bastiaansen & Hagoort, 2006), we extended our 

analysis to beta and (for spectral power only) gamma 

band. 

 
 

METHODS 

Participants 

Fifteen healthy adults (seven men, mean age = 24.57 ± 

2.69) participated in the MEG study. Data from two addi- 

tional participants were discarded due to magnetic arti- 

facts (the subsequent MRI scan suggested the presence 

of dental implants). All participants were right-handed as 

measured with the Edinburgh Handedness Questionnaire, 

had normal or corrected-to-normal vision, and were 

French native speakers. All experimental procedures were 

approved by the local ethics committee, and each partici- 

pant provided signed informed consent to take part in 

the study. Participants received a monetary compensation 

for their participation. 

 
 

Stimuli 

We aimed at recording robust and reliable neural re- 

sponses to highly controlled stimuli. To this end, we se- 

lected 32 concrete written names varying orthogonally 

along three semantic dimensions (see Table 1): the im- 

plied real-world size (separating “small” vs. “big” items), 

the strength of the association with a prototypical sound 

(separating “noisy” vs. “silent” items), and the taxonomic 

category (separating “living” vs. “nonliving” items). Words 

were well matched across several psycholinguistic variables 

(i.e., number of letters, number of syllables, number of 

phonemes, number of morphemes, number of ortho- 

graphic neighbors, number of orthographic uniqueness 

points, gender, and frequency of use in books and in 

movies retrieved from Lexique, lexique.org). These 

psycholinguistic variables did not differ across the two 

semantic categories (Mann–Whitney rank test for number 

of letters: u = 109.5, p = .25; number of syllables: u = 105, 

p = .17; number of phonemes: u = 98.5, p = .13; number 

of orthographic neighbors: u = 126, p = .47; number of 

orthographic uniqueness points: u = 106, p = .20; fre- 

quency of use in books: u = 120, p = .39; frequency of 

use in movies: u = 126, p = .48; chi-square test of gender: 

χ = 0.14, p = .70; chi-square test of number of mor- 

phemes: χ = 0.14, p = .70). Similarly, they did not differ 

across the visual-perceptual semantic property (Mann– 

Whitney rank test for number of letters: u = 103, p = 

.17 ; number of syllables: u = 121, p = .39; number of 

phonemes: u = 91, p = .08; number of orthographic neigh- 

bors: u = 109, p = .23; number of orthographic uniqueness 

points: u = 119, p = .37; frequency of use in books: u = 

111.5, p = .27; frequency of use in movies: u = 103, p = 

.18 ; chi-square test of gender: χ = 0.14, p = .71; chi-

square test of number of morphemes: χ = 0.14, p = 

.70) nor across the audio-perceptual semantic 

property (Mann– Whitney rank test for number of 

letters: u = 89.5, p = 

.07; number of syllables: u = 103.5, p = .15; number of pho- 

nemes: u = 91, p = .08; number of orthographic neighbors: 

u = 92.5, p = .08; number of orthographic uniqueness 

points: u = 125, p = .46; frequency of use in books: u = 

104.5, p = .19; frequency of use in movies: u = 126, p = 

.48; chi-square test of gender: χ = 1.29, p = .26; chi-square 

test of number of morphemes: χ = 1.28, p = .25). These 

analyses were run with statistical functions provided by 

Python’s library, SciPy (https://docs.scipy.org/doc/scipy/ 

 

 
 



   

 

 

Table 1. Experimental Stimuli  
 
 

Length 

(No. of 

 
 

Implied 

Real- 

world 

 

 

 

Implied 

Real-world 

 
 

Behavioral 

Ratings: Size 

 
 

Behavioral 

Ratings: Audio 

Words (EN) Words (FR) Letters) Size Sound Category Mean SD Mode Mean SD Mode 
 

gorilla gorille 7 big typical sound living 8.40 0.95 9.00 6.93 2.35 9.00 

elephant éléphant 8 big typical sound living 9.00 0.00 9.00 7.20 2.71 9.00 

giraffe girafe 6 big silent living 8.80 0.40 9.00 2.53 2.19 1.00 

lama lama 4 big silent living 7.73 1.73 9.00 3.40 2.58 1.00 

marmoset ouistiti 8 small typical sound living 5.00 1.51 5.00 6.20 2.56 9.00 

parrot perroquet 9 small typical sound living 4.33 1.40 5.00 7.13 2.00 9.00 

scorpion scorpion 8 small silent living 1.80 0.54 2.00 1.27 0.57 1.00 

chameleon caméléon 8 small silent living 3.53 1.31 3.00 1.40 0.61 1.00 

cow vache 5 big typical sound living 8.27 0.77 9.00 8.67 0.60 9.00 

ship mouton 6 big typical sound living 7.07 1.98 9.00 8.53 0.62 9.00 

bull taureau 7 big silent living 8.47 0.72 9.00 5.53 1.93 7.00 

chamois chamois 7 big silent living 7.53 1.15 7.00 3.00 1.83 1.00 

cricket cricket 7 small typical sound living 1.07 0.25 1.00 7.53 2.22 9.00 

cock coq 3 small typical sound living 4.27 1.39 5.00 8.73 0.77 9.00 

ant fourmi 6 small silent living 1.00 0.00 1.00 1.27 0.57 1.00 

rabbit lapin 5 small silent living 3.33 1.58 3.00 1.80 1.11 1.00 

vacuum cleaner aspirateur 10 big typical sound nonliving 5.93 1.88 7.00 7.87 1.31 9.00 

washing machine lave-linge 10 big typical sound nonliving 6.93 2.11 9.00 7.00 1.67 9.00 

wardrobe armoire 7 big silent nonliving 8.27 0.77 9.00 1.60 1.08 1.00 

sofa sofa 4 big silent nonliving 7.73 1.69 9.00 1.27 0.57 1.00 

blender mixeur 6 small typical sound nonliving 4.47 1.63 5.00 6.93 1.98 9.00 

alarm clock réveil 6 small typical sound nonliving 2.73 1.06 3.00 8.53 1.50 9.00 

pillow oreiller 8 small silent nonliving 4.80 1.51 6.00 1.13 0.34 1.00 

fork fourchette 10 small silent nonliving 2.13 1.96 1.00 2.07 2.05 1.00 

helicopter hélicoptère 11 big typical sound nonliving 8.93 0.25 9.00 8.00 1.15 9.00 

motorbike moto 4 big typical sound nonliving 7.93 1.06 9.00 8.20 1.33 9.00 

bike vélo 4 big silent nonliving 7.20 1.51 7.00 4.07 2.11 5.00 

canoe canoë 5 big silent nonliving 7.27 2.21 9.00 1.67 1.19 1.00 

car stereo autoradio 9 small typical sound nonliving 2.67 0.87 2.00 6.80 2.54 9.00 

rotating beacon gyrophare 9 small typical sound nonliving 2.67 1.14 2.00 8.47 2.00 9.00 

roller roller 6 small silent nonliving 4.47 1.78 5.00 3.67 2.41 2.00 

boots bottes 6 small silent nonliving 4.27 1.39 5.00 3.33 2.12 3.00 

The original stimuli (in French) were preselected as to span two semantic categories: living and nonliving items. Moreover, two perceptual semantic 
dimensions were manipulated: implied real-world size and prototypical sound. 

reference/stats.html). To verify that our classification 

(e.g., small animal associated with a characteristic 

sound ) corresponded with that of our participants, we 

administered two behavioral questionnaires right after 

the MEG recordings; this was done after the scan to ex- 

clude any interference with their spontaneous word 

processing during the MEG experiment. In the “Size 

Questionnaire,” participants were asked to rate, on a 



 

 

 

scale from 1 to 9, the size of the object/animal each 

word referred to, as compared with a shoe box (i.e., 

implicitly responding to the question: “could this item 

fit in a shoe box?”). In the “Sound Questionnaire,” par- 

ticipants were asked to rate, on a scale from 1 to 9, 

whether the item was associated with a prototypical 

sound or not. The order of tasks and the words within 

each task were randomized across participants. The re- 

sults indicated that participants’ judgments were consis- 

tent with our classification: for size, the average score 

for items categorized as “big” in our design was 7.84 

(±0.80), whereas the average for items categorized as 

“small” was 3.28 (±1.27). None of the items categorized 

as “big” had a score lower than 6, and none of the items 

categorized as “small” were higher than 5. Similarly, 

across participants, the average score for items catego- 

rized as having a prototypical sound was 7.67 (±0.77, 

none of them having an average score lower than 6), 

whereas the average for items categorized as silent 

was 2.43 (±1.2, none of them having an average score 

higher than 5). 

 

Testing Procedures 

Participants were seated in a comfortable armchair in 

front of a screen. They were instructed to silently read 

the target stimuli (i.e., the 32 words) and to make seman- 

tic decisions only on rare odd stimuli. These odd stimuli 

appeared on 6% of the trials and consisted of a pair of 

words that were semantically related to one of the targets 

(e.g., “trunk, ivory” for elephant). Participants pressed 

the left- or right-hand button to indicate whether or 

not the odd stimulus was related to the previously seen 

target word (i.e., 1-back semantic relatedness task). The 

response mapping was counterbalanced within partici- 

pants: Half of the participants answered yes with the left 

hand in the first half of the imaging runs and then yes 

with the right hand in the last half; the other half of 

the participants followed the reverse order. Importantly, 

the pairs of words used as odd stimuli did not contain 

any verb nor any reference to the category, size, or sound 

related to the dimensions that we investigated. Target 

stimuli were presented at the center of the screen (refresh 

rate: 60 Hz), printed in Courier New (in white), for 300 msec. 

They were followed by an interstimulus interval that var- 

ied randomly between 2167 and 3340 msec. Odd stimuli 

were presented for 1670 msec, followed by 1670 msec of 

blank (in red, see Figure 1B). Within a given MEG session, 

the participants underwent eight runs of approximately 

7 min each. Breaks between runs were tailored to partic- 

ipants’ needs. Each run contained five repetitions of each 

of the 32 target stimuli and 10 odd stimuli, for a total of 

170 stimuli per run. Pseudorandomization ensured that, 

over the entire experiment, for half of the odd stimuli 

(i.e., 40 times), a positive answer was expected. Before 

testing the first participant, a photodetector was used to 

compute the delay between the time at which the triggers 

were sent to the MEG acquisition computer and the time 

at which the stimuli actually appeared on the screen. This 

delay (50 msec) was corrected during data preprocessing. 

Stimuli were presented with Psychopy (www.psychopy. 

org). 

 

Data Acquisition 

Data were collected at Neurospin (CEA-Inserm) in a 

dimly illuminated, sound-attenuating, and magnetically 

shielded room using a whole-head Elekta MEG system 

with 102 magnetometers and 204 orthogonal planar 

gradiometers (Elekta Neuromag). Before the recordings, 

three fiducial points (nasion, left and right preauricular 

areas) and about 100 more supplementary points dis- 

tributed over the scalp of the participants were digitalized 

(3-D digitizer, Polhemus Isotrak system) to coregister the 

MEG data with the anatomical MRI. 

During the recordings, participants were seated in the 

upright position with their head in close contact to the 

dewar and were instructed to avoid any unnecessary 

head, body, or limb movements. At the start of each 

recording block, their head position was measured with 

four head position coils (HPI) placed over the frontal 

and mastoid areas and compared online with the position 

at the beginning of the recording. To minimize head 

displacements across the whole recordings, if the head 

moved more than 10 mm from the original position in 

any direction, the participant was assisted to reposition 

the head closer to the original position. MEG recordings 

were sampled at 1 kHz, hardware band-pass filtered 

between 0.03 Hz and 330 Hz, and active compensation 

of external noise (Maxshield, Elekta Neuromag) was 

applied. Heartbeat and horizontal and vertical eye move- 

ments were recorded simultaneously with the MEG 

signals with three additional pairs of electrodes for the 

electrocardiogram and the electrooculograms, respec- 

tively. Immediately before or after each recording session, 

empty room recordings of about 2 min were acquired. 

Structural MRI anatomy data were collected for each 

participant at Neurospin (CEA-Inserm) with a 3-T Siemens 

Magnetom TrioTim scanner using a 32-channel head coil. 

Anatomical images were acquired using a T1-weighted 

MP-RAGE sagittal scan (voxels size 1 × 1 × 1.1 mm, 160 

slices, 7 min). 
 

Data Preprocessing 

The first preprocessing step utilized the software 

Maxfilter (Elekta Neuromag) to suppress external mag- 

netic interference by using signal space separation, which 

interpolated noisy MEG sensors (identified by visual 

inspection of the raw data) and corrected for head 

movements between data blocks. Head movement cor- 

rection was performed with respect to a subject-specific 

head position, computed as the mean head position 

across blocks (custom-made software, courtesy of Antoine 



   

 

 

Ducorps and Denis Schwartz, CENIR, Paris, France) and 

used as the reference head position for MEG/MRI coregis- 

tration. The remaining preprocessing steps were per- 

formed with Brainstorm (Tadel, Baillet, Mosher, Pantazis, 

& Leahy, 2011). Data were visually inspected to mark bad 

segments or segments that included clear motor artifacts 

or channel jumps/anomalies and then were low-pass fil- 

tered at 160 Hz. Heartbeat and blinking components were 

automatically detected by using principal component 

analyses and visually checked and removed by discarding 

the corresponding signal space projections. The stimulus 

trigger delay (50 msec) was corrected. Data were then 

epoched starting 800 msec before and ending 1200 msec 

after the onset of the stimuli (epochs containing previously 

marked bad segments were automatically rejected) and 

downsampled to 500 Hz (no baseline correction was 

applied). 

For each participant, MRI data were segmented with 

FreeSurfer (surfer.nmr.mgh.harvard.edu), imported in 

Brainstorm (Tadel et al., 2011), and coregistered with 

MEG data by using previously digitized head surface 

points. The forward model was computed by using an over- 

lapping spheres method. Noise covariance was estimated 

from the MEG empty room recordings. A total of 15,002 

individual sources were computed with the weighted 

minimum-norm method using the default Brainstorm 

parameters. 

 

 
Time–Frequency Analysis 

Event-related Spectral Power 

For the main analysis, spectral power was estimated by 

computing the time–frequency decomposition with the 

multitaper approach implemented in Fieldtrip (Oostenveld, 

Fries, Maris, & Schoffelen, 2011), with parameters adapted 

to two distinct frequency ranges. For the low-frequency 

range (4–35 Hz in 1-Hz steps), data segments were extracted 

from sliding time windows with a length of 500 msec be- 

tween 4 and 10 Hz (frequency resolution = 2 Hz) and with 

a length equal to five oscillation cycles per frequency 

between 10 (frequency resolution = 2 Hz) and 35 Hz (fre- 

quency resolution = 7 Hz), shifted in steps of 40 msec. 

These parameters were chosen to optimize the frequency 

resolution for higher frequencies, while still keeping a limited 

time window for lower frequencies, to test stimulus-related 

effects. Data segments were tapered with a single Hanning 

window and Fourier-transformed. Spectral power was 

computed as the square amplitude of the resulting time– 

frequency decomposition. For the high-frequency range 

(34–100 Hz in 2-Hz steps), data segments were extracted 

from sliding time windows of 200 msec length and shifted 

in steps of 40 msec. A multitaper approach was applied to 

each window to optimize spectral concentration over the 

frequency of interest (Mitra & Pesaran, 1999). Frequency 

smoothing was set to 20% of each frequency value. With 

these settings, the number of tapers used ranged from 2 

at 34 Hz (frequency resolution = 7 Hz) to 7 at 100 Hz (fre- 

quency resolution = 20 Hz). Spectral power was first 

estimated per taper and then averaged across tapers. 
For all frequencies, mean power from baseline ([− 500 

− 250] msec) was removed. For the high temporal resolution 

analysis, spectral power was estimated by computing the 

time–frequency decomposition in the frequency range 5– 

13 Hz in 1-Hz steps; data segments were extracted from 

sliding time windows with a length equal to 1.5 oscillation 

cycles per frequency (time window = 300 msec at 5 Hz, 

115 msec at 13 Hz) and shifted in steps of 10 msec. These 

parameters were chosen to maximize the temporal resolu- 

tion while still keeping a limited frequency smoothing. 

Data segments were tapered with a single Hanning window 

and Fourier-transformed. Spectral power was computed 

as the square amplitude of the resulting time–frequency 

decomposition. For all frequencies, mean power from the 

baseline period ([− 500 − 250] msec) was removed. 

 

Intertrial Phase Coherence 

Intertrial phase coherence (ITC) was estimated for each 

participant and condition by computing the phase-locking 

factor (Tallon-Baudry, Bertrand, Delpuech, & Pernier, 

1996) with the following steps: (a) The complex time– 

frequency decomposition at time t and frequency f of each 

single trial (as computed above, both for the main analysis 

and for the high temporal resolution analysis) was normal- 

ized by its absolute value to obtain amplitude-independent 

unitary vectors in the complex plane. (b) These normalized 

vectors were averaged across single trials to obtain a com- 

plex value related to the phase distribution of each time– 

frequency region around t and f. The ITC was computed as 

the modulus of this value. ITC ranges from 0 ( purely non- 

phase-locked activity) to 1 (strictly phase-locked activity). 

 

Statistical Analysis 

All the statistical tests were aimed at identifying signifi- 

cant differences between experimental conditions and 

were performed with the nonparametric cluster-based 

statistical analysis (Maris & Oostenveld, 2007), as im- 

plemented in Fieldtrip (Oostenveld et al., 2011). This 

method allows statistical testing on wide time and fre- 

quency intervals with no need of a priori selection of spa- 

tial ROIs because it effectively controls the Type I error 

rate in a situation involving multiple comparisons by 

clustering neighboring channel–time–frequency pairs 

that exhibit statistically significant effects (test used at 

each channel–time–frequency point: dependent-samples 

t statistics) and using a permutation test to evaluate the 

statistical significance at the cluster level (Montecarlo 

method, 3000 permutations for each test). Results on sta- 

tistically significant clusters are reported by specifying the 

polarity of the cluster (positive or negative), its p value, 

its temporal and spectral extent, and the time and fre- 

quency of its maximum effect (hereafter indicated as 



 

 

 

the cluster’s peak), defined as the time–frequency at 

which the cluster statistics is at its maximum. The time 

course of the cluster statistics is obtained by averaging, 

at each time point, the channel–time–frequency point 

t statistics over all the channels and frequencies belong- 

ing to the cluster at that time point. Analogously, the 

frequency range of the cluster statistics is obtained by 

averaging, at each frequency bin, the channel–time– 

frequency point t statistics over all the channels and 

time points belonging to the cluster at that frequency 

bin. All the statistical tests were performed separately 

for magnetometers and combined gradiometers. 

Unless otherwise stated, for all contrasts of interest, 

cluster-based statistical analyses corrected for multiple 

comparisons over time, and frequency and sensor space 

were applied on the whole-time window (from 0 to 

600 msec) for three frequency ranges, theta and alpha 

(4–13 Hz), beta (13–35 Hz), and gamma (35–100 Hz), 

with the latter for spectral power only. 

 

Latency Analysis 

To estimate and statistically compare the onset latencies 

of the earliest power/ITC effects, we adapted to time– 

frequency measures the approach proposed in Miller, 

Patterson, and Ulrich (1998), to compute the onset latency 

of ERP components by using jackknife resampling (Miller, 

1974). The jackknife-based approach provides an efficient 

way to perform robust statistical comparisons between 

onset latencies in different conditions by overcoming the 

unreliability of latency estimation at the single-subject 

level. It consists of (1) computing n “leave-one-out” grand 
averages, each one from a subsample of n −  1 of the 
n 

participants and (2) estimating the onset latency from 

each of the n grand averages. For each grand average, 

the peak value was computed as the maximum amplitude 

over the first 300 msec after stimulus onset, and onset 

latency was estimated with the relative criterion technique 

(Kiesel, Miller, Jolicoeur, & Brisson, 2008) as the time 

point at which the amplitude reaches 90% of the peak 

value. The threshold of 90% (higher than the thresholds 

generally used with ERPs; Kiesel et al., 2008) was chosen 

to take into account the relatively low temporal resolution 

of the power/ITC measures, that is, a lower percentage 

value might artificially provide early onsets possibly caused 

by the backward temporal spreading of the peak rather 

than by real effects. Differences between latencies in dif- 

ferent conditions were statistically evaluated by using a 

standard paired t test and ANOVA, where the t values or 

the F values were adjusted for the jackknife resampling 

by setting and before computing significance (Ulrich & 

Miller, 2001). 

 

Source Reconstruction 

To explore the anatomical sources of the statistically 

significant effects observed at the sensor level, spectral 

power and ITC were estimated at the source level by per- 

forming the following steps: (a) For each participant, 

source-level time series were reconstructed from single 

trials on the 15,002 sources obtained from the weighted 

minimum-norm method reconstruction in Brainstorm; 

(b) spectral power and ITC were estimated at the source 

level by using the same time–frequency decomposition 

and parameters used at the sensor level (main analysis), 

within the frequency range of the statistically significant 

effects identified at the sensor level (6–12 Hz); (c) spec- 
tral power data were z-scored on the baseline [−
500 

− 250] msec (ITC was not z-scored because it is already 

a normalized measure); and (d) data were spatially 

smoothed (10 mm) and projected onto a standard ana- 

tomical template (Colin27) to perform averages across 

participants. 

For each measure and contrast of interest, a paired t test 

was run at each source location, and the corresponding 

significant clusters ( p < .05 uncorrected) are reported 

on a template cortex smoothed at 50%. Importantly, the 

t test at the source level is only used to properly describe 

the source distribution of the statistically significant 

effect established at the sensor level and not for a sec- 

ond statistical test at the source level; therefore, no correc- 

tion for multiple comparison is required (Gross et al., 

2013). 

 
 

Specificity of the Main Effects 

We performed a post hoc supplementary statistical anal- 

ysis to assess the specificity of the main effects of each 

dimension in the associated space–frequency–time clus- 

ter. First, we extracted for all trials the ITC and TFA values 

from the three clusters of sensors, frequencies, and time 

points where the earliest significant dimension-specific 

effects were detected. Then, in each ROI, we ran a 

repeated-measures ANOVA with three grouping factors 

(i.e., category, size, sound) with two levels each (e.g., 

big vs. small). This way, we assessed whether it was 

possible, within each cluster (e.g., the one where cate- 

gory effect was observed), to detect information relative 

to the other two dimensions (e.g., size and audio). 

 
 

RESULTS 

Temporal Unfolding of Brain Activation during 

Word Reading 

Overall, averaging across all stimuli, we were able to 

appreciate how single word reading impacts both the 

amplitude and the phase of brain oscillations across dif- 

ferent frequency ranges. First, we observed a burst in 
ITC, which started at about 100 msec, peaked at ∼ 200 
msec, and propagated at least until ∼ 350 msec. This 
peak in 
phase-locked activity was especially high in the theta 
frequency range, where it lasted until ∼ 500 msec, 
but 

affected also higher-frequency ranges, a pattern resembling 



   

 

 

 
 

the one observed in the middle layers at the laminar 

level in microelectrode recordings (Halgren et al., 

2015). The ITC effect started in the occipital cortex 

but rapidly propagated anteriorly toward the temporal 

and parietal cortices, bilaterally but slightly more in- 

tensely in the left compared with the right temporal 

cortex (see Figure 2A). This pattern closely overlapped 

with the source distribution of the early ERFs typically 

associated with word reading (Marinkovic et al., 2003). 

Second, looking at the spectral power changes over 

time, we detected a transient increase in the theta band 

followed by a more sustained decrease in alpha band 

and, more marginally, beta band. The initial spectral 

power increase showed a similar temporal and spatial 

evolution to that of the ITC effect: starting at about 

100 msec and peaking at ∼ 200 msec, progressing 

from 

occipital to temporal. Starting from about 250 msec and 
propagating at least until ∼ 600 msec, a massive 
posterior 

alpha-band desynchronization emerged (see Figure 2B). 

This spectral pattern is fully compatible with previous 

work investigating the oscillatory modulations elicited 

by word reading (Goto et al., 2011). After replicating 

the known unfolding of neural activation linked with 

word processing, we investigated when, where, and by 

which oscillatory aspect of the signal, different kinds of 

semantic information modulate this brain dynamics. 

Intertrial Phase Coherence Reveals the Early 

Emergence of the Perceptual Dimensions 

We first investigated the ITC, searching for components 

of the signal that could differentiate across our conditions 

of interest. We found evidence for an early encoding of 

both perceptual dimensions. Between 120 and 360 msec 

(peak at 240 msec), the ITC, over a cluster of left occipital 

sensors in the theta band (frequency range: 6–7 Hz, peak 

at 6 Hz, corrected p = .03), differentiated words with 

respect to the implied real object size: Irrespective of 

whether they referred to living or nonliving items and of 

whether they evoked a prototypical sound or not, words 

referring to small items elicited a higher ITC than words 

referring to big items (Figure 3A, left and center). Source 

reconstruction at the peak latency showed that the cor- 

tical source of this difference in the implied size was 

located in a left-lateralized set of regions including the 

occipital lobe, the medial-temporal lobe, and inferior 

frontal gyrus (Figure 3A, right). In the same early time 

window, we also found a highly significant effect of im- 

plied real-world sound (time range = 40–320 msec, peak 

at 200 msec), but at the higher frequency alpha band 

(frequency range = 8–12 Hz, peak at 10 Hz, corrected 

p = .008): Irrespective of their real-world size and of 

whether they referred to living or nonliving items, words 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

Figure 2. Oscillatory brain dynamics elicited by word reading. (A) Intertrial phase coherence (ITC) effect in the theta band (top row) and alpha band 

(bottom row), 200 and 400 msec after stimulus onset. Rightmost: full time–frequency representation of ITC. Across all frequencies, an increase 

in phase coherence can be appreciated around 200 msec, with higher impact on lower ones. (B) Panels as in A for both power changes in the 

theta band (top row) and alpha band (bottom row), 200 and 400 msec after stimulus onset. A transient increase in power at lower bands (theta) 

around 200 msec is followed by a more sustained decrease of power at higher frequencies (alpha and beta). 



 

 
Figure 3. Rapid recovery of both perceptual and conceptual dimensions of the semantic space. (A) Effect of perceptual dimensions on ITC. Top row: 

time–frequency representation (left, only significant values are shown), sensor topography (middle), and source reconstruction (right, significant 

clusters, p < .05 uncorrected, are reported on a template cortex smoothed at 50%) of the statistically significant cluster associated with the implied 

real-world size effect (peak at 240 msec and 6 Hz, corrected p = .03). Lower row: plots as in the top row of the implied real-world sound effect (peak 

at 200 msec and 10 Hz, corrected p = .008). (B) Effect of conceptual dimension on spectral power. Panels as in A for both the early (top, peak at 200 

msec and 8 Hz, corrected p = .02) and late (bottom, peak at 600 msec and 10 Hz, corrected p = .01) semantic category effects. 
 

 

referring to items associated with a prototypical sound 

elicited higher ITC as compared with those not asso- 

ciated with a specific sound (Figure 3B). Source recon- 

struction suggested that this effect was linked to the 

activity of left occipital and bilateral superior temporal 

areas extending especially in the right hemisphere to 

supramarginal gyrus (Figure 3B, right). The effect of 

the associated sound also emerged in a later time win- 

dow in the theta band (time range = 320–520 msec, 

peak at 400 msec; frequency range = 4–6 Hz, peak at 

5 Hz, corrected p = .04). However, the sign of this later 

effect was reversed compared with the early effect: 

Words referring to items not typically associated with 

sounds elicited a higher ITC. All these effects were 

observed on the combined gradiometers, whereas only 

trending (but congruently so) effects could be appre- 

ciated in the magnetometers. No effect of semantic 

category was detected in this aspect of the signal. No 

significant effects were found in the beta band. 

 

 
Spectral Power Changes Reveal the Early 

Emergence of the Conceptual Dimension 

A strong and long-lasting effect of the conceptual dimen- 

sion (i.e., semantic category) was detected in a left 

occipital-temporal cluster of combined gradiometers 

(corrected p = .01) and lasted between 80 and 600 msec 

(peak at 600 msec) and 4 and 13 Hz (peak at 9 Hz): words 

referring to animals elicited a higher power increase than 

those referring to nonliving items, irrespective of their size 

or associated sound. At closer inspection, two subclusters 



 

 

 

could be clearly visualized, and thus, the analyses were 

repeated for two separated time windows (0–300 and 

300–600 msec). This allowed the isolation of an early 

peak (at 200 msec and around 8 Hz, corrected p = .02) 

and a late peak (at 600 msec and 10 Hz, corrected p = 

.01; Figure 3B). The same effects were also observed 

on the magnetometers (peak at 560 msec, between 8 

and 13 Hz, corrected p = .03). Source reconstruction 

(Figure 3B, right) suggested that the early effect primarily 

originated from a temporoparietal network of brain re- 

gions in the left hemisphere, including the left angular gy- 

rus, whereas the second effect could be traced back to the 

activity of left anterior temporal and inferior frontal areas. 

The two perceptual dimensions showed later and 

weaker, yet still significant, effects. An implied real-world 

size effect was detected in a left occipital cluster of mag- 

netometers between 160 and 480 msec (peak at 400 msec, 

peak at 10 Hz, corrected p = .04): Words referring to 

small items were associated with an increase in gamma 

band. This effect was not observed in the gradiometers. 

An implied real-world sound effect was also detected in 

a bilateral occipital cluster of gradiometers between 200 

and 600 msec (peak at 600 msec) and between 5 and 

13 Hz (peak at 10 Hz, corrected p = .01). This last effect 

was similarly observed in the magnetometers (peak at 

560 msec and 11 Hz, corrected p = .008). These effects 

indicated that words referring to items associated with 

prototypical sounds were associated with a greater de- 

crease in alpha band. No significant effects were found 

for sound and category dimensions in the beta and 

gamma band. 

 

Perceptual and Conceptual Dimensions Arise 

in Parallel 

To estimate more accurately the latency of the onset of 

perceptual and conceptual effects and to determine 

whether they arise in parallel or with a rapid temporal 

hierarchy, we performed a second time–frequency analy- 

sis with higher temporal resolution. We pushed the 

temporal resolution to its limit (1.5 cycles per frequency) 

and restricted the analysis to the frequency interval 

where the earliest effects emerged (5–13 Hz). The de- 

tected effects were very similar in statistical power, time, 

and sensor cluster to those of the first analysis (size: cor- 

rected p = .06, latency 180–250 msec, peak at 230 msec; 

sound: corrected p = .003, latency 130–250 msec, peak at 

220 msec; category: corrected p = .002, latency 20–300 msec, 

peak at 240 msec). Latency was then estimated for each 

condition on its associated significant cluster by using a 

jackknife-based approach (see Methods), which over- 

comes the unreliability of single-subject latency estimation 

by building a statistical estimate on a “leave-one-out” re- 

sampling procedure (Miller et al., 1998). This latency anal- 

ysis provided evidence for an early (size: 191 ± 9 msec; 

sound: 191 ± 10 msec; category: 201 ± 20 msec) and fully 

parallel onset of the three effects (repeated-measures 

 

 
 

Figure 4. Simultaneous recovery of visual, auditory, and conceptual 

semantic dimensions. Average latencies of the earliest significant effects 

of the perceptual (ITC) and conceptual (spectral power) dimensions 

are not statistically different (corrected F(1.76, 24.66) = 0.18, corrected 

p = .81; corrected paired t test size vs. sound: p = .98, size vs. category: 

p = .68; sound vs. category: p = .64). Histograms represent the 

mean latency ± standard error (standard error corrected for the 
jackknife-based approach = sqrt(n −  1) * sem; Miller et al., 1998) 
of 

the difference of ITC values for small–big and sound–no sound and 

of the difference of spectral power values of living–nonlinving. 

ITC/power values are computed on the sensors and frequencies 

corresponding to the peak of statistical significance. Data from the 

“high temporal resolution” analysis. 

 
 

 

ANOVA on the three dimensions, corrected for jackknife: 

F(1.76, 24.66) = 0.18, corrected p = .81; corrected paired 

t test size vs. sound: p = .98, size vs. category: p = .68; 

sound vs. category: p = .64; Figure 4). 

 

 
Specificity of the Emergence of Perceptual and 

Conceptual Dimensions 

To assess whether the space–time–frequency cluster 

associated to each semantic dimension was selectively 

activated by that dimension, we performed a supplemen- 

tary post hoc statistical analysis with a repeated-measures 

ANOVA with three grouping factors (i.e., category, size, 

sound) of two levels each (e.g., big vs. small). Results in- 

dicate that all three effects are dimension-specific, as no 

main effect of the two other dimensions is significant in 

each of the three clusters: no main effect of sound or 

category (category: F(1.00, 14.00) = 0.01, p = .92; sound: 

F(1.00, 14.00) = 2.122, p = .17) in the size cluster (200– 

240 msec, 6–7 Hz); no main effect of size nor category 

(size: F(1.00, 14.00) = 0.64, p = .44; category: F(1.00, 

14.00) = 0.02, p = .90) in the sound cluster (200–240 msec, 

10–11 Hz); no main effect of size or sound (size: F(1.00, 

14.00) = 2.42, p = .14; sound: F(1.00, 14.00) = 0.58, p = 

.46) in the category cluster (200–240 msec, 8–9 Hz). 

Although this analysis cannot assess to what extent (and 

in which areas) the spatiotemporal patterns associated to 

each dimension are fully separable, the result clearly indi- 

cates that the encoding of the three dimensions is partially 

 
 



  

 

 

specific and cannot be reduced to a common, generic, 

early semantic activation. 

 
DISCUSSION 

In this study, we investigated the spatiotemporal dynam- 

ics of the retrieval of different dimensions of word mean- 

ing during silent single word reading. We compared 

three semantic dimensions: two perceptual (i.e., implied 

real-world size and sound) and one conceptual (i.e., se- 

mantic category). This approach allowed us to directly 

test the hypothesis of a temporal hierarchy in the recov- 

ery of perceptual and conceptual semantic information. 

The task, orthogonal to the dimensions of the semantic 

space we investigated, ensured that the recovered repre- 

sentations emerged spontaneously and were not induced 

by the task. Moreover, capitalizing on the intrinsically 

multivariate nature of the MEG signal, we explored 

stimulus-locked effects in terms of both event-related 

spectral perturbations and ITC. We found that automatic 

retrieval of both perceptual and conceptual dimensions 

occurs rapidly and simultaneously because of the recruit- 

ment of different brain regions. 

 

Early Parallel Recovery of Both Perceptual and 

Conceptual Dimensions 

The first main result of this study is that of an early effect 

of all three dimensions of word meaning investigated 

(∼ 200 msec after stimulus onset). This suggests that 

both 

perceptual and conceptual dimensions of the semantic 

space are activated in an automatic and parallel fashion 

extremely early during reading. 

This early timing is consistent with the view that se- 

mantic modulation already starts during the “first pass” 

of the feedforward stream of neural activity triggered by 

word reading (Chan et al., 2011), which resets the phase 

of theta and alpha oscillations in multiple cortical areas 

(Halgren et al., 2015; see our Figure 2A) and is likely to 

initiate the concurrent activation of the both the seman- 

tic “hub” and its “spokes.” 

Concerning the access to the conceptual dimension, 

while the majority of the previous studies investigating 

semantic processes focused on a (relatively) late time 

window (i.e., the N400), we are not the first to observe 

a very early semantic category effect. For instance, 

Dehaene, using EEG, detected a category-selective re- 

sponse differentiating animal names, famous people’s 

names, and verbs and numerals within 250 msec after 

written word onset (Dehaene, 1995). Moreover, Chan 

and colleagues reported an early (200 msec) multivariate 

decoding of a semantic category (i.e., living vs. nonliving) 

within both written and spoken words (Chan, Halgren, 

Marinkovic, & Cash, 2011). Importantly, our results seem to 

reflect at the macroscopic scale of the early (150–200 msec) 

semantic category selectivity observed at the laminar scale 

of microelectrode recordings in the inferotemporal and 

perirhinal cortex (Chan, Baker, et al., 2011), showing an 

effect in the same direction of ours (higher responses for 

animals than for tools). 

Regarding the two perceptual dimensions, our results 

generally align with data stemming from the investigation 

of verb processing and its motor-related embodied as- 

pect, which report somatotopically organized semantic 

differences as early as 150–240 msec after stimulus onset 

(Kiefer, Sim, Herrnberger, Grothe, & Hoenig, 2008; Hauk 

& Pulvermüller, 2004; Pulvermüller, Harle, & Hummel, 

2000). Furthermore, the effect of the auditory dimension 

appears to be stronger than the effect of the visual one, a 

finding that is coherent with what has been reported 

when comparing nouns referring to auditory versus visual 

properties (Bastiaansen et al., 2008). Interestingly, con- 

verging evidence stems from studies indicating linguistic 

compositional effects in the left ATL in very early time win- 

dows (from 175 to 275 msec; e.g., Bemis & Pylkkänen, 

2011), specifically those suggesting that this phenomenon 

is modulated by the specificity of the features being inte- 

grated: constructing the concept of “tomato soup” gen- 

erates more activity than the generic “vegetable soup” 

(Zhang & Pylkkänen, 2015; Westerlund & Pylkkänen, 

2014). 

We speculate that previous studies relying only on 

ERP/ERF may have missed early semantic effects because, 

although most of the evoked signal in the first 300 msec 

after stimulus presentation is likely dominated by the 

processing of low-level physical properties of the stimuli, 

possibly washing out more subtle semantic differences, 

ITC/power estimation can segregate different effects in 

different frequency bands, resulting in an increased sen- 

sitivity (Salisbury & Taylor, 2012; Mormann et al., 2005). 

N400-like semantic effects observed with ERP/ERFs prob- 

ably relate to a successive step of contextual integration 

of word meaning, coincident with a phase in which top– 

down and local associations predominate (see alpha de- 

synchronization in Figure 2B) and during which semantic 

effects propagate more anteriorly (see, e.g., the late con- 

ceptual effect in Figure 3B). 

To our best knowledge, this study provides the first 

direct comparison of the neurodynamics of the recovery 

of both perceptual and conceptual features of concrete 

nouns. We failed to detect any temporal hierarchy: 

Even at the high temporal resolution offered by MEG 

signal, perceptual and conceptual semantic information 

appear to be recovered at the same time, around 200 msec 

poststimuli onset. It should be noted that the stimuli and 

task chosen (i.e., semantic verification on single written 

word) limit the generalization of the phenomena we 

observe. For any given concept (e.g., piano), not only dif- 

ferent weights are assigned to one feature over another 

(e.g., sound > size; Binder et al., 2016; Hoffman & 

Lambon Ralph, 2013), but they also need to be dynamically 

changed as a function of the task at hand (e.g., playing it 

vs. moving it). Further studies shall parametrically modu- 

late these variables to compare their effects on the latency 



 

 

 

with which we access specific dimensions of the semantic 

space. As done here, care needs to be taken while select- 

ing the stimuli as multiple psycholinguistic variables might 

interfere with early semantic effects, for instance, morpho- 

logical effects are known to modulate brain activity within 

the first ∼ 170 msec after stimuli onset (Flick et al., 

2018; 

Gwilliams & Marantz, 2018; Brooks & Cid de Garcia, 

2015; Pylkkänen & Marantz, 2003). 

Overall, we show how concepts are brought about by 

an automatic and rapid integration of different semantic 

features. This result is consistent with the predictions of 

the hub-and-spoke model, thus adding to the growing 

body of electrophysiological, behavioral, neuropsycho- 

logical, and computational evidence that supports this 

account (Mollo et al., 2017; Chen et al., 2016; Lambon 

Ralph, Sage, Jones, & Mayberry, 2010; Rogers & 

Patterson, 2007; Rogers et al., 2004). 

 

Spectral and Source Dissociation between 

Perceptual and Conceptual Dimensions 

The second key finding of this research is that, while 

sharing similar temporal dynamics, perceptual and con- 

ceptual dimensions appear to dissociate in terms of the 

signal property that appears to encode them and, at least 

partially, the underlying generating sources. 

The earliest perceptual effects appear in phase-locking 

changes: Around 200 msec after stimulus onset, phase 

coherence is modulated by the visual dimension of word 

meaning mainly in occipital areas and by the auditory 

dimension of word meaning mainly in occipitotemporal 

areas. On the other hand, in the same time window 

(∼ 200 msec), the conceptual effect is revealed by 

power 

changes. One tentative interpretation of this dissociation 

is that recovering perceptual and conceptual dimensions 

of word meaning might require deployment of different 

computational resources from dedicated brain networks. 

Perceptual effects may involve a partial reinstatement of 

brain activity elicited by the perception of the real-world 

aspect of interest (sound or size; Kiefer et al., 2008), an 

activation that, due to the specific laminar and connectivity 

structure of sensory areas, might rely on frequency-specific 

phase resetting similar to the one triggered directly by a 

sensory stimulus (Makeig et al., 2002) or by multisensory 

integration (Lakatos et al., 2007). By contrast, the retrieval 

of conceptual features in multimodal, associative cortices 

might rely on modulatory nonphased locked feedback 

mechanisms. Findings from a recent MEG–TMS study 

support the idea that the retrieval of stable, complex, 

semantic representations in ATL is linked with neural oscil- 

lations that are not necessarily phase-locked to stimulus 

onset, thus best appreciated in total power changes (Teige 

et al., 2018). The growing availability of direct recordings 

of spontaneous and task-based neuronal activity will 

allow testing of these hypotheses by revealing the dy- 

namics of feedforward and feedback connections in 

specific brain areas.Finally, the different dimensions also 

seem to be par- tially dissociated in terms of their 

underlying sources. On one hand, the visual and 

auditory properties detected in the phase coherence 

changes are predominantly linked to occipital and mid 

and superior temporal regions, thus mostly involving 

modality-specific areas. On the other hand, the 

semantic category effect observed in power changes is 

linked to left mid-inferior and anterior tem- poral 

regions, traditionally associated with multimodal 

processes and language-related functions. This partial 

dissociation supports hybrid theories on the neural 

substrate of semantic representations that assign com- 

plementary roles to multimodal convergence areas (“se- 

mantic hubs”) and modality specific cortices (“spokes”; 

Lambon Ralph, Jefferies, Patterson, & Rogers, 2017). In 

particular, our results align with a recent report of a syn- 

chronized engagement of amodal hub(s) and sensory- 

motor spokes during word reading (Mollo et al., 2017). 

Overall, our findings are in agreement with converging 

evidence from neuroimaging and neuropsychological 

studies: Semantic knowledge appears to be encoded in 

distributed (Huth, de Heer, Griffiths, Theunissen, & 

Gallant, 2016) yet specialized (Fernandino et al., 2015) 

cortical areas, with lesions to different portions of the 

system leading to specific semantic deficits (Binney, 

Embleton, Jefferies, Parker, & Lambon Ralph, 2010; 

Pobric, Jefferies, & Lambon Ralph, 2010). 

 

Conclusion 

In conclusion, our results indicate that different aspects 

of the meaning of concrete words are retrieved auto- 

matically, rapidly, and simultaneously, yet relying on dif- 

ferent brain regions and types of neuronal signals. Visual 

and auditory perceptual semantic aspects (i.e., the im- 

plied real word size and sound) are most clearly observed 

in terms of phase coherence changes over occipital and 

temporal regions, respectively. Conversely, conceptual 

aspects (i.e., the semantic category) are best retrieved 

in power changes over superior temporal cortices at early 

time points and anterior ventrotemporal cortices at later 

time points. Overall, specific perceptual and conceptual 

dimensions of the semantic space appear to be accessed 

concurrently yet differentially within the first 200 msec of 

word reading. 

The early contribution of sensory-motor cortices to the 

retrieval of motor-perceptual dimensions is predicted by 

embodied views on semantics; however, such theories 

would not be able to explain the near simultaneous re- 

trieval of the conceptual dimension in associative areas. 

On the other hand, both the timing and the recon- 

structed sources of the effects cannot be accommodated 

by a purely abstract theory on semantics, which considers 

motor-perceptual effects as postconceptual mental imag- 

ery. Thus, our results speak against both a purely embod- 

ied model and purely amodal language-based perspective 

on the neural substrate of semantic representations, 



   

 

 

calling for a hybrid model where symbolic inputs are 

followed by a rapid activation of both a transmodal hub 

(dedicated to the processing of conceptual dimensions) 

and modality-specific spokes (dedicated to the process- 

ing of motor-perceptual dimensions). 
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