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Abstract

The energy distributions of Ta ions produced in a nanosecond laser-heated plasma at 4×1015

W/cm2 are experimentally and theoretically investigated. They are measured far from the target

with an electrostatic spectrometer and charge collectors. Shadowgraphy and interferometry are

used to characterize the plasma dynamics in the first nanoseconds of the plasma expansion for

electron densities ranging from 1018 to 1020 cm−3. The experimental data clearly show two com-

ponents in the energy distributions which depend on the ion charge states. These components are

discussed in light of fluid and kinetic descriptions of the expanding plasma. In particular, quanti-

tative comparisons with calculations performed with 3D hydrodynamic (Troll) and 1D3V Particle

In Cell (XooPIC) codes demonstrate that a double layer created at the plasma-vacuum interface

plays a crucial role in the acceleration of the highest charge state ions at high energy.

∗ gobet@cenbg.in2p3.fr
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I. INTRODUCTION

High charge state and high energy ions produced in nanosecond laser-heated plasmas are

of interest because of their potential applications in thin film deposition [1], ion implantation

[2, 3], ion accelerators [4] or nanoparticle production [5]. The transport of these ions re-

quired for such applications depends upon the knowledge of the ion charge state and energy

distributions at a distance from the target where recombination processes are stopped and

charge states are frozen [6–8].

We are interested in the characterization of ions far from the target in the context of

studies of nuclear excitation processes in hot dense plasmas [9–12]. Theoretical works predict

that millions of 201Hg nuclei could be excited to their first excited state lying 1.565 keV above

the ground state in a plasma produced with a 100J/ns laser beam focused at 1015 W/cm2

[9]. The detection of these excited nuclei could be possible far from the target as the excited

state lifetime is enhanced from 81 ns in neutral atoms to several µs in ions with charge states

beyond 30+ [12]. The internal conversion, which is the main decay process of this nuclear

excited state, is indeed then strongly inhibited. Therefore, the knowledge of the high charge

state ion paths from the ion production to their detection is mandatory to estimate the

number of excited 201Hg nuclei that can be detected far from the target. In this study, we

have investigated the energy distributions of Ta ions produced in a laser-heated plasma at

4×1015W/cm2, the atomic numbers of mercury and tantalum elements being close.

One possible mechanism responsible for the acceleration of the highest charge state ions

in nanosecond laser-heated plasma is the formation of an electric field at the plasma frontier

with vacuum, where plasma density is low and in which charge separation between electrons

and ions may occur [13–17]. This particular region is called the double layer. The plasma is

then divided into two regions: the main bulk, where ions are accelerated under “thermal”

processes induced by temperature gradients and the double layer, where ions are additionally

accelerated under “electric” processes. From a theoretical point of view, fluid or kinetic

approach are used to describe plasmas. While the fluid description proceeds by numerically

solving the magnetohydrodynamic equations of the plasma, assuming approximate transport

coefficients linked to density, pressure or temperature heterogeneities, the kinetic approach

considers detailed models of the plasma involving particle interactions in the electromagnetic

field. One of the key parameters that helps decide which is the best approach for a plasma
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at an electron temperature Te and a density ne is the dimensionless Knudsen number: Kn =

λ/L where λ(cm) = 744 T 2
e (K)

ne(cm−3)
is the mean free path of the electrons and L is the plasma

gradient defined as
∣∣∣ ne

∇ne

∣∣∣. The Debye length λD =
√

ε0kBTe
nee2

helps decide whether the plasma

is neutral or not. In high density plasmas for which the Knudsen number is small (i .e. < 1)

and the Debye length much shorter than the plasma gradient, the plasma can be considered

as neutral and the usual continuum approach used in fluid mechanics and heat transfer can

be applied. However when the plasma is tenuous, Kn values can become larger than 10

and the Debye length can be of the same order as the plasma gradient. In such a case, the

plasma is non-neutral, collisionless and a double layer can be created: a kinetic approach is

required.

Both approaches are considered in the following and quantitatively discussed in relation

to a “thermal” and an “electric” component in the energy distributions of Ta ions measured

in their asymptotic state with an electrostatic spectrometer and charge collectors. Inter-

ferometry characterizes the plasma dynamics during the 2-3 first ns of the expansion and

is used to extract the plasma gradient, which is mandatory to discriminate between the

fluid and kinetic approaches. To the best of our knowledge, the quantitative comparison

between experimental results on the ion energy distributions with calculations performed

with hydrodynamic and kinetic codes is carried out here for the first time. This comparison

demonstrates in particular the role of a double layer formation in the acceleration of high

charge states at the highest energies in a nanosecond laser heated plasma.

II. SET-UP

The experimental setup is shown in Fig.1(a). The ELFIE facility at Laboratoire pour

l′Utilisation des Lasers Intenses (LULI) delivers s-polarized pulses with a central wavelength

of 1057 nm, of about 35 J and 600 ps duration at half maximum. The main laser beam

is focused to a 20 µm (FWHM) spot onto a tantalum target at an incident angle of 45˚,

reaching a peak intensity of 4×1015 W/cm2. The tantalum target is placed in a vacuum

chamber at 10−5 mb. It consists of a 2 mm thick slab with a surface area of 1×5 cm2. This

target is moved by 5 mm after each laser shot to allow shot-to-shot reproducibility. A sub-ps

and frequency doubled laser pulse propagating parallel to the target surface with a delay

spanning a range of 2 ns before and after the main pulse maximum is used to study the
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FIG. 1. (a) Scheme of the experimental set-up. (b) Image of the plasma expansion at the laser

main pulse maximum. (c) Ion collector (IC) signal of Ta ions. (d) WEM signal of Ta ions with U

= 1100 V.

plasma expansion dynamics. The synchronization between the two laser beams was ensured

at the focal position with a fast photodiode with an accuracy of ± 300 ps. This probe beam

is combined with a Wollaston crystal, two polarizers and an imaging lens to measure the

plasma interference pattern from which the plasma density profile is extracted. Figure 1(b)

presents an example of the raw image at the laser main pulse maximum (t = 0). Plasma is

already well expanded and the threshold between shadowgraphy and interferometry patterns

is at 70 µm from the initial position of the target surface.

The ions are characterized far from the target with Ion charge Collectors (IC) and an

Electrostatic Cylindrical Ion Analyzer (ECIA) coupled with a Windowless Electron Multi-

plier (WEM). ICs are composed of two biased 3 cm long brass cylinders nested in one another

with a drift area allowing charge separation and detection of ions only. The entrance of the
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outer cylinder is collimated down to a hole 300 µm in radius. The current generated by the

ions collected in the inner cylinder is measured into the 50 Ω load of a digital oscilloscope

which is synchronized with the laser shot. A charge collector set 30 cm away from the target

and at an angle of 14˚ from the target normal is used as a reference. An example of a

time of flight signal from the reference IC is shown in Fig.1(c). The traces of 20 laser shots

performed at the same laser intensity are averaged. The signal maximum occuring at t ∼

0.5 µs is associated with Ta ions with kinetic energies of about 340 keV. A high electric

noise induced by laser matter interaction within the first 340 ns hinders the characterization

of ions with kinetic energies higher than 750 keV with this diagnostic. Three additional

collectors were set 30 cm from the target with incident angles from 0˚ to 50˚ to estimate

the plasma plume opening angle. A half opening angle of 35˚ was measured in a range of

laser intensities between 2×1014 and 1015 W/cm2.

The ECIA used to determine the ion energy distributions has a deflection angle of 180˚

and is placed in a second chamber 1.8 m from the target in the normal direction. The

ECIA chamber is isolated from the target chamber by a differential pumping device and

is pumped at 10−6 mb. The energy distributions are measured by biasing the two coaxial

metallic cylindrical plates of the ECIA at a voltage ±U/2. Ions with a given energy-to-charge

state ratio E/Q exit the ECIA if:

E(eV )

Q
= 19.25 U(V ). (1)

These ions impinge on a calibrated WEM [18] and time-of-flight allows the identification

of the ion charge state Q. A typical example of a WEM signal is reported on Fig.1(d) at

U = 1100 V. The signal shows peaks characteristic of charge states of tantalum ions between

Q=7+ and Q=34+. The areas of these peaks are related to the number of ions selected

by the ECIA and impinging on the WEM. These areas, when corrected from the WEM

response function and the ECIA transmission, are used as decribed in Ref.[18] to determine

the energy distributions of the ions of each charge state.

III. EXPERIMENTAL RESULTS

Interferometry pictures were recorded for each and every shot. The phase shift, obtained

by comparing the plasma fringe position with the background one, is used to extract the
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density profile by Abel inversion. The electron density profile is consistent from shot-to-shot

under the same laser conditions. Figure 2 shows a typical result of the interferometry diag-

nostic. The top image is a two-dimensional phase profile retrieved from the interferogram

(Fig. 1(b)). The plasma density profile is retrieved by Abel inversion. This process neces-

sarily assumes that the plasma is axisymmetric about the x-axis, so that only the top half or

bottom half of the phase profile are necessary to extract the density everywhere. However,

the code used to analyze the data considers each half of the phase profile separately, and a

smooth transition from one half to the other increases confidence in the assumption. The

bottom graph is a line-out of the longitudinal density profile at y=100 µm, close to the

x-symmetric axis. The electron gradient length is more than 100 µm at the pulse maximum.

The electron density threshold between shadowgraphy and interferometry patterns is about

1020 cm−3. The plasma plume diameter at this electron density is close to 300 µm and is

much larger than the laser focal spot size. This can be explained by strong pressure inside

the plume, which is sufficient to push matter radially. In such a situation, ions are emitted

in a wide cone angle [16]. This result is qualitatively in agreement with the half opening

angle of 35˚ measured with the array of ion collectors.

The energy distribution of the total ion charge can be obtained from the IC signal i(t)

using the following transformation:

d2Q

dEdΩ
(E = mTal

2/2t2) =
i(t)t3

mTaS
(2)

with mTa the tantalum ion mass, l the distance between the target and the IC entrance, t

the time of flight and S the IC entrance area. The measured charge averaged over bins of 20

keV is reported in Fig. 3. As shown in Fig. 1(c), the time of flight traces have poor signal-

to-noise ratio below 340 ns and the charge energy distribution is truncated above 750 keV.

The charge exhibits two decreasing exponential distributions with strong slope modification

around 150 keV. This behavior already signs two different ion populations.

The absolute energy distributions of each tantalum plasma ion have been measured using

the ECIA for charge states between 1+ and 37+. The WEM response, measured in Ref.[18]

for tantalum ion energies lower than 30 keV, has been extended to higher energies taking the

energy dependence determined by Krasa et al. into account [19]. The ECIA transmission

has been estimated following the protocol described in Ref.[18]. It consists in comparing

the measured IC signal with the reconstructed IC signal built from the ECIA data under
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FIG. 2. Plasma expansion at the instant of the laser main pulse maximum (t = 0). Top: Phase

shift pattern. Bottom: Electron density profile. The longitudinal position x=0 is the position of

the target surface before the shot.

the hypothesis that the ion trajectories in the ECIA are unaffected by space charge effects.

With this method the ECIA transmission has been estimated to be of the order of 100 %

for ion energies higher than 350 keV and reaches a minimum of 20 % at 70 keV. Figure 4(a)

shows the energy distributions for the 4+, 9+, 13+, 20+, 25+ and 30+ charge states. The

distributions are continuous with a regular shift of the maximum towards higher energies

with higher charge states.

The corresponding velocity distributions have been shown to follow the phenomenological

shifted Maxwell-Boltzmann-Coulomb (MBC) distributions [20–25] that empirically take into

account two main properties to describe the laser-heated plasma expansion in vacuum: a

thermal component and a high electric field related to charge density heterogeneity which

accelerates ions to higher velocities. As a consequence the target normal component of

the velocity distributions is generally shifted by a velocity value containing two terms: a

plasma center of mass velocity corresponding to its adiabatic expansion stage in the Knudsen

7



FIG. 3. Energy distribution of the Ta ion charge

layer vT [20, 21] and a Coulomb interaction velocity vC [25]. The expressions of these two

phenomenological components are given by:

vT =

√
γkT

mion

, vC =

√
2eQV0
mion

(3)

where k is the Boltzmann constant, T is the effective ion temperature, which is a way

to evaluate the spread of the velocity distribution around the center-of-mass velocity, γ is

the adiabatic coefficient (γ=5
3

in our case of monoatomic species), and V0 is the equivalent

accelerating voltage developed in the plasma and which accelerates the ions to an energy

proportional to their charge state in the direction normal to the target. The corresponding

energy distributions of ions entering the detector with kinetic energies between E and E+dE

are given by [18]:

d2NQ

dEdΩ
(E) = CQ E exp

[
−E + EMBC − 2

√
EEMBC

kT

]
(4)

where NQ is the number of ions of charge Q, CQ is a proportionality coefficient, and EMBC =

1
2
mion(vT +vC)2. The MBC function of Eq.(4) is used to fit the data. The fitting parameters

are the number of ions CQ, the effective ion temperature T and the equivalent voltage V0.

Figure 4(b) shows examples of χ2 values obtained for different (T ,V0) couples and different

tantalum ion charge states Q. The lowest χ2 values are of the order of 0.1 showing an

overestimation of the statistical error bars on experimental data. Nevertheless, the χ2 values
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FIG. 4. (a) Measured kinetic energy distributions of Ta ions produced at a laser intensity of 4×1015

W/cm2 and the corresponding MBC function fits. (b) χ2 values between experimental data and

MBC functions for different (T ,V0) couples.

clearly show that for low charge states the MBC functions that fit the distributions have a

small and compatible with zero effective potential, whereas for high charge states an effective

potential of about 15 kV is necessary. The good agreement between experimental data and

fits reported in Fig.4(a) with this phenomenological model demonstrates that the ions exhibit

two different populations depending on their charge states, which we will talk the “thermal

component” for ions with charge states lower than 13+ and the “electric component” for

ions with higher charge states and energies larger than 300-400 keV.

Figure 5 shows the evolution of the ion yield as a function of their charge state. This yield

is obtained by integrating the MBC functions from 0 to 1500 keV. Considering a solid angle

of about 1 sr in regards to the 35˚ half opening angle, the number of ions in the “electric”

component with Q ≥15+ is about 3-5 1012 ions and only represents about 5‰ of the total

number of ions emitted in the two components. Therefore the electric field responsible for

additional acceleration of the highest charge state ions does not occur in the whole plasma

volume. Ions in the “electric” component are produced in very specific plasma regions and

follow particular paths from their production to their detection.

The model upon which the MBC distributions are based is phenomenological. Other
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FIG. 5. Ta ion yields as a function of their charge state.

models have been developped to study the acceleration of high charge state ions in plasmas

heated by nanosecond laser pulses. They have been discussed in different works in the

framework of charge separation in the periphery of the expanding plasma [13–17]. In this

particular region, the electron cloud overtakes the ions leading to the formation of a double

layer and an electric field. This scenario is similar to the one of ion acceleration in the

Target Normal Sheath Acceleration regime with sub-ps laser pulses on solid targets. This

regime has been extensively studied in the framework of ultra-short laser pulses with many

theoretical works under different assumptions, such as isothermal or adiabatic expansion or

non-Maxwellian distributions of electrons (see the review article of Macchi et al. [26] and

references therein). In Mora′s work [27], the author assumes a plasma initially at rest in

the reference frame composed of ions with a single charge state Q. Considering Boltzmann

distributed electron energies and isothermal expansion of the plasma, Mora provides the

following expression for the energy distribution of the ions:

d2NQ

dEdΩ
(E) ∝ 1√

EE0

exp(−
√

2E/E0) (5)

where E0 is a characteristic energy dependent on the charge state Q of the ions and the

electron temperature Te as E0=QkTe.

Although the Ta laser-produced plasma in this work contains many possible charge states

of the tantalum element, it is interesting to compare the experimental energy distributions

of the ions in the “electric component” with Mora′s function rewritten in the framework of
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FIG. 6. Measured kinetic energy distributions of Ta ions with the modified Mora′s function fits

(see text for details).

a plasma boundary moving at the velocity vB under thermal expansion in the laboratory

reference frame. The ion energy distribution is found to be:

d2NQ

dEdΩ
(E) ∝ 1√

EE0

exp

−
√√√√2E + 2EB − 4

√
EEB

E0

 (6)

where EB is the “kinetic energy” of the boundary given by 1
2
mTav

2
B. This energy is fixed at

400 keV in the following, the detected ions in the “thermal component” having energies lower

than this value. Figure 6 shows the measured energy distributions of ions with Q ≥13+

for which an “electric component” appeared in the MBC fit. They are compared with the

theoretical predictions discussed above. Mora′s model given by Eq.(6) is used to fit the data

with E0 as a free parameter. The agreement between fit and data strengthens the scenario

of ions accelerated by an electric field produced in a double layer at the frontier between

plasma and vacuum. The characteristic ion energy E0 depends on the ion charge state. It is

reported in Fig.7 and increases from ∼1 keV for Q=13+ to about 60 keV for Q ≥25+. This

behavior is different from the Mora′s linear prediction given for plasmas with single charge

state ions and fixed electron temperature.
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FIG. 7. Evolution of E0 fit parameter as a function of the tantalum ion charge state.

IV. FLUID AND KINETIC SIMULATIONS. DISCUSSIONS.

The experimental ion energy distributions and their comparisons with a phenomenolog-

ical and an analytical model seem to sign at least two different acceleration mechanisms

depending on the ion charge state. These observations are here supported using fluid and

kinetic descriptions.

A. Fluid description: “thermal” component

Simulation of the plasma dynamics in its densest part has been performed over 3 ns

spanned around the laser shot with the radiative-hydrodynamic code Troll [28]. The simula-

tion is performed using a 3D Lagrangian method. The photon transport is modeled using a

multigroup Monte-Carlo coupled to fast non-LTE opacity tables [29–31]. The electron heat

flux uses a Spitzer-Harm flux limiter of 0.15. The equation of state used in the simulation

is relying on a quantum average-atom model calculation as described in [32]. The laser

propagation, refraction and collisional absorption are treated by a ray tracing algorithm.

The simulation has been carried out with a laser intensity characterized by the Gaussian

temporal shape I(t) = Ioe
−4 ln2 t2/τ2 with pulse duration τ=0.6 ns. The intensity profile on

target considered in the code is the one measured experimentally. It has a double Gaussian

distribution I(x, t) = I(t)[0.91e−x
2/R2

1 + 0.09e−x
2/R2

2 ] with spot radiuses R1 = 10.3 µm and

R2 = 39.9 µm. The laser beam energy has been set at 35 J and the incident angle fixed at

45˚.
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Figure 8 presents the electron temperature and density distributions in the incident plane

calculated with the Troll code at t = −0.25 ns, t = 0 ns and t = 0.5 ns. The laser pulse comes

at 45˚ from the bottom of the figure. At the pulse intensity maximum, the plasma reaches a

radial diameter of about 300 µm in agreement with the experimented value estimated from

Fig.1(b). Moreover, the plasma plume is elongated with a radius about two times smaller

than its length, similarly to the half open angle of 35˚ mesured with the IC array. The

highest electron temperature reaches 3 keV near critical density, whereas the plasma at the

frontier with vacuum experiences a fast cooling from 1600 eV down to 400 eV in 400 ps.

The temperature and density distributions exhibit an almost cylindrical symmetry around

the target normal despite a 3D geometry of the laser interaction. The focal spot size being

relatively small, electronic conduction rapidly smoothes this asymmetry.

To check whether the Abel inversion is efficient to extract the electron density profile,

the interferometry diagnostic is included in the simulation. A simulated probe beam passes

through the plasma at 90˚ to the target normal. For each probe beam ray, the phase is

modified proportionally to the integral of the electron density along the optical path of the

ray. The phase shift Φ is then calculated by:

Φ =
2π

λ

∫ √1− ne(l)

nc
− 1

 dl (7)

with λ=528 nm the wavelength of the probe beam, ne the electron density and nc=3.9×1021

cm−3 the critical density at this wavelength. As in the experimental setup, an imaging system

is placed in the simulation to obtain the plasma image. With the simulated phase shift

cartography, an Abel inversion is performed to infer the electronic density. A comparison

of the electronic density determined by Abel inversion with the one directly extracted at

the target normal from the simulation shows a good agreement. This result confirms the

validity of the Abel inversion algorithm to retrieve the electron density profiles.

At different instants of the calculation, the electron density profile has been extracted

along the target normal from the grid elements verifying the criteria Kn ≤1. This allows

the calculation of the plasma gradient in the density range 1018 − 1020 cm−3 as well as

the distance from the initial target surface of the isodensity line at 1020 cm−3. Figure 9

shows the evolution of these observables as a function of time and their comparison with

the experimental values. The measured plasma gradient exhibits a maximum about 0.5 ns

after the pulse maximum whereas the isodensity line distance increases monotonously up to
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FIG. 8. Electron temperature and density in the incident plane calculated with the Troll code for a

tantalum plasma heated by a nanosecond laser pulse at 4×1015 W/cm2 at three different instants,

t = −0.25 ns, t = 0 ns, t = 0.5 ns. The maximum laser intensity is reached at t = 0 ns. The target

is at the longitudinal position x=0.

2 ns with a slight rebound at 0.5 ns. A good agreement is observed between experimental

and calculated values with a time offset of about 300 - 500 ps. This offset could be due

to the systematic error on the synchronization of the main and probe beams with the fast

photodiode. In the first ns, the plasma experiences a fast thermal expansion because of laser

heating whereas the rebound observed after 0.5 ns in the shadowgraphy pattern is induced

by the mechanical response of matter initially compressed by the ponderomotive force of

the laser pulse. The corona follows an adiabatic expansion after the end of the laser pulse

leading to the decrease of the gradient observed after 1 ns.

Calculations show that at the pulse intensity maximum the highest ion temperature

reaches around 600 eV near the critical density whereas at the end of the laser pulse, the

ion temperature decreases down to about 100 eV. Whatever the instant of the laser and the
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FIG. 9. Comparaison between experimental and calculated gradient (up) and isodensity line dis-

tance (bottom) reported as a function of time. The maximum intensity of the main pulse is reached

at t = 0.

plasma density, these ion temperatures present low values and the measured ion energies are

not representative of the thermal energy. Additional acceleration mechanisms are required

to interpret the ion energies as those induced by strong thermal and pressure gradients

in the plasma bulks. Fig.10(a) displays the tantalum ion energy distributions calculated

with Troll for a laser energy of 35 J on target at four instants before and after the laser

pulse maximum (t = 0). The distributions are constructed considering ions in all the grid

elements verifying the criteria Kn ≤1. Two behaviors are observed depending on time.

The plasma is heated throughout the application of the laser pulse, producing ions with

increasing energies up to 500 keV in the fluid approximation. Once the laser pulse ends,

plasma adiabatically expends in vacuum and ion energy distributions display a steady shape

up to 2 ns. These distributions are compared in Fig.10(b) with the asymptotic ion energy

distributions built from the summation at a given energy of all the MBC functions fitting

the measured data. A differentiation is made depending on the ion component and therefore

on the ion charge state. The green curve represents the total number of ions reported with

error bars as the dashed green curves corresponding to a statistical uncertainty of ± 60%.

It is worth noticing that the in situ calculated distributions span a range of energies in

agreement with the experimental “thermal” component of the distributions. Despite strong
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physical difference between both quantities, i .e. ion distributions calculated during the first

stages of plasma expansion versus ion distributions measured in frozen states more than 1

µs after the laser shot, this qualitative agreement suggests that fluid effects are responsible

for the acceleration of ions measured at energies lower than 400 keV. These ions constitute

the main part of the plasma particles observed far from the target. Moreover, it is clear

that energetic ions observed above 1 MeV cannot be interpreted by fluid description and an

additional acceleration process occurring somewhere else than the dense part of the plasma

is required to interpret the experimental data.

FIG. 10. a) energy distributions of ions calculated at different instants about the laser pulse

maximum (t = 0 ns) with the Troll code. b) asymptotic ion energy distributions built from the

MBC functions fitting the measured data.

B. Kinetic description: “electric” component

A double layer formed at the frontier between plasma and vacuum produces an electric

field that could accelerate ions at energies higher than the thermal component values. We will

now try to determine whether a double layer can appear under our experimental conditions,

and if so, if its characteristics, in terms of electron density and temperature, can be used to

reproduce the measured energy distributions of the highest Ta ion charge states.

In order to be efficient for additional acceleration of the highest charge state ions, the

typical time for the double layer formation must be smaller than the typical time of the

plasma evolution. We will thus first focus on the evolution of the plasma temperature,
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mean charge state and electron density at the plasma frontier with vacuum as a function

of time using the fluid code Troll. Then, we will determine the electron density range over

which a double layer can be formed, using 1D3V PIC simulations with inputs from the Troll

fluid calculations. Two conditions must be verified: 1) the time needed for the double layer

formation must be low enough so that the plasma parameters do not significantly evolve

and the acceleration of the highest charge state ions is possible before the plasma cooling

stage, 2) the Debye length must be larger than the plasma gradient. These conditions will

determine the electron density range over which the double layer is formed. It will finally be

used as an input of PIC simulation to extract the energy distributions of ions accelerated in

the double layer of the multispecies plasma for comparison with the “electric” component

observed in the experimental data.

1. Double layer formation conditions

Figure 11 shows the evolution of the ion mean charge state, the electron temperature and

density at the frontier between plasma and vacuum, from Troll calculations. The tempera-

ture reaches 1400-1600 eV in the first half of the laser pulse and decreases down to 100 eV

in about 1 ns. The evolution of the mean charge with time is correlated with temperature

and increases from 4+ to 43+ in the first 200 ps of the arrival of the laser pulse, then stays

stable at 43+ up to the last 200 ps of the laser pulse when it exhibits a continuous decrease

from 43+ down to 14+. Calculations show that the grid element describing this plasma

region has a mean electron density of the order of 1016 − 1018 cm−3 at the pulse intensity

maximum and during the next two nanoseconds. This grid element also has a longitudinal

size of a few hundreds of micrometers. Strong density heterogeneities should thus occur in

this plasma region which shows that the fluid description is not appropriate here. However

the order of magnitude of the highest temperature and plasma evolution time will be used

in the following to estimate at which electron density a double layer occurs in this plasma

region.

The time needed for the double layer formation is calculated using the XooPIC Particle-

In-Cell code [33] as a function of electron density considering a plasma of Ta20+ at the

maximum electron temperature reached in the plasma at its frontier with vacuum: 1500

eV. At t = 0, the plasma is neutral and is localized in one region of the simulation box,
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FIG. 11. Electronic temperature, mean ion charge state (top), laser intensity and electron density

(bottom) evolutions with time, calculated with Troll in the grid element at the frontier between

plasma and vacuum.

the remaining part being vacuum. The cell size is adjusted depending on the initial plasma

density to ensure numerical stability governed by the Debye length. The time step is fixed

at one tenth of the plasma wave period. Electrons expand in vacuum and charge separation

occurs in a region where a longitudinal electric field accelerates the ions. The ion energy

distribution evolves with calculation time and reaches the steady shape described by Mora′s

function with the expected E0 value given in Eq.(5), after a given time. The time needed

for the transient regime to be gone will be considered in the following as the time needed

for the double layer formation. For an electron density of 1015 cm−3 and a temperature

of 1500 eV, the double layer is created in about 400 ps, i .e. a duration of the order of the

typical time of plasma evolution (∼ 500 ps). This duration typically depends on the electron

density as n−1/2e as reported in Fig.12(a). Therefore the formation of a double layer efficient

for the acceleration of the highest charge state ions requires electron densities larger than

1015 cm−3.

Figure 12(b) shows the evolution of the Debye length as a function of the electron density

at the electron temperature of 1500 eV. The maximum value of the plasma gradient measured

between 1018 cm−3 and 1020 cm−3 (see Fig.9) is also reported. We can see that it is much
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higher than the Debye length. The formation of a double layer thus requires electron densities

smaller than 1018 cm−3. We can imagine that at the frontier between plasma and vacuum,

the density falls to zero in a very thin zone leading to a strong reduction of the plasma

gradient at the interface reaching values compatible with the typical values calculated for

the Debye length, i .e. a few µm. The conditions for the formation of a double layer could

then be achieved in such a specific zone around the plasma-vacuum interface characterized

by an electron density ranging from 1015 to 1018 cm−3.

FIG. 12. a) Double layer (DL) formation time, b) Debye length as a function of electron density in

a monocharge plasma of Ta20+ at an electron temperature of 1500 eV. The double layer formation

times have been calculated with XooPIC codes and fitted with a n
−1/2
e function. The plasma

gradient measured between 1018 cm−3 and 1020 cm−3 is reported as well as the plasma duration

value estimated from Troll calculations. Theses values define the region of interest for double layer

formation (see text).

Finally, the PIC simulations show that, at a density of 1015 cm−3 and a temperature

of 1500 eV, electrons leading to the charge separation are spread over a distance of 1 mm

after 200 ps. These electrons are diluted in vacuum and are not experiencing any collisions.

Under such conditions, these electrons do not readjust their spatial and velocity distributions

throughout the plasma cooling stage, leading to a decoupling between the dynamics of the

diluted double layer and the evolution with time of the plasma temperature. Therefore
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the acceleration potential does not strongly evolve with time compared to the evolution of

ion charge state in plasma. Different high charge ions can then be successively accelerated

during the plasma cooling phase in the double layer created when the electron temperature

was hot.

2. Energy distributions in a multispecies plasma

To calculate the energy distributions of the high charge state Ta ions, instead of consid-

ering a plasma composition evolving with time, we have treated a simpler system in which a

multispecies tantalum plasma with stationnary composition of ions expands in vacuum at a

given electron temperature. Ta15+, Ta20+, Ta25+, Ta30+ and Ta35+ ions are considered in this

system with the asymptotic ionic fraction given in Fig. 5. With this composition, the mean

charge is about 18+. Calculations are performed as a function of the electron temperature,

over a range between 400 eV and 1600 eV. The electron density has been arbitrarily ad-

justed to a few 1015 cm−3 to set the Debye length at λD=5 µm for each simulation. Similar

studies have been done at higher electron densities without changing the conclusions that

will be presented in the following. Typical structures of the electron and ion distributions

are shown in Fig. 13(a) as a function of x/λD at the electron temperature of 1200 eV.

Results are reported at t = 250 ps after the energy distributions have reached their steady

shape. Electrons have already moved more than 750 µm away from their initial position

(x≤0) while the position of the Ta ion fronts depends on the ion charge state. They can

be found up to twenty Debye lengths (∼100 µm) from their initial position. Figure 13(b)

shows the resulting charge separation with two distinct regions: a positive layer on the left

of the ion fronts and a negative layer due to the electron cloud on the right. This double

layer produces the electric field in which ions experience acceleration at energies depending

on their charge states.

The obtained energy distributions are reported on Fig.14 for three different charge states.

They are calculated in the laboratory frame taking the additional velocity vB of the plasma

frontier (corresponding to EB=400 keV) into account as described in section III. Highly

charged ions reach higher energies than lowly charged ions and the modified Mora′s func-

tion defined in Eq.(6) well fits their spectra. The E0 value strongly depends on the ion

charge state and increases from E0= 7±5 keV for Ta15+ to E0=83±6 keV for Ta35+ in these
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FIG. 13. a) Structure of the ion front at t=250 ps, for an electron density at about 1015 cm−3 and

an electron temperature at 1200 eV. b) Charge separation and longitudinal electric field profile in

the same plasma conditions. At t=0, the interface between plasma and vacuum is set at x/λD=0.

examples.

FIG. 14. Calculated energy distributions of Ta15+, Ta25+ and Ta35+ ions in the same plasma

conditions as in Fig. 13. Data are fitted with the modified Mora′s function defined in Eq.(6).

Figure 15 shows the evolution of E0 with the charge state in order to compare experi-

mental and calculated values for different electron temperatures. For each simulation, the
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energy distributions have been extracted after waiting the duration required for the double

layer formation. Agreement between experiment and simulation is observed for electron

temperatures around 1200 -1600 eV corresponding to the highest temperatures reached in

the plasma periphery. This strengthens the assumption of the formation of a double layer

when the plasma is hot leading to the creation of an electric field in which ions are then

accelerated throughout the plasma cooling. However, the energy E0 does not linearly de-

pend on the ion charge state as predicted by Mora for a plasma with ions at a single charge

number Q. Moreover the application of Mora′s relation E0=QkTe gives E0= 42 keV for

Q=35+ and Te= 1200 eV. This value is about 1.5 - 2 times lower than both the values

extracted from experimental data and calculated with XooPIC. In a single charge plasma,

Mora showed that the electric field at the ion front scales as
√

Te
Q

[27]. In the multispecies

plasma considered in this XooPIC simulation, the average charge is about 18+ and the elec-

tric field could be about
√

2 times larger than the one that would be reached in a plasma

only composed of Ta35+ ions at the same electron temperature. Such a dependance of the

electric field could explain the high E0 values measured in this work for the highest charge

state.

FIG. 15. Evolution of E0 fit parameter as a function of the tantalum ion charge state. Left:

experimental value. Right: results of XooPIC simulations for double layers at various electron

temperatures.
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V. CONCLUSION

Energy distributions of ions produced in a nanosecond laser-heated tantalum plasma have

been measured far from the target for different charge states. After fitting the energy distri-

butions with MBC functions, these ions can be classified into two components, a “thermal”

or an “electric” one. Under fluid approximation, Troll calculations reproduce the energy dis-

tributions of ions in the “thermal” component. The “electric” component can also be fitted

with Mora′s function considering a parameter E0 increasing with the ion charge state. This

behavior can be reproduced with a kinetic approach in which a double layer is formed at

the periphery between plasma and vacuum. This double layer, developed when the electron

temperature is at its highest value, produces an electric field in which ions are accelerated

throughout the plasma cooling.

In this scheme and according to the amount of tantalum ions in the “electric” component,

only nuclei contained in the ∼20 first nm of the target are accelerated in this double layer.

The remaining part of the nanosecond laser-heated plasma expands with a fluid behavior and

experiences important recombination rate leading to the “thermal” component observed far

from the target. Additional experiments could be interesting to perform in order to confirm

and constraint this scheme. One possibility would be to study the ion energy distributions

when shooting a thin layer (10 -20 nm thick) of atoms with atomic number Z1 deposited on a

thick target with atoms of a different atomic number Z2. This atomic number must be close

to Z1 (gold and tantalum for instance) in order not to modify the main bulk hydrodynamics.

The temperature and density should therefore be continuous at the interface between both

elements and we think that a single double layer should occur at the interface between the

target and vacuum. For the adequate thickness of the thin layer, ions with Z1 atomic number

would be accelerated in the “electric” component whereas ions with Z2 would be present in

the “thermal” one.

Such properties are important to take into account for dimensioning future experiments of

nuclear physics where high charge state ions are strongly involved and must survive far from

the target. In the framework of nuclear excitation in nanosecond laser-heated 201Hg plasma,

this study shows that only the first 20 - 30 nm of the target would be of interest to produce

high charge state ions in which nuclei may still be excited far from the target. Considering

a focal spot diameter of 20 µm, Hg nuclei excited in the plasma may be searched for in
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about 5‰ of the whole plasma volume, i .e. in only 1012 ions with charge states higher than

30+. The number of excited nuclei far from the target may therefore be strongly reduced

compared to the few millions nuclei expected to be excited in the whole plasma during the

laser irradiation. More detailed calculations coupling codes describing the hydrodynamical

expansion of plasma and nuclear excitation properties in plasma are currently in progress to

extract a quantitative dimensioning of the expected excited nuclei detectable far from the

target considering this constraint.
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S. Yerci, Laser and Particle Beams 25, 65 (2007).

[4] S. Bulanov and V. Khoroshkov, Plasma Physics Reports 28, 453 (2002).

[5] T. Donnelly, B. Doggett, and J. G. Lunney, Applied surface science 252, 4445 (2006).

[6] I. Roudskoy, Laser and particle beams 14, 369 (1996).

[7] R. A. Burdt, Y. Ueno, Y. Tao, S. Yuspeh, M. S. Tillack, and F. Najmabadi, Applied Physics

Letters 97, 041502 (2010).

[8] R. A. Burdt, Y. Tao, M. S. Tillack, S. Yuspeh, N. M. Shaikh, E. Flaxer, and F. Najmabadi,

Journal of Applied Physics 107, 043303 (2010).
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[12] G. Gosselin, V. Méot, and P. Morel, Physical Review C 76, 044611 (2007).

[13] A. Gurevich, L. Pariiskaya, and L. Pitaevskii, Sov. Phys. JETP 22, 449 (1966).

[14] J. Crow, P. Auer, and J. Allen, Journal of Plasma Physics 14, 65 (1975).

[15] S. Eliezer and H. Hora, Physics Reports 172, 339 (1989).

[16] N. M. Bulgakova, A. V. Bulgakov, and O. F. Bobrenok, Physical Review E 62, 5624 (2000).

[17] J. I. Apinaniz and R. Martinez, IEEE Transactions on Plasma Science 39, 2928 (2011).

[18] M. Comet, M. Versteegen, F. Gobet, D. Denis-Petit, F. Hannachi, V. Meot, and M. Tarisien,

Journal of Applied Physics 119, 013301 (2016).
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