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Asymptotic justification of the intrinsic equations of Koiter's model of a linearly elastic shell

We show that the intrinsic equations of Koiter's model of a linearly elastic shell can be derived from the intrinsic formulation of the three-dimensional equations of a linearly elastic shell, by using an appropriate a priori assumption regarding the three-dimensional strain tensor fields appearing in these equations. To this end, we recast in particular the Dirichlet boundary conditions satisfied by any admissible displacement field as boundary conditions satisfied by the covariant components of the corresponding strain tensor field expressed in the natural curvilinear coordinates of the shell. Then we show that, when restricted to strain tensor fields satisfying a specific a priori assumption, these new boundary conditions reduce to those of the intrinsic equations of Koiter's model of a linearly elastic shell.

Geometry of the reference configuration of a shell

Greek indices and exponents vary in the set {1, 2}, Latin indices and exponents vary in the set {1, 2, 3}, and the summation convention for repeated indices and exponents is used. The three-dimensional Euclidean space is denoted E 3 and the inner product, the vector product, and the norm, in E 3 are respectively denoted • , ∧ , and | • |. Given any integer n > 1, the space of all real n × n symmetric matrices is denoted S n . Given any open subset Ω of R n , n ≥ 1, and any integer m ≥ 0, the notation C m (Ω; E 3 ) denotes the space of vector-valued fields in E 3 with components in C m (Ω). Similar definitions hold for the spaces C m (Ω; S n ) and H 1 (Ω; R 3 ). A generic point in R 2 is denoted y = (y α ) and partial derivatives of the first and second order are denoted ∂ α := ∂/∂y α and ∂ αβ := ∂ 2 /∂y α ∂y β .

Let ω ⊂ R 2 be a non-empty connected open set whose boundary is of class C 3 (in the sense of [START_REF] Nečas | Les Méthodes Directes en Théorie des Equations Elliptiques[END_REF]), and let θ : ω → E 3 be an immersion of class C 4 , that is, a mapping θ ∈ C 4 (ω; E 3 ) such that the two vector fields a α := ∂ α θ ∈ C 3 (ω; E 3 ) are linearly independent at each point y ∈ ω. Then S = θ(ω) is a surface with boundary in E 3 ,

a 3 := a 1 ∧ a 2 |a 1 ∧ a 2 | ∈ C 3 (ω; E 3 )
is a unit normal vector field along S, the three vector fields a i form the covariant bases along S, and the three vector fields a i , defined by the relations a i • a j = δ i j in ω, form the contravariant bases along S.

The covariant and contravariant components of the first fundamental form associated with the immersion θ are respectively denoted and defined by a αβ := a α • a β ∈ C 3 (ω) and a αβ := a α • a β ∈ C 3 (ω), the covariant and mixed components of the second fundamental form associated with the immersion θ are respectively denoted and defined by b αβ := ∂ α a β • a 3 ∈ C 2 (ω) and b α β := a ασ b σβ ∈ C 2 (ω), the Christoffel symbols (of the second kind) associated with the immersion θ are denoted and defined by Γ σ αβ := ∂ α a β • a σ ∈ C 2 (ω), the mixed components of the Riemann curvature tensor field associated with the immersion θ are denoted and defined by

R ψ •ασϕ := ∂ σ Γ ψ αϕ -∂ ϕ Γ ψ ασ + Γ β αϕ Γ ψ βσ -Γ β ασ Γ ψ βϕ ∈ C 1 (ω)
, and the area element along the surface S is denoted and defined by √ a dy, where

a := det(a αβ ) ∈ C 3 (ω).
The above assumptions on ω and θ imply that the boundary γ := ∂ω of ω, resp. the boundary θ(γ) of S, is a curve, or a finite union of curves if γ is not connected, of class C 3 in R 2 , resp. in E 3 . For definiteness, these curves are oriented by the inner normal vector field to the boundary of ω; thus, if

ν(y) := ν α (y)a α (y) = ν α (y)a α (y) ∈ E 3
designates the unique unit normal vector to the curve θ(γ) at the point θ(y) that is contained in the tangent plane to S at θ(y) and whose orientation is such that its covariant components (ν α (y)) ∈ R 2 form an inner normal vector to the curve γ, then (τ α (y)) ∈ R 2 , where τ 1 (y) := ν 2 (y) and τ 2 (y) := -ν 1 (y) is a positively-oriented tangent vector to the curve γ at y ∈ γ, and

τ (y) := τ α (y)a α (y) ∈ E 3
is the positively-oriented unit tangent vector to the curve θ(γ) at θ(y).

Then the three vectors τ (y), ν(y), a 3 (y)

form the Darboux frame at the point θ(y), y ∈ γ, of the curve θ(γ), and the three scalars

κ g (y) := ∂ τ τ (y) • ν(y) = -τ (y) • ∂ τ ν(y), κ n (y) := ∂ τ τ (y) • a 3 (y) = -τ (y) • ∂ τ a 3 (y), τ g (y) := ∂ τ ν(y) • a 3 (y) = -ν(y) • ∂ τ a 3 (y),
where the notation ∂ τ τ (y) denotes the derivative at θ(y) of the vector field τ • θ -1 with respect to the arclength abscissa along the curve θ(γ), respectively designate the geodesic curvature, the normal curvature, and the geodesic torsion, of the curve θ(γ) at θ(y).

Let ε > 0 be a small enough parameter, so that the extension Θ ∈ C 3 (Ω; E 3 ) of the immersion θ ∈ C 4 (ω; E 3 ) to the three-dimensional domain Ω ⊂ R 3 , defined by [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Geometry[END_REF] for the proof of the existence of such a parameter ε). Let the notation ∂ i designate the partial differential operators ∂ α := ∂/∂y α for i = α and ∂ 3 := ∂/∂x 3 for i = 3. Then, for each x ∈ Ω, the three vectors

Θ(x) := θ(y) + x 3 a 3 (y) for all x = (y, x 3 ) ∈ Ω, where Ω := ω×] -ε, ε[, is itself an immersion at each point x ∈ Ω (see Theorem 4.1-1 in
g i (x) := ∂ i Θ(x)
form the covariant basis at Θ(x) ∈ E 3 . Its dual basis is formed by the three vectors g i (x) ∈ E 3 , which are defined as the unique solution to the equations g i (x) • g j (x) = δ i j , and which form the contravariant basis at Θ(x) ∈ E 3 .

The covariant and contravariant components of the metric tensor field associated with the immersion Θ are respectively denoted and defined by

g ij := g i • g j ∈ C 2 (Ω) and g ij := g i • g j ∈ C 2 (Ω),
the Christoffel symbols (of the second kind) associated with the immersion Θ are denoted and defined by

G k ij := ∂ i g j • g k ∈ C 1 (Ω),
and the volume element inside the three-dimensional manifold Θ(Ω) is denoted and defined by √ g dx, where

g := det(g ij ) ∈ C 2 (Ω).
The image Θ(Γ) ⊂ E 3 by the immersion Θ of the lateral face Γ := γ×] -ε, ε[ of the cylinder Ω is a surface, or a finite union of surfaces if γ is not connected, of class C 3 in E 3 . The tangent plane to the surface Θ(Γ) at each point Θ(x), x = (y, x 3 ) ∈ Γ, is spanned by the two vectors

g 3 (x) := ∂ 3 Θ(x) and t(x) := t α (x)g α (x),
where the coefficients t α (x) are defined by t α (x) := τ α (y) for all x = (y, x 3 ) ∈ Γ.

Then

n(x) = n α (x)g α (x) := g 3 (x) ∧ t(x) |g 3 (x) ∧ t(x)| ∈ E 3
is a unit normal vector at the point Θ(x) to the surface Θ(Γ), oriented is such a way that the three vectors t(x), n(x), g 3 (x), form in this order a positively-oriented basis in E 3 . Note that this basis can be seen as an extension of the Darboux frames associated with the curve γ to frames along the surface Γ, since t(y, 0) = τ (y), n(y, 0) = ν(y), and g 3 (y, 0) = a 3 (y), for all y ∈ γ.

In the rest of this Note, we consider a shell with reference configuration Θ(Ω), assumed to be a natural state (i.e., stress-free), whose middle surface S = θ(ω) and (constant) thickness 2ε > 0 satisfy the above assumptions. We assume that the shell is made of a linearly elastic material with Lamé constants λ ≥ 0 and µ > 0, and that it is subjected to a homogeneous boundary condition of place on a portion Θ(Γ 0 ) of its lateral face, where Γ 0 := γ 0 ×] -ε, ε[ and γ 0 ⊂ γ is a non-empty relatively open subset of the boundary of ω. Finally, we assume that the shell is subjected to applied body forces whose densities per unit volume in the reference configuration is a vector field

f i g i : Ω → E 3 , where f i ∈ L 2 (Ω).
Note that applied surface forces with non-zero densities on the upper and lower faces Θ(ω × {+ε}) and Θ(ω × {-ε}) of the shell could be also considered, at the expense of minor modifications of the ensuing analysis, but for simplicity they will not be considered here.

Classical and intrinsic formulations of Koiter's model of a linearly elastic shell

Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the space

V (ω) := {η := (η i ) ∈ C 2 (ω) × C 2 (ω) × C 3 (ω); η i = ∂ α η 3 = 0 on γ 0 },
and the functional j K : V (ω) → R by j K (η) := ω a αβστ ε 2 γ στ (η)γ αβ (η) + ε 3 6 ρ στ (η)ρ αβ (η) √ a dy - ω p i η i √ a dy for all η ∈ V (ω),
where

a αβστ := 4λµ λ + 2µ a αβ a στ + 2µ(a ασ a βτ + a ατ a βσ ), p i := ε -ε f i (•, x 3 ) dx 3 , γ αβ (η) := 1 2 ∂ α (η i a i ) • a β + ∂ β (η i a i ) • a α , ρ αβ (η) := ∂ αβ (η i a i ) -Γ σ αβ ∂ σ (η i a i ) • a 3 ,
respectively denote the contravariant components of the two-dimensional elasticity tensor of the elastic material constituting the shell, the contravariant components of the density of the resulting applied forces per unit area along the middle surface S of the shell, and the covariant components of the linearized change of metric, and of curvature, tensor fields associated with the displacement field η i a i of the surface S.

Then, according to the landmark paper by Koiter (Ref. [START_REF] Koiter | On the foundations of the linear theory of thin elastic shells[END_REF]), re-interpreted here in its "modern" formulation, the unknown displacement field η i a i of the middle surface of the shell is such that the vector field η = (η i ) should be the unique minimizer of the extension by continuity of the functional j K over the completion of the space V (ω) with respect to the norm

(η i ) ∈ V (ω) → α η α H 1 (ω) + η 3 H 2 (ω) .
Remark 1 The definition of the space V (ω) as a subspace of the space C 2 (ω) × C 2 (ω) × C 3 (ω) is a deliberate choice, meant to simplify the ensuing analysis by using classical function spaces, instead of Sobolev spaces as would have been the case had we chosen the space

H 1 (ω) × H 1 (ω) × H 2 (ω).
An intrinsic formulation of Koiter's model of a linearly elastic shell consists in replacing the above unknown η by an appropriate "measure of strain". Since the linear mapping

η ∈ V (ω) → ((γ αβ (η)), (ρ αβ (η))) ∈ C 1 (ω; S 2 ) × C 1 (ω; S 2 )
is one-to-one, as a consequence of the well-known infinitesimal rigid displacement lemma on a surface (see, e.g., [START_REF] Ciarlet | Mathematical Elasticity, Volume III: Theory of Shells[END_REF]), the above pair of matrix fields provides an instance of such a "measure of strain". More specifically, let

V(ω) := { (γ αβ (η)), (ρ αβ (η)) ; η ∈ V (ω)}
denote the image of the space V (ω) under the linear mapping above. Then the mapping

F ω : V (ω) → V(ω) defined by F ω (η) := ((γ αβ (η)), (ρ αβ (η))) for all η ∈ V (ω),
is one-to-one, and onto, so that its inverse

G ω := F -1
ω is well defined. Hence the unknown η can be replaced in the classical formulation of Koiter's model of a linearly elastic shell by the pair of matrix fields ((c αβ ), (r αβ )) := F ω (η).

In this fashion, the corresponding intrinsic formulation of Koiter's model of a linearly elastic shell asserts that the new unknown ((c αβ ), (r αβ )) ∈ V(ω) is the unique minimizer of the functional

j K := j K • G ω : V(ω) → R.
Of course, just as in the classical formulation, such a minimizer can be found provided the functional j K is extended by continuity to the completion of the space V(ω) with respect to an appropriate norm.

The functional space V(ω) appearing in the above intrinsic formulation of Koiter's model has been explicitly characterised by the authors in [START_REF] Ciarlet | Intrinsic formulation of the displacement-traction problem in linear shell theory[END_REF], where it was shown that

V(ω) = V (ω),
where the space V (ω) is defined by

V (ω) := ((c αβ ), (r αβ )) ∈ C 1 (ω; S 2 ) × C 1 (ω; S 2 ); S βασϕ = 0 and S 3ασϕ = 0 in ω, c αβ τ α τ β = 0 and c αβ|σ τ α 2ν β τ σ -τ β ν σ + κ g c αβ ν α ν β = 0 on γ 0 , r αβ τ α τ β = 0 and r αβ τ α ν β -c αβ ν α 2κ n τ β + τ g ν β = 0 on γ 0 ,
the functions τ α , ν α , κ g , κ n , τ g being defined as in Sect. 1 along the curve θ(γ 0 ), and the distributions S βασϕ ∈ D (ω) and S 3ασϕ ∈ D (ω) being defined in terms of the functions c αβ and r αβ by

S βασϕ := c σα|βϕ + c ϕβ|ασ -c ϕα|βσ -c σβ|αϕ + R ψ •ασϕ c βψ -R ψ •βσϕ c αψ -b ϕα r σβ -b σβ r ϕα + b σα r ϕβ + b ϕβ r σα , S 3ασϕ := b ψ σ (c αψ|ϕ + c ϕψ|α -c ϕα|ψ ) -b ψ ϕ (c αψ|σ + c σψ|α -c σα|ψ ) -r σα|ϕ + r ϕα|σ , where 
c αβ|σ := ∂ σ c αβ -Γ ϕ ασ c ϕβ -Γ ϕ βσ c αϕ and c αβ|σϕ := ∂ ϕ c αβ|σ -Γ ψ αϕ c ψβ|σ -Γ ψ βϕ c αψ|σ -Γ ψ σϕ c
αβ|ψ denote the usual covariant derivatives of first and second order of the tensor field c αβ along the surface S.

Note that the above distributions satisfy the symmetry relations

S 3ασϕ = -S 3αϕσ and S βασϕ = S σϕβα = -S σϕαβ ,
which in turn imply that only three of them, e.g. S 1212 , S 3112 , and S 3212 , are independent.

The main objective of this Note is to prove that the above characterisation of the space V(ω) can be deduced from the intrinsic formulation of the three-dimensional equations of a linearly elastic shell by using an appropriate a priori assumption regarding the three-dimensional strain tensor fields, according to which the covariant components e i3 of the admissible three-dimensional strain tensor fields must vanish in Ω; see the definition of the space V H (Ω) in Theorem 2.

Classical and intrinsic formulations of the three-dimensional equations of a linearly elastic shell

Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the space

V (Ω) := {v := (v i ) ∈ C 2 (Ω; R 3 ); v i = 0 on Γ 0 } and the functional J : V (Ω) → R by J (v) := 1 2 Ω A ijk ε k (v)ε ij (v) √ g dx - Ω f i v i √ g dx for all v ∈ V (Ω),
where

A ijk := λg ij g k + µ(g ik g j + g i g jk ) and ε ij (v) := 1 2 ∂ i (v k g k ) • g j + ∂ j (v k g k ) • g i
respectively denote the contravariant components of the three-dimensional elasticity tensor field of the elastic material constituting the shell, and the covariant components of the linearized change of metric tensor field, also known as the linearized strain tensor field, associated with the displacement field v i g i of the shell.

Then the classical formulation of the three-dimensional equations of a linearly elastic shell in curvilinear coordinates (Ref. [START_REF] Ciarlet | Mathematical Elasticity, Volume III: Theory of Shells[END_REF]) asserts that the unknown displacement field v i g i of the shell is such that the vector field v = (v i ) should be the unique minimizer of the extension by continuity of the functional J over the completion of the space V (Ω) with respect to the norm

(v i ) ∈ V (Ω) → i v i H 1 (Ω) .
An intrinsic formulation of the above equations consists in replacing the above unknown v by an appropriate "measure of strain". Since the linear mapping

v ∈ V (Ω) → (ε ij (v)) ∈ C 1 (Ω; S 3 )
is one-to-one, as a consequence of the well-known infinitesimal rigid displacement lemma (see, e.g., [START_REF] Ciarlet | Mathematical Elasticity, Volume III: Theory of Shells[END_REF]), the above matrix field provides an instance of such a "measure of strain". More specifically, let

V(Ω) := {(ε ij (v)) ; v ∈ V (Ω)}
denote the image of the space V (Ω) under the linear mapping above. Then the mapping F Ω : V (Ω) → V(Ω) defined by F Ω (η) := (ε ij (v)) for all v ∈ V (Ω), is one-to-one and onto, so that its inverse

G Ω := F -1
Ω is well defined. Hence the unknown v can be replaced in the classical formulation of the three-dimensional equations of a linearly elastic shell by the matrix field

(e ij ) := F Ω (v).
In this fashion, the corresponding intrinsic formulation of the three-dimensional equations of a linearly elastic shell asserts that the new unknown (e ij ) ∈ V(Ω) is the unique minimizer of the functional

J := J • G Ω : V(Ω) → R.
Of course, just as in the classical formulation, such a minimizer can be found provided the functional J is extended by continuity to the completion of the space V(Ω) with respect to an appropriate norm.

The next theorem, which constitutes the first main result of this Note, explicitly characterises the space V(Ω) appearing in the above intrinsic formulation of the three-dimensional equations of a linearly elastic shell in the curvilinear coordinates associated with the immersion Θ defining the reference configuration of the shell. Note that the functions t i j , e ij k , and e ij hk , appearing in this theorem are nothing but the usual covariant derivatives of vector and tensor fields (the functions G i j denote the Christoffel symbols defined in Sect 1).

Theorem 1 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition that ω is simply-connected and that γ 0 is connected. Define the spaces

V(Ω) := {(e ij ) ∈ C 1 (Ω; S 3 ); e ij = ε ij (v), v = (v i ) ∈ C 2 (Ω; R 3 ); v i = 0 on Γ 0 }, V ( 
Ω) := (e ij ) ∈ C 1 (Ω; S 3 ); e ij k + e k ji -e ik j -e j ki = 0 in Ω, e αβ t α t β = e α3 t α = e 3β t β = e 33 = 0 on Γ 0 , 2e αβ σ t α n β t σ -e αβ σ t α t β n σ + e αβ n α n β t σ ϕ n σ t ϕ = 0 on Γ 0 , e α3 β n α t β + e αβ 3 t α n β -e α3 β t α n β + e αβ n α n β t σ

3 n σ = 0 on Γ 0 , 2e α3 3 n α -e 33 α n α = 0 on Γ 0 }, A matrix field (e ij ) ∈ C 1 (Ω; S 3 ) belongs to the space V(Ω) if and only if there exists a vector field v = (v i ) ∈ C 2 (Ω; R 3 ) such that e ij = ε ij (v) in Ω and v i = 0 on Γ 0 . Then the equality V(Ω) = V (Ω) will be proved by combining the following three results.

where t i j := ∂ j t i + G i j t , e ij k := ∂ k e ij -G ik e j -G kj e i , e ij hk := ∂ k e ij h -G ik e j h -G jk e i h -G hk e ij . Then V(Ω) = V (Ω). Proof. Let θ ∈ C 3 (ω; E 3 )
First, by Theorems 5.1 and 6.1 in [START_REF] Ciarlet | Saint-Venant compatibility equations in curvilinear coordinates[END_REF] (which can be applied because Ω is simply-connected, as a consequence of the assumption that ω is simply-connected), a matrix field (e ij ) ∈ C 1 (Ω; S 3 ) satisfies e ij = ε ij (v) in Ω for some vector field v ∈ C 2 (Ω; R 3 ) if and only if it satisfies the Saint Venant compatibility conditions in curvilinear coordinates, viz., e ij k + e k ji -e ik j -e j ki = 0 in Ω.

Second, by Theorem 6.1 in [START_REF] Ciarlet | Intrinsic formulation of the displacement-traction problem in linearized elasticity[END_REF] (which can be applied because Γ 0 is connected, as a consequence of the assumption that γ 0 is connected), a vector field v ∈ C 2 (Ω; R 3 ) satisfies the boundary condition

v + r = 0 on Γ 0 for some vector field r ∈ C 2 (Ω; R 3 ) such that ε ij (r) = 0 in Ω if and only if ẽαβ = 0 and ẽα3 β + ẽβ3 α -ẽαβ 3 + bαβ ẽ33 = 0 on ω × {0},
where ẽij are the covariant components of the tensor field e ij g i ⊗ g j ∈ C 1 (Ω; S 3 ) associated with the immersion Θ, and bαβ ∈ C 0 (ω) are the covariant components of the second fundamental form associated with the immersion θ. Third, a series of long, but otherwise straightforward, computations show that the functions ẽij satisfy the above boundary conditions on ω × {0} if and only if the corresponding functions e ij satisfy the following boundary conditions on Γ 0 :

e αβ t α t β = e α3 t α = e 3β t β = e 33 = 0 on Γ 0 , 2e αβ σ t α n β t σ -e αβ σ t α t β n σ + e αβ n α n β t σ ϕ n σ t ϕ = 0 on Γ 0 , e α3 β n α t β + e αβ 3 t α n β -e α3 β t α n β + e αβ n α n β t σ 3 n σ = 0 on Γ 0 , 2e α3 3 n α -e 33 α n α = 0 on Γ 0 .

Remark 2

The above boundary conditions on Γ 0 , that are satisfied by the covariant components e ij of the linearized strain tensor field associated with a displacement field of a shell, generalize similar boundary conditions that are satisfied by the covariant components e ij of the linearized strain tensor field associated with a displacement field of a plate, identified previously by the authors (see Lemmas 3 and 4 in [START_REF] Ciarlet | The intrinsic theory of linearly elastic plates[END_REF]). To see this, observe that the immersion Θ : Ω → E 3 defining the reference configuration of a plate is the identity mapping restricted to the set Ω, in which case e ij k = ∂ k e ij in Ω, and t α (•, x 3 ) = τ α and n α (•, x 3 ) = ν α on Γ, t σ 3 = 0 and t σ ϕ n σ t ϕ = n σ ∂ τ t σ = κ(n σ n σ ) = κ on Γ, where κ : γ → R denotes the curvature along the planar curve γ. Note that the mapping K is one-to-one and that the range of the mapping H contains the space C 1 (ω; S 2 )× C 1 (ω; S 2 ).

To begin with, we show that there exists a natural isomorphism between the space V(ω) found in the intrinsic formulation of Koiter's model (Sect 2) and a subspace V H (Ω) ⊂ V(Ω) of the space V(Ω) found in the intrinsic formulation of the three-dimensional equations of a linearly elastic shell (Sect. 3).

In this respect, note that the definition of the subspace V H (Ω) exactly corresponds to an a priori assumption used by Koiter (Ref. [START_REF] Koiter | On the foundations of the linear theory of thin elastic shells[END_REF]), according to which the covariant components e i3 of the threedimensional strain tensor fields inside a shell must vanish.

Theorem 2 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the spaces

V(ω) := {((c αβ ), (r αβ )) ∈ C 1 (ω; S 2 ) × C 1 (ω; S 2 ); c αβ = γ αβ (η), r αβ = ρ αβ (η), η = (η i ) ∈ C 2 (ω) × C 2 (ω) × C 3 (ω); η i = ∂ α η 3 = 0 on γ 0 }, V(Ω) := {(e ij ) ∈ C 1 (Ω; S 3 ); e ij = ε ij (v), v = (v i ) ∈ C 2 (Ω; R 3 ); v i = 0 on Γ 0 }, V H (Ω) := {(e ij ) ∈ V(Ω); e i3 = 0 in Ω} ⊂ C 1 (Ω; S 3 ).
Then the mapping H : V H (Ω) → V(ω) is a well-defined bijection and its inverse is the mapping

K : V(ω) → V H (Ω).
Proof. If ε is small enough, Lemmas 4 and 5 in [START_REF] Ciarlet | On Korn's inequalities in curvilinear coordinates[END_REF] show that the mapping F that associates with any vector field (η i ) in the space

{(η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ α η 3 = 0 on γ 0 } the vector field (v i ) : Ω → R 3 whose components are given by v α (•, x 3 ) := η α -x 3 (∂ α η 3 + 2b σ α η σ ) + x 2 3 b β α (∂ β η 3 + b σ β η σ ) and v 3 (•, x 3 ) := η 3
in Ω, is one-to-one, and onto the space

{v := (v i ) ∈ H 1 (Ω; R 3 ); ε i3 (v) = 0 in Ω, v i = 0 on Γ 0 }. Given any (e ij ) ∈ V H (Ω), there exists v = (v i ) ∈ C 2 (Ω; R 3 ) such that v i = 0 on Γ 0 and ε i3 (v) = e i3 = 0 in Ω. Hence there exists a (unique) vector field η = (η i ) ∈ H 1 (ω)×H 1 (ω)×H 2 (ω) such that η i = ∂ α η 3 = 0 on γ 0 and F (η) = v. Consequently, η α ∈ C 2 (ω), η 3 ∈ C 3 (ω), and ε αβ (v)(•, x 3 ) = γ αβ (η) -x 3 ρ αβ (η) + x 2 3 1 2 (b σ α ρ σβ (η) + b σ β ρ ασ (η)) -b σ α b ϕ β c σϕ in Ω,
which, combined with the relations e αβ = ε αβ (v) in Ω, further implies that e αβ (•, 0) = γ αβ (η) and

∂ 3 e αβ (•, 0) = -ρ αβ (η) in ω.
This shows that the mapping H : V H (Ω) → V(ω) is well-defined, linear, and surjective. That it is in addition injective follows from the infinitesimal rigid displacement lemma on a surface and the boundary conditions satisfied be the vector field (η i ) defined as above in terms of the vector field (v i ). That the inverse of

H : V H (Ω) → V(ω) is the mapping K : V(ω) → V H (Ω) is clear.
An immediate consequence of Theorems 1 and 2 is that, if ω is simply-connected and γ 0 is connected, then V H (Ω) = V H (Ω), where

V H (Ω) := {(e ij ) ∈ V (Ω); e i3 = 0 in Ω} ⊂ C 1 (Ω; S 3 ).
It remains to prove that the mapping K maps the subspace V (ω) ⊂ C 1 (ω; S 2 ) × C 1 (ω; S 2 ) onto the subspace V H (Ω) ⊂ C 1 (Ω; S 3 ). We divide the proof of this result into two distinct lemmas, which are also of interest by themselves. The distributions S αβσϕ and S 3βσϕ appearing below are defined in terms of the functions c αβ and r αβ as in Sect. 2.

Lemma 1 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition that ω is simply-connected. Let (e ij ) ∈ C 1 (Ω; S 3 ) be a matrix field that satisfies e i3 = e 3i = 0 in Ω. Then (e ij ) satisfies the Saint Venant compatibility conditions e ij k + e k ji -e ik j -e j ki = 0 in Ω if and only if there exist two matrix fields (c αβ ) ∈ C 1 (ω; S 2 ) and (r αβ ) ∈ C 1 (ω; S 2 ) that satisfy the Saint Venant compatibility conditions on a surface, that is, S αβσϕ = 0 and S 3βσϕ = 0 in ω, Proof. First, let (e ij ) ∈ C 1 (Ω; S 3 ) be a matrix field that satisfies e i3 = e 3i = 0 in Ω and e ij k + e k ji -e ik j -e j ki = 0 in Ω.

Then Theorem 6.1 in [START_REF] Ciarlet | Saint-Venant compatibility equations in curvilinear coordinates[END_REF] shows that there exists a vector field v = (v i ) ∈ C 2 (Ω; R 3 ) such that e ij = ε ij (v) in Ω. Since ε i3 (v) = 0 in Ω by assumption, Lemma 5 in [START_REF] Ciarlet | On Korn's inequalities in curvilinear coordinates[END_REF] further shows that there exists a vector field η = (η i ) ∈ C 

  be a local chart of Θ(Γ 0 ) defined over an open subset ω of R 2 and let ε > 0 be a small enough parameter such that the mapping Θ : ω×] -ε, ε[→ E 3 defined by Θ(ỹ, x3 ) := θ(ỹ) + x3 ã3 (ỹ) for all (ỹ, x3 ) ∈ ω×] -ε, ε[, where ã3 := ã1 ∧ ã2 |ã 1 ∧ ã2 | and ãα := ∂ θ ∂ ỹα , is itself an immersion of class C 2 (see again Theorem 4.1-1 in [2]).

4 .

 4 Canonical isomorphism between the spaces V (ω) and V (Ω)Define the linear mappingsH : C 1 (Ω; S 3 ) → C 1 (ω; S 2 ) × C 0 (ω; S 2 ) and K : C 1 (ω; S 2 ) × C 1 (ω; S 2 ) → C 1 (Ω; S 3) by letting H((e ij )) := (e αβ (•, 0)), (-∂ 3 e αβ (•, 0)) for all (e ij ) ∈ C 1 (Ω; S 3 ), K((c αβ ), (r αβ )) := (e ij ) for all ((c αβ ), (r αβ )) ∈ C 1 (ω; S 2 ) × C 1 (ω; S 2 ), where e αβ (•, x 3 ) := c αβ -x 3 r αβ + x α r σβ + b σ β r ασ ) -b σ α b ϕ β c σϕ in Ω, e i3 = e 3i := 0 in Ω.

  such that e αβ (•,x 3 ) := c αβ -x 3 r αβ + x α r σβ + b σ β r ασ ) -b σ α b ϕ β c σϕ in Ω.

  2 (ω) × C 2 (ω) × C3 (ω) such thatv α (•, x 3 ) = η α -x 3 (∂ α η 3 + 2b σ α η σ ) + x 2 3 b β α (∂ β η 3 + b σ β η σ ) and v 3 (•, x 3 ) = η 3 in Ω. Let c αβ := γ αβ (η) ∈ C 1 (ω; S 2) and r αβ := ρ αβ (η) ∈ C 1 (ω; S 2 ), where the functions γ αβ (η) and ρ αβ (η) are defined in terms of η as in Sect. 2. Then Theorem 4.1 in[START_REF] Ciarlet | Saint-Venant compatibility equations on a surface -application to intrinsic shell theory[END_REF] shows that the corresponding distributions S αβσϕ and S 3βσϕ satisfy S αβσϕ = 0 and S 3βσϕ = 0 in ω, and Lemma 2 in[START_REF] Ciarlet | On Korn's inequalities in curvilinear coordinates[END_REF] shows that the functions e αβ = ε αβ (v) satisfye αβ (•, x 3 ) = c αβ -x 3 r αβ + x α r σβ + b σ β r ασ ) -b σ α b ϕ β c σϕ in Ω.Second, let (e ij ) ∈ C 1 (Ω; S 3 ) be a matrix field that satisfiese i3 = e 3i = 0 in Ω and e αβ (•, x 3 ) = c αβ -x 3 r αβ + x α r σβ + b σ β r ασ ) -b σ α b ϕ β c σϕ in Ω,where the matrix fields (c αβ ) ∈ C 1 (ω; S 2 ) and (r αβ ) ∈ C 1 (ω; S 2 ) satisfy S αβσϕ = 0 and S 3βσϕ = 0 in ω.
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Then Theorem 5.1 in [START_REF] Ciarlet | Saint-Venant compatibility equations on a surface -application to intrinsic shell theory[END_REF] shows that there exists a vector field η = (η i ) ∈ C 2 (ω) × C 2 (ω) × C 3 (ω) such that c αβ = γ αβ (η) and r αβ = ρ αβ (η) in ω.

Let the vector field v = (v i ) ∈ C 2 (Ω; R 3 ) be defined by

) and v 3 (•, x 3 ) = η 3 in Ω. Then Lemma 2 in [START_REF] Ciarlet | On Korn's inequalities in curvilinear coordinates[END_REF], combined with the above expressions of the functions e ij , shows that ε ij (v) = e ij in Ω, and Theorem 5.1 in [START_REF] Ciarlet | Saint-Venant compatibility equations in curvilinear coordinates[END_REF] next shows that the matrix field (e ij ) satisfies the equations e ij k + e k ji -e ik j -e j ki = 0 in Ω.

Lemma 2 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition that ω is simply-connected and that γ 0 is connected. With each pair of matrix fields (c αβ ) ∈ C 1 (ω; S 2 ) and (r αβ ) ∈ C 1 (ω; S 2 ) that satisfy S αβσϕ = 0 and S 3βσϕ = 0 in ω, associate the matrix field (e ij ) ∈ C 1 (Ω; S 3 ) defined by

Then the matrix field (e ij ) satisfies the boundary conditions e αβ t α t β = e α3 t α = e 3β t β = e 33 = 0 on Γ 0 , 2e αβ σ t α n β t σ -e αβ σ t α t β n σ + e αβ n α n β t σ ϕ n σ t ϕ = 0 on Γ 0 , e α3 β n α t β + e αβ 3 t α n β -e α3 β t α n β + e αβ n α n β t σ

3 n σ = 0 on Γ 0 , 2e α3 3 n α -e 33 α n α = 0 on Γ 0 , if and only if the matrix fields (c αβ ) and (r αβ ) satisfy the boundary conditions

Proof. The three vector fields τ = τ α a α , ν = ν α a α , and a 3 , of the Darboux frames along the curve θ(γ) and their respective extensions t = t α g α , n = n α g α , and g 3 , along the surface Θ(Γ) are related to each other by the relations

where κ g , κ n , τ g denote respectively the geodesic curvature, the normal curvature, and the geodesic torsion, along the curve θ(γ) defined in Sect. 2.

Besides, the vector fields of the Darboux frames along the curve θ(γ) satisfy the equations:

Let the matrix fields (c αβ ) and (r αβ ) be given that satisfy S αβσϕ = 0 and S 3βσϕ = 0 in D (ω), and let the matrix field (e ij ) be defined in terms of (c αβ ) and (r αβ ) as in the statement of the lemma. Then a series of long, and rather technical, computations based on the above relations shows that the following four assertions hold: First, 2e α3 3 n α -e 33 α n α = 0 on Γ 0 .

Second, e αβ t α t β = e α3 t α = e 3β t β = e 33 = 0 on Γ 0 if and only if the following equations are simultaneously satisfied:

Third, 2e αβ σ t α n β t σ -e αβ σ t α t β n σ + e αβ n α n β t σ ϕ n σ t ϕ = 0 on Γ 0 if and only if

The lemma then follows by combining the above four assertions.

We are now in a position to establish the second main result of this Note. The functions κ g , κ n , and τ g , resp. the distributions S βασϕ and S 3ασϕ , are defined as in Sect. 1, resp. Sect 2.

Theorem 3 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition that ω is simply-connected and that γ 0 is connected. Define the spaces

:= ((c αβ ), (r αβ )) ∈ C 1 (ω; S 2 ) × C 1 (ω; S 2 ); S βασϕ = 0 and S 3ασϕ = 0 in ω, c αβ τ α τ β = 0 and c αβ|σ τ α (2ν

Proof. Since ω is simply-connected and γ 0 is connected, Theorems 1 and 2 show that a pair of matrix fields ((c αβ ), (r αβ )) belongs to the space V(ω) if and only if there exists a (unique) matrix field (e ij ) ∈ V H (Ω) such that c αβ = e αβ (•, 0) and r αβ = -∂ 3 e αβ (•, 0) in ω, where V H (Ω) = (e ij ) ∈ C 1 (Ω; S 3 ); e i3 = 0 in Ω, e ij k + e k ji -e ik j -e j ki = 0 in Ω, e αβ t α t β = e α3 t α = e 3β t β = e 33 = 0 on Γ 0 , 2e αβ σ t α n β t σ -e αβ σ t α t β n σ + e αβ n α n β t σ ϕ n σ t ϕ = 0 on Γ 0 , e α3 β n α t β + e αβ 3 t α n β -e α3 β t α n β + e αβ n α n β t σ

3 n σ = 0 on Γ 0 , 2e α3 3 n α -e 33 α n α = 0 on Γ 0 }.

Then the conclusion follows from Lemmas 1 and 2, which together show that V H (Ω) = {K((c αβ ), (r αβ )); ((c αβ ), (r αβ )) ∈ V (ω)}, where K is the mapping defined at the beginning of Sect 4 and V (ω) is defined in the statement of the theorem.