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Abstract

We show that the intrinsic equations of Koiter’s model of a linearly elastic shell can be derived from the in-
trinsic formulation of the three-dimensional equations of a linearly elastic shell, by using an appropriate a priori
assumption regarding the three-dimensional strain tensor fields appearing in these equations. To this end, we
recast in particular the Dirichlet boundary conditions satisfied by any admissible displacement field as boundary
conditions satisfied by the covariant components of the corresponding strain tensor field expressed in the natural
curvilinear coordinates of the shell. Then we show that, when restricted to strain tensor fields satisfying a specific
a priori assumption, these new boundary conditions reduce to those of the intrinsic equations of Koiter’s model
of a linearly elastic shell. To cite this article: P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I Sxz (20zzx).

Résumé

Justification asymptotique des équations intrinseéques du modéle de coques linéairement élastiques
de Koiter. Nous établissons que les équations intrinseques du modele de coques linéairement élastiques de Koiter
peuvent étre déduites de la formulation intrinseque des équations tridimensionnelles d’une coque linéairement
élastique en faisant une hypothése a priori appropriée sur les champs de tenseurs de déformation tridimensionnels
apparaissant dans ces équations. A cette fin, nous reformulons en particulier les conditions au bord de Dirichlet sa-
tisfaites par tout champ de déplacements admissible comme des conditions au bord satisfaites par les composantes
covariantes du champ de tenseurs de déformations exprimées en fonction des coordonnées curvilignes naturelles
de la coque. Nous montrons ensuite que, lorsqu’elles sont restreintes aux champs de tenseurs de déformations
satisfaisant une hypotheése a priori spécifique, les nouvelles conditions au bord se rameénent a celles des équations
intrinseques du modele de coques linéairement élastiques de Koiter. Pour citer cet article : P.G. Ciarlet, C.
Mardare, C. R. Acad. Sci. Paris, Ser. I Szz (20xz).
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1. Geometry of the reference configuration of a shell

Greek indices and exponents vary in the set {1, 2}, Latin indices and exponents vary in the set {1, 2, 3},
and the summation convention for repeated indices and exponents is used. The three-dimensional Eu-
clidean space is denoted E? and the inner product, the vector product, and the norm, in E? are respectively
denoted - , A, and |-|. Given any integer n > 1, the space of all real n x n symmetric matrices is denoted
S™. Given any open subset Q of R", n > 1, and any integer m > 0, the notation C™(Q;E?) denotes
the space of vector-valued fields in E® with components in C™(£2). Similar definitions hold for the spaces
C™(€;S™) and H'(Q;R3). A generic point in R? is denoted y = (y,) and partial derivatives of the first
and second order are denoted 9, := 0/dy, and 0,p := 02 /0y 0ys.

Let w C R? be a non-empty connected open set whose boundary is of class C3 (in the sense of [10]),
and let @ : @ — E3 be an immersion of class C*, that is, a mapping 8 € C*(@;E3) such that the two
vector fields

a, = 0,0 € C3(w; E3)
are linearly independent at each point y € @. Then S = 6(w) is a surface with boundary in E3,

a; N\ as 3, 3
= ———cC’(w;E
a3 |a1 /\a2| (W7 )

is a unit normal vector field along S, the three vector fields a; form the covariant bases along S, and the
three vector fields a*, defined by the relations

a'-a;=90;inw,
form the contravariant bases along S.

The covariant and contravariant components of the first fundamental form associated with the immer-
sion @ are respectively denoted and defined by

Gap = Ao - ag € C3@) and a®? :=a”-a’ € C*@),
the covariant and mixed components of the second fundamental form associated with the immersion 8
are respectively denoted and defined by
bap 1= 0aas - as € C*(@) and b3 = a"byg € C*(W),
the Christoffel symbols (of the second kind) associated with the immersion € are denoted and defined by
I'op = 0nap-a’ € C* (@),
the mixed components of the Riemann curvature tensor field associated with the immersion 6 are denoted

and defined by
RY = 0,T%, —0,I%, + T4 I — rga% e Cl(w),
and the area element along the surface S is denoted and defined by /a dy, where
a = det(aqg) € C*(@).

The above assumptions on w and @ imply that the boundary v := dw of w, resp. the boundary 6(~) of
S, is a curve, or a finite union of curves if 7 is not connected, of class C? in R2, resp. in E3. For definiteness,
these curves are oriented by the inner normal vector field to the boundary of w; thus, if

v(y) = va(y)a®(y) = v*(y)aas(y) € E?

designates the unique unit normal vector to the curve 0(v) at the point €(y) that is contained in the
tangent plane to S at 8(y) and whose orientation is such that its covariant components

(va(y)) € R?
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form an inner normal vector to the curve ~, then
(7%(y)) € R?, where 7'(y) := v5(y) and 7°(y) == —11(y)

is a positively-oriented tangent vector to the curve v at y € v, and

T(y) == 7"(y)aa(y) € E®

is the positively-oriented unit tangent vector to the curve 0(v) at 6(y).
Then the three vectors

(), v(y), as(y)
form the Darbouzx frame at the point 8(y), y € v, of the curve 8(v), and the three scalars

kg(y) = 0-7(y) - v(y) = —7(y) - Orv(y),
tn(y) = 0;7(y) - az(y) = —7(y) - Oras(y),
74(y) == 0:v(y) - as(y) = —v(y) - O-a3(y),

where the notation 9,7 (y) denotes the derivative at 6(y) of the vector field 7 o @' with respect to
the arclength abscissa along the curve 6(7), respectively designate the geodesic curvature, the normal
curvature, and the geodesic torsion, of the curve 0(v) at 0(y).
Let £ > 0 be a small enough parameter, so that the extension ® € C3({};E?) of the immersion 6 €
C*(w; E?) to the three-dimensional domain Q C R3, defined by
O(z) 1= 0(y) + r3a3(y) for all z = (y,z3) € Q, where Q :=wx] —¢,¢|,

is itself an immersion at each point = € Q (see Theorem 4.1-1 in [2] for the proof of the existence of such
a parameter €). Let the notation 0; designate the partial differential operators 0, := 9/0y, for i = a and
05 := 0/0x3 for i = 3. Then, for each = € Q, the three vectors

gi(z) := 0,0(x)
form the covariant basis at ©(x) € E3. Its dual basis is formed by the three vectors g’(z) € E3, which
are defined as the unique solution to the equations
g'(z) - g;(x) =35,
and which form the contravariant basis at ©(z) € E3.

The covariant and contravariant components of the metric tensor field associated with the immersion
© are respectively denoted and defined by

9ij = 9;-9; €C*(Q) and g7 :=g'-g’ € C*(),
the Christoffel symbols (of the second kind) associated with the immersion © are denoted and defined by
ko._ ko oliey

and the volume element inside the three-dimensional manifold ©(Q) is denoted and defined by /g dz,
where
g = det(gij) € CQ(Q)
The image O(I') C E? by the immersion © of the lateral face I' := x| — ¢, [ of the cylinder 2 is a
surface, or a finite union of surfaces if v is not connected, of class C3 in E3. The tangent plane to the
surface ©(T") at each point O(x), x = (y,x3) € ', is spanned by the two vectors

g5(2) := 030 (x) and ¢(z) := t%(x)g,(2),
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where the coefficients t*(x) are defined by
t%(z) :=7%(y) for all z = (y,x3) € T.

Then (2) A t(2)
_ _ 93\& z 3

(@) =nt(0)9a(0) = 10 Gy as) < F
is a unit normal vector at the point O(z) to the surface ®(I'), oriented is such a way that the three
vectors

Hx), n(x), g;(0),

form in this order a positively-oriented basis in E3. Note that this basis can be seen as an extension of
the Darboux frames associated with the curve v to frames along the surface I, since

t(y,0) = 1(y), n(y,0) = v(y), and g3(y,0) = as(y), for all y € 7.

In the rest of this Note, we consider a shell with reference configuration ®(£2), assumed to be a natural
state (i.e., stress-free), whose middle surface S = 0(w) and (constant) thickness 2¢ > 0 satisfy the above
assumptions. We assume that the shell is made of a linearly elastic material with Lamé constants

A>0and p >0,

and that it is subjected to a homogeneous boundary condition of place on a portion @(Ty) of its lateral
face, where Ty := y9Xx]| — ¢,¢[ and 9 C « is a non-empty relatively open subset of the boundary of w.
Finally, we assume that the shell is subjected to applied body forces whose densities per unit volume in
the reference configuration is a vector field

fig; : Q — E3 where f' € L*(Q).

Note that applied surface forces with non-zero densities on the upper and lower faces ®(w x {+¢}) and
O(w x {—¢}) of the shell could be also considered, at the expense of minor modifications of the ensuing
analysis, but for simplicity they will not be considered here.

2. Classical and intrinsic formulations of Koiter’s model of a linearly elastic shell

Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the space
V(w) :={n:= (m) € C*@) x C*(@) x C*(@); 1 = Oanz = 0 on Yo},

and the functional jk : V(w) — R by

3
i) = [ a5 Sar ) ras(0) + G por(mpanlm) pady — [ pinvady forall m e Vi)

6 w
where
A p ) e
afor .__ af ot ao BT at, Bo i . 7
a = ———a“Pa’" + 2u(a®?a”’T + a“"a”?), = -, x3)dxs,
f+2u 1( ) p _Ef (- x3) day
Yap(n) = 5(8a(771—ai) -ag+ 5‘5(niai) . aa), Pap(n) = (8a5(mai) — I‘gﬁf)‘g(mai)) -as,

respectively denote the contravariant components of the two-dimensional elasticity tensor of the elastic
material constituting the shell, the contravariant components of the density of the resulting applied forces
per unit area along the middle surface S of the shell, and the covariant components of the linearized

change of metric, and of curvature, tensor fields associated with the displacement field n;a’ of the surface
S.



Then, according to the landmark paper by Koiter (Ref. [9]), re-interpreted here in its “modern” for-
mulation, the unknown displacement field n;a* of the middle surface of the shell is such that the vector
field 7 = (n;) should be the unique minimizer of the extension by continuity of the functional jk over the
completion of the space V (w) with respect to the norm

() € V(W) = > lInallmw + Insllz2w)-

Remark 1 The definition of the space V(w) as a subspace of the space C?(w) x C*(@) x C3(w) is a
deliberate choice, meant to simplify the ensuing analysis by using classical function spaces, instead of
Sobolev spaces as would have been the case had we chosen the space H'(w) x H'(w) x H?(w). O

An intrinsic formulation of Koiter’'s model of a linearly elastic shell consists in replacing the above
unknown 7 by an appropriate “measure of strain”. Since the linear mapping

n € V(W) = ((vas(m), (ap(m))) € C'(@;S?) x C'(@;S?)

is one-to-one, as a consequence of the well-known infinitesimal rigid displacement lemma on a surface
(see, e.g., [1]), the above pair of matrix fields provides an instance of such a “measure of strain”. More
specifically, let

V(w) = {((vas(m)), (Pap(n)); m € V(w)}

denote the image of the space V(w) under the linear mapping above. Then the mapping F, : V(w) —
V(w) defined by

Fo(m) = ((vas(n)), (pas(n))) for all n € V(w),

is one-to-one, and onto, so that its inverse

= Fo !

w

is well defined. Hence the unknown 7 can be replaced in the classical formulation of Koiter’s model of a
linearly elastic shell by the pair of matrix fields

((Cap); (rap)) = Fu(n)-

In this fashion, the corresponding intrinsic formulation of Koiter’s model of a linearly elastic shell
asserts that the new unknown ((cap), (rag)) € V(w) is the unique minimizer of the functional

it =ik oGy : V(w) = R.

Of course, just as in the classical formulation, such a minimizer can be found provided the functional jii(
is extended by continuity to the completion of the space V(w) with respect to an appropriate norm.

The functional space V(w) appearing in the above intrinsic formulation of Koiter’s model has been
explicitly characterised by the authors in [7], where it was shown that

V(w) = Vi(w),
where the space V#(w) is defined by
VH(w) := {((cap), (rap)) € C*(@;S?) x C'(@;S?); Spavy = 0 and Szape =0 in w,
capT®m? =0 and CaBloT" (21/57"’ - 7'51/") + KgCapr®V? =0 on 7o,

’/‘agTaTﬁ =0 and ragro‘yﬁ — CapV” (2/%7'5 —|—Tgljﬁ) =0 on 'yo},
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the functions 7%, v%, k4, kp, T, being defined as in Sect. 1 along the curve 8(7), and the distributions
SBace € D'(w) and S3q0p € D' (w) being defined in terms of the functions cnp and rqg by

Space = Coalpy + Coplac — Cpalpo — Calap T RiavpCsy = RigguCaw — boaTap = bopToa + boaTes + bepToa,
Ssace = b (Cavlo + Covla = Cpalw) = VZ(Caplo + Copla = Coals) ~ Toalp T Tpalos
where
CaBlo = OcCap — L8 Cop — ngc(w and cagjop = OpCaple — Fiwcﬂ,ma — Fgwcmmg - I‘fsacaﬁw
denote the usual covariant derivatives of first and second order of the tensor field c,g along the surface S.
Note that the above distributions satisfy the symmetry relations
S3oco’ga = _53agaa and S,Bocaga = So’ga,(i’oc = _Socpocﬁv

which in turn imply that only three of them, e.g. S1212, S3112, and S3212, are independent.

The main objective of this Note is to prove that the above characterisation of the space V(w) can be
deduced from the intrinsic formulation of the three-dimensional equations of a linearly elastic shell by
using an appropriate a priori assumption regarding the three-dimensional strain tensor fields, according to
which the covariant components e;3 of the admissible three-dimensional strain tensor fields must vanish
in Q; see the definition of the space Vg (£2) in Theorem 2.

3. Classical and intrinsic formulations of the three-dimensional equations of a linearly
elastic shell

Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the space
V(Q) = {v:= (v;) € C*(LR?); v; =0 on Iy}
and the functional J : V() — R by

1 Iy .
J(v) = 5/ AR g (v)ei(v) /g da —/ flvin/gdzx for all v € V(Q),
Q Q
where
AV = Agg" + u(g™ g + g gh) and ei(v) = 5 (0i(veg") - g5+ 0;(vig") - 95)

respectively denote the contravariant components of the three-dimensional elasticity tensor field of the
elastic material constituting the shell, and the covariant components of the linearized change of metric
tensor field, also known as the linearized strain tensor field, associated with the displacement field v;g* of
the shell.

Then the classical formulation of the three-dimensional equations of a linearly elastic shell in curvilinear
coordinates (Ref. [1]) asserts that the unknown displacement field v;g® of the shell is such that the vector
field v = (v;) should be the unique minimizer of the extension by continuity of the functional J over the
completion of the space V() with respect to the norm

(v;) e V(Q) — vainHl(Q).

An intrinsic formulation of the above equations consists in replacing the above unknown v by an
appropriate “measure of strain”. Since the linear mapping

veV(Q) = (g;v)) € cl(;s?)

6



is one-to-one, as a consequence of the well-known infinitesimal rigid displacement lemma (see, e.g., [1]),
the above matrix field provides an instance of such a “measure of strain”. More specifically, let

V(Q) = {(ei(v)); v € V(Q)}

denote the image of the space V' (Q) under the linear mapping above. Then the mapping Fq : V(Q) —
V(§2) defined by
Fa(n) = (gi5(v)) for allv e V(Q),
is one-to-one and onto, so that its inverse
Go == TFg "
is well defined. Hence the unknown v can be replaced in the classical formulation of the three-dimensional
equations of a linearly elastic shell by the matrix field

(eij) = ]:Q('U).
In this fashion, the corresponding intrinsic formulation of the three-dimensional equations of a linearly
elastic shell asserts that the new unknown (e;;) € V() is the unique minimizer of the functional
TP =T 0Gq:V(Q) =R

Of course, just as in the classical formulation, such a minimizer can be found provided the functional J*
is extended by continuity to the completion of the space V(£2) with respect to an appropriate norm.

The next theorem, which constitutes the first main result of this Note, explicitly characterises the space
V() appearing in the above intrinsic formulation of the three-dimensional equations of a linearly elastic
shell in the curvilinear coordinates associated with the immersion ©® defining the reference configuration
of the shell. Note that the functions ti||j, €ij||k> and e;j)pk, appearing in this theorem are nothing but the
usual covariant derivatives of vector and tensor fields (the functions G}, denote the Christoffel symbols
defined in Sect 1).

Theorem 1 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition
that w is simply-connected and that o is connected. Define the spaces

V(Q) := {(eij) € CH;S?); eij = €45 (v), v = (v;) € C3H(QR3); v; =0 on Ty},

V() := {(es5) € CHUS®); ejyne + eanfji — €infje — eejjri = 0 in Q,

eagtatﬁ = eu3t® = 635tﬁ =e33 =0 on Iy,
2ea5‘|0tan5t‘7 — eaBHat”‘tﬁn” + eagno‘nﬁtgﬂwngtw =0 on Iy,
ea3|‘5natﬁ + eaﬁuggtanﬂ — eagﬂﬁtanﬁ + ea,@nanﬁt‘fﬂgng =0 on I,
2eq3)3n" — eg3jan” = 0 on I'g},

where

t'); == 05t" + G;‘ete7 eijiik = Okeij — Giperj — Gijeiéa
eijink = Oneijin — Gireejin — Gireiein — Ghreijije-
Then
V(Q) = V¥(Q).
O

Proof. Let 6 € C3(@; E?) be a local chart of ©(Iy) defined over an open subset @ of R? and let & > 0 be

a small enough parameter such that the mapping © : @x| — &, &[— E3 defined by
ai A as 00

O(7, &3) := 0() + Zzas(y) for all (§,%3) € Ox| — &,&[, where a3 := @ e and @ = T



is itself an immersion of class C? (see again Theorem 4.1-1 in [2]).

A matrix field (e;;) € C'(Q;S?) belongs to the space V(Q) if and only if there exists a vector field
v = (v;) € C3(R3) such that e;; = ;;(v) in Q and v; = 0 on Ty. Then the equality V(Q2) = V#(Q) will
be proved by combining the following three results.

First, by Theorems 5.1 and 6.1 in [4] (which can be applied because Q2 is simply-connected, as a
consequence of the assumption that w is simply-connected), a matrix field (e;;) € C'(;S?) satisfies e;; =
g;j(v) in Q for some vector field v € C?(Q;R3) if and only if it satisfies the Saint Venant compatibility
conditions in curvilinear coordinates, viz.,

€ijllke + Eek|lji — Cikllje — €ejjki = 0 in €L
Second, by Theorem 6.1 in [5] (which can be applied because I'g is connected, as a consequence of the
assumption that 7o is connected), a vector field v € C?(Q;R?) satisfies the boundary condition
v + 7 = 0 on I'y for some vector field » € C*(€; R?) such that £;;(r) = 0 in Q
if and only if ~
€apg =0 and éa?)l\ﬂ + é,B3Ha — éa5||3 + bagégg =0on w x {O},
where é;; are the covariant components of the tensor field e;;g' ® g’ € CH(Q%;S?) associated with the
immersion ©, and b,z € C°(@) are the covariant components of the second fundamental form associated
with the immersion 6.

Third, a series of long, but otherwise straightforward, computations show that the functions é;; satisfy
the above boundary conditions on @ x {0} if and only if the corresponding functions e;; satisfy the
following boundary conditions on I'y:

eagto‘tﬁ = en3t® = egﬁtﬂ =e33 =0 on I'g,
2eaﬁ|‘gt°‘n5t‘7 - eaﬁuato‘tﬂn“ + eaﬂn“nﬁt"\\wnatw =0on Iy,
eaSHﬁnatB + eaﬁﬂgtanﬁ — €a3”ﬁtanﬁ + eaﬁnanﬁtoug)na =0 on I'y,
2ea3‘|3na — 633”ana =0on FQ.

|

Remark 2 The above boundary conditions on I'g, that are satisfied by the covariant components e;; of
the linearized strain tensor field associated with a displacement field of a shell, generalize similar boundary
conditions that are satisfied by the covariant components e;; of the linearized strain tensor field associated
with a displacement field of a plate, identified previously by the authors (see Lemmas 3 and 4 in [6]). To
see this, observe that the immersion ® : Q — E3 defining the reference configuration of a plate is the
identity mapping restricted to the set €, in which case

eink = 6keij in Q,

and
t(,x3) =7 and n%(-,z3) =v* on T,
t7ls =0 and t7||,net¥ = ne0-t° = K(n,n’) =k onT,

where x : v — R denotes the curvature along the planar curve ~.

4. Canonical isomorphism between the spaces V#(w) and V#(2)

Define the linear mappings # : C*(€;S%) — C'(@;S?) x C°(@;$?) and K : C'(@;S?) x C*(w; $?) —
CH(2;S?) by letting



H((eir)) = ((ean(-.0)), (~Bscap(~0)) for all (e;j) € C'(%E?),
K((cap)s (rag)) == (eis) for all (cap), (rap)) € C'(@:S?) x C'(@;52),

where 1

eap(, T3) 1= Cap — T3Tapg + 23 (5(b2r05 +b5700) — bgbch,) in Q,

€;3 = €3; = 0 in ﬁ
Note that the mapping K is one-to-one and that the range of the mapping H contains the space C!(w; S?) x
Cl(w; S?).

To begin with, we show that there exists a natural isomorphism between the space V(w) found in the
intrinsic formulation of Koiter’s model (Sect 2) and a subspace Vg (2) C V(Q) of the space V() found
in the intrinsic formulation of the three-dimensional equations of a linearly elastic shell (Sect. 3).

In this respect, note that the definition of the subspace V() exactly corresponds to an a priori

assumption used by Koiter (Ref. [9]), according to which the covariant components e;3 of the three-
dimensional strain tensor fields inside a shell must vanish.

Theorem 2 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the spaces
V(w) := {((cap), (rap)) € C1(@;S%) x CH(@;$?); cap = Yas(M); Tap = Pap(n),
n = (n;) € C*(@) x C*(@) x C>(@); 1 = danz = 0 on Y0},
V(Q) = {(61‘]‘) S Cl(ﬁ; Sg); €ij = eij(v), v = (1}1) S CQ(Q; Rg); Vi = 0 on Fo},
Vi(Q) := {(e;;) € V(Q); e;3 =0in Q} C CH(;S?).
Then the mapping H : Vg(Q) — V(w) is a well-defined bijection and its inverse is the mapping
K: V(w) — VH(Q)

Proof. If € is small enough, Lemmas 4 and 5 in [8] show that the mapping F that associates with any
vector field (7;) in the space

{(n:) € H'(w) x H'(w) x H*(w); 7 = danz = 0 on 70}
the vector field (v;) : © — R? whose components are given by
Va (- 3) 1= 10 — 23(Dams + 26775 ) + 2365 (Dpns + bGn,) and ws(-,x3) :=1n3 in Q,
is one-to-one, and onto the space
{v:=(v;) € HY(4R?); gi3(v) =01in ©Q, v; = 0 on Tp}.

Given any (e;;) € V(Q), there exists v = (v;) € C*(;R?) such that v; = 0 on I'g and g;3(v) = e;3 =0
in Q. Hence there exists a (unique) vector field n = (n;) € H'(w) x H(w) x H?(w) such that ; = 9,13 = 0
on 7o and F(n) = v. Consequently, 1, € C*(©), n3 € C3(w), and

1 o
ap(0)(75) = Yo (m) = 23pas(m) + 73 (5 (06 pos (1) + Dpas(m) — B3bFes, ) T,

which, combined with the relations e, = eqp(v) in Q, further implies that eqg(,0) = va5(n) and
d3eap(+,0) = —pap(n) in w.

This shows that the mapping H : Vg (Q) — V(w) is well-defined, linear, and surjective. That it is in
addition injective follows from the infinitesimal rigid displacement lemma on a surface and the boundary
conditions satisfied be the vector field (n;) defined as above in terms of the vector field (v;). That the
inverse of H : V() — V(w) is the mapping K : V(w) — V() is clear. O



An immediate consequence of Theorems 1 and 2 is that, if w is simply-connected and - is connected,
then Vg (Q) = VﬁH(Q)7 where

VA () := {(ei;) € VH(Q); ei3 = 0in Q} € C (€ S?).

It remains to prove that the mapping K maps the subspace V#(w) C C'(w;S?) x C!(w;S?) onto the
subspace V%(Q) C CH(Q;S?). We divide the proof of this result into two distinct lemmas, which are also
of interest by themselves. The distributions Sags, and S3gs, appearing below are defined in terms of the
functions c.g and 7o as in Sect. 2.

Lemma 1 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition
that w is simply-connected. Let (e;;) € C*(S;S?) be a matriz field that satisfies e;3 = e3; = 0 in Q. Then
(eij) satisfies the Saint Venant compatibility conditions

€ijllke + €ok|ji — Cik|j¢ — €ej|ki = 0 in

if and only if there exist two matriz fields (cap) € CH(w;S?) and (rap) € C1(w;S?) that satisfy the Saint
Venant compatibility conditions on a surface, that is,

Sa,@ago =0 and 5350-@ =0 in w,
such that 1
€ap(",23) 1= Cap — T3Tap + 23 (i(bgn,g +b37a0) — bgbgcw) in Q.

Proof. First, let (e;;) € C'(€2;S?) be a matrix field that satisfies
62'3:631':0 mQ
and
Cijlike + Crlji — Cinllje  Cejjki = 0 n €.

Then Theorem 6.1 in [4] shows that there exists a vector field v = (v;) € C*(€;R?) such that e;; = &;;(v)
in €. Since €;3(v) = 0 in by assumption, Lemma 5 in [8] further shows that there exists a vector field
n = (n;) € C}(®) x C}() x C*(w) such that

Va(,3) = N — 23(Dans + 26%15) + 2305 (9pms + bjns) and v(-,x3) =ns in Q.

Let cap = Yap(n) € C(@;S?) and 745 := pas(n) € CH(w;S?), where the functions v,5(n) and pas(n)
are defined in terms of 7 as in Sect. 2. Then Theorem 4.1 in [3] shows that the corresponding distributions
Sapop and Ssge, satisfy

Sapope =0 and S35, =0 in w,

and Lemma 2 in [8] shows that the functions e,g = €,5(v) satisty
eap(s,T3) = Cap — TaTap + 3 (é(bgr,ﬂg + b%ras) — bgbgcw,) in Q.
Second, let (e;;) € C*(9;S?) be a matrix field that satisfies
ei3 =e3 =0 in Q
and )
eap('s3) = Cap — T3Tap + T3 (i(bgrgg + 037a0) — bgbgcw) in 0,
where the matrix fields (cap) € C'(@;S?) and (rng) € C!(w;S?) satisfy

Sapop =0 and S3ge, =0 inw.
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Then Theorem 5.1 in [3] shows that there exists a vector field n = (1;) € C?(w) x C?(@) x C3(w) such that
Cap = Yap(n) and Tap = pas(n) nw.
Let the vector field v = (v;) € C%(Q;R?) be defined by
Vo (4, 23) = N — 23(0ams + 2021,) + x%bﬁ(agnd +b3n,) and wz(-,x3) =mn3 in Q.
Then Lemma 2 in [8], combined with the above expressions of the functions e;;, shows that
gij(v) =e;; in Q,
and Theorem 5.1 in [4] next shows that the matrix field (e;;) satisfies the equations

Cijlike T €ok||ji — Cik||je — €ej|ki = 0 in Q.
O

Lemma 2 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition
that w is simply-connected and that ~yo is connected. With each pair of matriz fields (cap) € C(w;S?) and
(rap) € CH(w;S?) that satisfy

Sapoe =0 and S3gee =0 inw,

associate the matriz field (e;;) € C*(Q;S?) defined by

eap(,T3) 1= Cap — T3Tap + 23 (%(bgrgg +037a0) — bgbgc(w> in Q,
eis =e3;,:=0 in Q.
Then the matriz field (e;;) satisfies the boundary conditions
eagtatﬁ = ea3t® = eggtﬁ =e33 =0 on Iy,
2ea5||gtanﬂt” — eaﬂuato‘tﬁn” + eagnanﬁt”\\wngt‘p =0on Iy,

eagﬂﬁnatﬁ + eam‘gto‘nﬁ — eagﬂ[gto‘nﬁ + eagno‘nﬁt”Hgng =0 on Ty,
2eq3)3n" — e33)jan® = 0 on Iy,

if and only if the matriz fields (cap) and (rap) satisfy the boundary conditions

CapT? =0 and CQB‘UTQ(QVﬁTU — 707 + Kycapr®r? =0 on v,

rapmm? =0 and ras7v" — capr® (26,77 + 7,0%) =0 on 7.

Proof. The three vector fields 7 = 7%a,, v = v®a,, and as, of the Darboux frames along the curve 0(7)
and their respective extensions t = t%g,, n = n“g,, and g;, along the surface (") are related to each
other by the relations

t(y, x3) = (1 = 230 (y)) T(y) — 2375 (y) v (y),
n(y,2a) = (1= wamn(1)? + (2375 )?) " (237 (1) 7(0) + (1 = 23k (1) v() ).
9s(y, v3) = as(y),

for all (y,xz3) € v X [—¢,€], where kg, ky, Ty denote respectively the geodesic curvature, the normal
curvature, and the geodesic torsion, along the curve 8(v) defined in Sect. 2.
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Besides, the vector fields of the Darboux frames along the curve 8(v) satisfy the equations:
0T = KgV + ka3, O,V =—KyT +Tga3, and 0.a3 = —Kk,T — TyV, on 7.

Let the matrix fields (cqg) and (rqg) be given that satisty Sage, = 0 and S3gs, = 0 in D’'(w), and let
the matrix field (e;;) be defined in terms of (cog) and (r43) as in the statement of the lemma. Then a
series of long, and rather technical, computations based on the above relations shows that the following
four assertions hold: First,

26043“37’7,& - egg”ana =0on Fo.

Second,
eagt“tﬁ = eq3t® = 63ﬂt'8 =e33=0o0n T}
if and only if the following equations are simultaneously satisfied:
CagTaTﬁ =0 on 7,
ragro‘Tﬁ — nn(cagTO‘Tﬁ) =0 on 7,
Tq (TagTal/ﬂ — Caﬁl/a(2:‘{n7'6 + Tgl/’B)) =0 on 7.
Third,
Qeam‘ato‘nﬁt" — eaﬁu,,to‘tﬁn" + eagnanﬁt"\bngt“’ =0on Iy

if and only if

1/2
(1= 2360 ()% + (2374(9))?) / (caploT®(20°T7 — 7P07) + Kycapr®v?) =0 on 7.
Fourth,
eagﬂﬁnat’@ + eaﬁugtanﬁ — eagﬂgtanﬂ + eagnanﬂtgﬂgjng =0on Ty

if and only if

(1= z360(y))? (1 — z360(y))* + (ngg(y))2)71/2 (rapT v’ — capr®(26,7" + 7407)) =0 on 7.

The lemma then follows by combining the above four assertions. O

We are now in a position to establish the second main result of this Note. The functions kg4, Ky, and
T4, resp. the distributions Sgase and S3aey, are defined as in Sect. 1, resp. Sect 2.

Theorem 3 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition
that w is simply-connected and that o is connected. Define the spaces

V(w) := {((cap), (rap)) € C'(@;S?) x C'(@;S?); Cap = Yap(M), Tap = pap(n),
n=(n;) € C*@) x C*(@) x C*(@); n; = dams = 0 on 0},

VH(w) = {((cap), (Tap)) € C(@;S?) x C*(@;S?); Spase =0 and Szary = 0 in w,
capT®m? =0 and CamaTa(QVBTU — 1P17) 4+ Kycapr®v® =0 on ,

TapT?T? =0 and 7,57°V? — copv® (26,7 + 1,0°) =0 on Yo}

Then
V(w) = V¥(w).

Proof. Since w is simply-connected and g is connected, Theorems 1 and 2 show that a pair of matrix fields
((cap); (rap)) belongs to the space V(w) if and only if there exists a (unique) matrix field (e;;) € VL(Q)
such that

Cap = €ap(+,0) and 748 = —03e08(+,0) in w,
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where
Vi (Q) = {(eij) € CHLS?); ei3 = 0in Q, €50 + eonji — €infje — eejyri = 0 in Q,
eagtatﬁ = eq3tt = e3gt5 =e33 =0on Iy,
QBQB”JtO‘nBt” - eaﬁugto‘tﬂn” + eaﬁnanBtUH(’DnUt‘p =0on Iy,
6a3‘|5no‘tﬁ + ea5”3t°‘nﬁ — Eaguﬁtanﬁ + eaﬁnanﬁtgﬂgno =0 on Ty,
24330 — e33)on™ =0 on I'g}.

Then the conclusion follows from Lemmas 1 and 2, which together show that

Vir(©) = {K((cap), (ra)); ((cap); (rap)) € V(w)},

where K is the mapping defined at the beginning of Sect 4 and V#(w) is defined in the statement of the
theorem. 0
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