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Abstract

We show that the intrinsic equations of Koiter’s model of a linearly elastic shell can be derived from the in-
trinsic formulation of the three-dimensional equations of a linearly elastic shell, by using an appropriate a priori
assumption regarding the three-dimensional strain tensor fields appearing in these equations. To this end, we
recast in particular the Dirichlet boundary conditions satisfied by any admissible displacement field as boundary
conditions satisfied by the covariant components of the corresponding strain tensor field expressed in the natural
curvilinear coordinates of the shell. Then we show that, when restricted to strain tensor fields satisfying a specific
a priori assumption, these new boundary conditions reduce to those of the intrinsic equations of Koiter’s model
of a linearly elastic shell. To cite this article: P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 3xx (20xx).

Résumé

Justification asymptotique des équations intrinsèques du modèle de coques linéairement élastiques
de Koiter. Nous établissons que les équations intrinsèques du modèle de coques linéairement élastiques de Koiter
peuvent étre déduites de la formulation intrinsèque des équations tridimensionnelles d’une coque linéairement
élastique en faisant une hypothèse a priori appropriée sur les champs de tenseurs de déformation tridimensionnels
apparaissant dans ces équations. A cette fin, nous reformulons en particulier les conditions au bord de Dirichlet sa-
tisfaites par tout champ de déplacements admissible comme des conditions au bord satisfaites par les composantes
covariantes du champ de tenseurs de déformations exprimées en fonction des coordonnées curvilignes naturelles
de la coque. Nous montrons ensuite que, lorsqu’elles sont restreintes aux champs de tenseurs de déformations
satisfaisant une hypothèse a priori spécifique, les nouvelles conditions au bord se ramènent à celles des équations
intrinsèques du modèle de coques linéairement élastiques de Koiter. Pour citer cet article : P.G. Ciarlet, C.
Mardare, C. R. Acad. Sci. Paris, Ser. I 3xx (20xx).
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1. Geometry of the reference configuration of a shell

Greek indices and exponents vary in the set {1, 2}, Latin indices and exponents vary in the set {1, 2, 3},
and the summation convention for repeated indices and exponents is used. The three-dimensional Eu-
clidean space is denoted E3 and the inner product, the vector product, and the norm, in E3 are respectively
denoted · , ∧ , and | · |. Given any integer n > 1, the space of all real n×n symmetric matrices is denoted
Sn. Given any open subset Ω of Rn, n ≥ 1, and any integer m ≥ 0, the notation Cm(Ω;E3) denotes
the space of vector-valued fields in E3 with components in Cm(Ω). Similar definitions hold for the spaces
Cm(Ω;Sn) and H1(Ω;R3). A generic point in R2 is denoted y = (yα) and partial derivatives of the first
and second order are denoted ∂α := ∂/∂yα and ∂αβ := ∂2/∂yα∂yβ .

Let ω ⊂ R2 be a non-empty connected open set whose boundary is of class C3 (in the sense of [10]),
and let θ : ω → E3 be an immersion of class C4, that is, a mapping θ ∈ C4(ω;E3) such that the two
vector fields

aα := ∂αθ ∈ C3(ω;E3)

are linearly independent at each point y ∈ ω. Then S = θ(ω) is a surface with boundary in E3,

a3 :=
a1 ∧ a2

|a1 ∧ a2|
∈ C3(ω;E3)

is a unit normal vector field along S, the three vector fields ai form the covariant bases along S, and the
three vector fields ai, defined by the relations

ai · aj = δij in ω,

form the contravariant bases along S.
The covariant and contravariant components of the first fundamental form associated with the immer-

sion θ are respectively denoted and defined by

aαβ := aα · aβ ∈ C3(ω) and aαβ := aα · aβ ∈ C3(ω),

the covariant and mixed components of the second fundamental form associated with the immersion θ
are respectively denoted and defined by

bαβ := ∂αaβ · a3 ∈ C2(ω) and bαβ := aασbσβ ∈ C2(ω),

the Christoffel symbols (of the second kind) associated with the immersion θ are denoted and defined by

Γσαβ := ∂αaβ · aσ ∈ C2(ω),

the mixed components of the Riemann curvature tensor field associated with the immersion θ are denoted
and defined by

Rψ·ασϕ := ∂σΓψαϕ − ∂ϕΓψασ + ΓβαϕΓψβσ − ΓβασΓψβϕ ∈ C
1(ω),

and the area element along the surface S is denoted and defined by
√
a dy, where

a := det(aαβ) ∈ C3(ω).

The above assumptions on ω and θ imply that the boundary γ := ∂ω of ω, resp. the boundary θ(γ) of
S, is a curve, or a finite union of curves if γ is not connected, of class C3 in R2, resp. in E3. For definiteness,
these curves are oriented by the inner normal vector field to the boundary of ω; thus, if

ν(y) := να(y)aα(y) = να(y)aα(y) ∈ E3

designates the unique unit normal vector to the curve θ(γ) at the point θ(y) that is contained in the
tangent plane to S at θ(y) and whose orientation is such that its covariant components

(να(y)) ∈ R2
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form an inner normal vector to the curve γ, then

(τα(y)) ∈ R2, where τ1(y) := ν2(y) and τ2(y) := −ν1(y)

is a positively-oriented tangent vector to the curve γ at y ∈ γ, and

τ (y) := τα(y)aα(y) ∈ E3

is the positively-oriented unit tangent vector to the curve θ(γ) at θ(y).
Then the three vectors

τ (y), ν(y), a3(y)

form the Darboux frame at the point θ(y), y ∈ γ, of the curve θ(γ), and the three scalars

κg(y) := ∂ττ (y) · ν(y) = −τ (y) · ∂τν(y),

κn(y) := ∂ττ (y) · a3(y) = −τ (y) · ∂τa3(y),

τg(y) := ∂τν(y) · a3(y) = −ν(y) · ∂τa3(y),

where the notation ∂ττ (y) denotes the derivative at θ(y) of the vector field τ ◦ θ−1 with respect to
the arclength abscissa along the curve θ(γ), respectively designate the geodesic curvature, the normal
curvature, and the geodesic torsion, of the curve θ(γ) at θ(y).

Let ε > 0 be a small enough parameter, so that the extension Θ ∈ C3(Ω;E3) of the immersion θ ∈
C4(ω;E3) to the three-dimensional domain Ω ⊂ R3, defined by

Θ(x) := θ(y) + x3a3(y) for all x = (y, x3) ∈ Ω, where Ω := ω×]− ε, ε[,

is itself an immersion at each point x ∈ Ω (see Theorem 4.1-1 in [2] for the proof of the existence of such
a parameter ε). Let the notation ∂i designate the partial differential operators ∂α := ∂/∂yα for i = α and
∂3 := ∂/∂x3 for i = 3. Then, for each x ∈ Ω, the three vectors

gi(x) := ∂iΘ(x)

form the covariant basis at Θ(x) ∈ E3. Its dual basis is formed by the three vectors gi(x) ∈ E3, which
are defined as the unique solution to the equations

gi(x) · gj(x) = δij ,

and which form the contravariant basis at Θ(x) ∈ E3.
The covariant and contravariant components of the metric tensor field associated with the immersion

Θ are respectively denoted and defined by

gij := gi · gj ∈ C2(Ω) and gij := gi · gj ∈ C2(Ω),

the Christoffel symbols (of the second kind) associated with the immersion Θ are denoted and defined by

Gkij := ∂igj · gk ∈ C1(Ω),

and the volume element inside the three-dimensional manifold Θ(Ω) is denoted and defined by
√
g dx,

where
g := det(gij) ∈ C2(Ω).

The image Θ(Γ) ⊂ E3 by the immersion Θ of the lateral face Γ := γ×] − ε, ε[ of the cylinder Ω is a
surface, or a finite union of surfaces if γ is not connected, of class C3 in E3. The tangent plane to the
surface Θ(Γ) at each point Θ(x), x = (y, x3) ∈ Γ, is spanned by the two vectors

g3(x) := ∂3Θ(x) and t(x) := tα(x)gα(x),
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where the coefficients tα(x) are defined by

tα(x) := τα(y) for all x = (y, x3) ∈ Γ.

Then

n(x) = nα(x)gα(x) :=
g3(x) ∧ t(x)

|g3(x) ∧ t(x)|
∈ E3

is a unit normal vector at the point Θ(x) to the surface Θ(Γ), oriented is such a way that the three
vectors

t(x), n(x), g3(x),

form in this order a positively-oriented basis in E3. Note that this basis can be seen as an extension of
the Darboux frames associated with the curve γ to frames along the surface Γ, since

t(y, 0) = τ (y), n(y, 0) = ν(y), and g3(y, 0) = a3(y), for all y ∈ γ.

In the rest of this Note, we consider a shell with reference configuration Θ(Ω), assumed to be a natural
state (i.e., stress-free), whose middle surface S = θ(ω) and (constant) thickness 2ε > 0 satisfy the above
assumptions. We assume that the shell is made of a linearly elastic material with Lamé constants

λ ≥ 0 and µ > 0,

and that it is subjected to a homogeneous boundary condition of place on a portion Θ(Γ0) of its lateral
face, where Γ0 := γ0×] − ε, ε[ and γ0 ⊂ γ is a non-empty relatively open subset of the boundary of ω.
Finally, we assume that the shell is subjected to applied body forces whose densities per unit volume in
the reference configuration is a vector field

f igi : Ω→ E3, where f i ∈ L2(Ω).

Note that applied surface forces with non-zero densities on the upper and lower faces Θ(ω × {+ε}) and
Θ(ω × {−ε}) of the shell could be also considered, at the expense of minor modifications of the ensuing
analysis, but for simplicity they will not be considered here.

2. Classical and intrinsic formulations of Koiter’s model of a linearly elastic shell

Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the space

V (ω) := {η := (ηi) ∈ C2(ω)× C2(ω)× C3(ω); ηi = ∂αη3 = 0 on γ0},

and the functional jK : V (ω)→ R by

jK(η) :=

∫
ω

aαβστ
{ε

2
γστ (η)γαβ(η) +

ε3

6
ρστ (η)ραβ(η)

}√
ady −

∫
ω

piηi
√
a dy for all η ∈ V (ω),

where

aαβστ :=
4λµ

λ+ 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ), pi :=

∫ ε

−ε
f i(·, x3) dx3,

γαβ(η) :=
1

2

(
∂α(ηia

i) · aβ + ∂β(ηia
i) · aα

)
, ραβ(η) :=

(
∂αβ(ηia

i)− Γσαβ∂σ(ηia
i)
)
· a3,

respectively denote the contravariant components of the two-dimensional elasticity tensor of the elastic
material constituting the shell, the contravariant components of the density of the resulting applied forces
per unit area along the middle surface S of the shell, and the covariant components of the linearized
change of metric, and of curvature, tensor fields associated with the displacement field ηia

i of the surface
S.
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Then, according to the landmark paper by Koiter (Ref. [9]), re-interpreted here in its “modern” for-
mulation, the unknown displacement field ηia

i of the middle surface of the shell is such that the vector
field η = (ηi) should be the unique minimizer of the extension by continuity of the functional jK over the
completion of the space V (ω) with respect to the norm

(ηi) ∈ V (ω) →
∑
α

‖ηα‖H1(ω) + ‖η3‖H2(ω).

Remark 1 The definition of the space V (ω) as a subspace of the space C2(ω) × C2(ω) × C3(ω) is a
deliberate choice, meant to simplify the ensuing analysis by using classical function spaces, instead of
Sobolev spaces as would have been the case had we chosen the space H1(ω)×H1(ω)×H2(ω). �

An intrinsic formulation of Koiter’s model of a linearly elastic shell consists in replacing the above
unknown η by an appropriate “measure of strain”. Since the linear mapping

η ∈ V (ω)→ ((γαβ(η)), (ραβ(η))) ∈ C1(ω;S2)× C1(ω;S2)

is one-to-one, as a consequence of the well-known infinitesimal rigid displacement lemma on a surface
(see, e.g., [1]), the above pair of matrix fields provides an instance of such a “measure of strain”. More
specifically, let

V(ω) := {
(
(γαβ(η)), (ραβ(η))

)
; η ∈ V (ω)}

denote the image of the space V (ω) under the linear mapping above. Then the mapping Fω : V (ω) →
V(ω) defined by

Fω(η) := ((γαβ(η)), (ραβ(η))) for all η ∈ V (ω),

is one-to-one, and onto, so that its inverse

Gω := F−1
ω

is well defined. Hence the unknown η can be replaced in the classical formulation of Koiter’s model of a
linearly elastic shell by the pair of matrix fields

((cαβ), (rαβ)) := Fω(η).

In this fashion, the corresponding intrinsic formulation of Koiter’s model of a linearly elastic shell
asserts that the new unknown ((cαβ), (rαβ)) ∈ V(ω) is the unique minimizer of the functional

j]K := jK ◦ Gω : V(ω)→ R.

Of course, just as in the classical formulation, such a minimizer can be found provided the functional j]K
is extended by continuity to the completion of the space V(ω) with respect to an appropriate norm.

The functional space V(ω) appearing in the above intrinsic formulation of Koiter’s model has been
explicitly characterised by the authors in [7], where it was shown that

V(ω) = V](ω),

where the space V](ω) is defined by

V](ω) :=
{

((cαβ), (rαβ)) ∈ C1(ω;S2)× C1(ω;S2); Sβασϕ = 0 and S3ασϕ = 0 in ω,

cαβτ
ατβ = 0 and cαβ|στ

α
(
2νβτσ − τβνσ

)
+ κgcαβν

ανβ = 0 on γ0,

rαβτ
ατβ = 0 and rαβτ

ανβ − cαβνα
(
2κnτ

β + τgν
β
)

= 0 on γ0

}
,
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the functions τα, να, κg, κn, τg being defined as in Sect. 1 along the curve θ(γ0), and the distributions
Sβασϕ ∈ D′(ω) and S3ασϕ ∈ D′(ω) being defined in terms of the functions cαβ and rαβ by

Sβασϕ := cσα|βϕ + cϕβ|ασ − cϕα|βσ − cσβ|αϕ +Rψ·ασϕcβψ −R
ψ
·βσϕcαψ − bϕαrσβ − bσβrϕα + bσαrϕβ + bϕβrσα,

S3ασϕ := bψσ (cαψ|ϕ + cϕψ|α − cϕα|ψ)− bψϕ(cαψ|σ + cσψ|α − cσα|ψ)− rσα|ϕ + rϕα|σ,

where

cαβ|σ := ∂σcαβ − Γϕασcϕβ − Γϕβσcαϕ and cαβ|σϕ := ∂ϕcαβ|σ − Γψαϕcψβ|σ − Γψβϕcαψ|σ − Γψσϕcαβ|ψ

denote the usual covariant derivatives of first and second order of the tensor field cαβ along the surface S.
Note that the above distributions satisfy the symmetry relations

S3ασϕ = −S3αϕσ and Sβασϕ = Sσϕβα = −Sσϕαβ ,

which in turn imply that only three of them, e.g. S1212, S3112, and S3212, are independent.
The main objective of this Note is to prove that the above characterisation of the space V(ω) can be

deduced from the intrinsic formulation of the three-dimensional equations of a linearly elastic shell by
using an appropriate a priori assumption regarding the three-dimensional strain tensor fields, according to
which the covariant components ei3 of the admissible three-dimensional strain tensor fields must vanish
in Ω; see the definition of the space VH(Ω) in Theorem 2.

3. Classical and intrinsic formulations of the three-dimensional equations of a linearly
elastic shell

Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the space

V (Ω) := {v := (vi) ∈ C2(Ω;R3); vi = 0 on Γ0}

and the functional J : V (Ω)→ R by

J (v) :=
1

2

∫
Ω

Aijk`εk`(v)εij(v)
√
g dx−

∫
Ω

f ivi
√
g dx for all v ∈ V (Ω),

where

Aijk` := λgijgk` + µ(gikgj` + gi`gjk) and εij(v) :=
1

2

(
∂i(vkg

k) · gj + ∂j(vkg
k) · gi

)
respectively denote the contravariant components of the three-dimensional elasticity tensor field of the
elastic material constituting the shell, and the covariant components of the linearized change of metric
tensor field, also known as the linearized strain tensor field, associated with the displacement field vig

i of
the shell.

Then the classical formulation of the three-dimensional equations of a linearly elastic shell in curvilinear
coordinates (Ref. [1]) asserts that the unknown displacement field vig

i of the shell is such that the vector
field v = (vi) should be the unique minimizer of the extension by continuity of the functional J over the
completion of the space V (Ω) with respect to the norm

(vi) ∈ V (Ω) →
∑
i

‖vi‖H1(Ω).

An intrinsic formulation of the above equations consists in replacing the above unknown v by an
appropriate “measure of strain”. Since the linear mapping

v ∈ V (Ω)→ (εij(v)) ∈ C1(Ω;S3)
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is one-to-one, as a consequence of the well-known infinitesimal rigid displacement lemma (see, e.g., [1]),
the above matrix field provides an instance of such a “measure of strain”. More specifically, let

V(Ω) := {(εij(v)) ; v ∈ V (Ω)}
denote the image of the space V (Ω) under the linear mapping above. Then the mapping FΩ : V (Ω) →
V(Ω) defined by

FΩ(η) := (εij(v)) for all v ∈ V (Ω),

is one-to-one and onto, so that its inverse
GΩ := F−1

Ω

is well defined. Hence the unknown v can be replaced in the classical formulation of the three-dimensional
equations of a linearly elastic shell by the matrix field

(eij) := FΩ(v).

In this fashion, the corresponding intrinsic formulation of the three-dimensional equations of a linearly
elastic shell asserts that the new unknown (eij) ∈ V(Ω) is the unique minimizer of the functional

J ] := J ◦ GΩ : V(Ω)→ R.

Of course, just as in the classical formulation, such a minimizer can be found provided the functional J ]
is extended by continuity to the completion of the space V(Ω) with respect to an appropriate norm.

The next theorem, which constitutes the first main result of this Note, explicitly characterises the space
V(Ω) appearing in the above intrinsic formulation of the three-dimensional equations of a linearly elastic
shell in the curvilinear coordinates associated with the immersion Θ defining the reference configuration
of the shell. Note that the functions ti‖j , eij‖k, and eij‖hk, appearing in this theorem are nothing but the
usual covariant derivatives of vector and tensor fields (the functions Gij` denote the Christoffel symbols
defined in Sect 1).

Theorem 1 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition
that ω is simply-connected and that γ0 is connected. Define the spaces

V(Ω) := {(eij) ∈ C1(Ω;S3); eij = εij(v), v = (vi) ∈ C2(Ω;R3); vi = 0 on Γ0},

V](Ω) :=
{

(eij) ∈ C1(Ω;S3); eij‖k` + e`k‖ji − eik‖j` − e`j‖ki = 0 in Ω,

eαβt
αtβ = eα3t

α = e3βt
β = e33 = 0 on Γ0,

2eαβ‖σt
αnβtσ − eαβ‖σtαtβnσ + eαβn

αnβtσ‖ϕnσtϕ = 0 on Γ0,

eα3‖βn
αtβ + eαβ‖3t

αnβ − eα3‖βt
αnβ + eαβn

αnβtσ‖3nσ = 0 on Γ0,

2eα3‖3n
α − e33‖αn

α = 0 on Γ0},
where

ti‖j := ∂jt
i +Gij`t

`, eij‖k := ∂keij −G`ike`j −G`kjei`,
eij‖hk := ∂keij‖h −G`ike`j‖h −G`jkei`‖h −G`hkeij‖`.

Then
V(Ω) = V](Ω).

�

Proof. Let θ̃ ∈ C3(ω̃;E3) be a local chart of Θ(Γ0) defined over an open subset ω̃ of R2 and let ε̃ > 0 be
a small enough parameter such that the mapping Θ̃ : ω̃×]− ε̃, ε̃[→ E3 defined by

Θ̃(ỹ, x̃3) := θ̃(ỹ) + x̃3ã3(ỹ) for all (ỹ, x̃3) ∈ ω̃×]− ε̃, ε̃[, where ã3 :=
ã1 ∧ ã2

|ã1 ∧ ã2|
and ãα :=

∂θ̃

∂ỹα
,
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is itself an immersion of class C2 (see again Theorem 4.1-1 in [2]).
A matrix field (eij) ∈ C1(Ω;S3) belongs to the space V(Ω) if and only if there exists a vector field

v = (vi) ∈ C2(Ω;R3) such that eij = εij(v) in Ω and vi = 0 on Γ0. Then the equality V(Ω) = V](Ω) will
be proved by combining the following three results.

First, by Theorems 5.1 and 6.1 in [4] (which can be applied because Ω is simply-connected, as a
consequence of the assumption that ω is simply-connected), a matrix field (eij) ∈ C1(Ω;S3) satisfies eij =
εij(v) in Ω for some vector field v ∈ C2(Ω;R3) if and only if it satisfies the Saint Venant compatibility
conditions in curvilinear coordinates, viz.,

eij‖k` + e`k‖ji − eik‖j` − e`j‖ki = 0 in Ω.

Second, by Theorem 6.1 in [5] (which can be applied because Γ0 is connected, as a consequence of the
assumption that γ0 is connected), a vector field v ∈ C2(Ω;R3) satisfies the boundary condition

v + r = 0 on Γ0 for some vector field r ∈ C2(Ω;R3) such that εij(r) = 0 in Ω

if and only if
ẽαβ = 0 and ẽα3‖β + ẽβ3‖α − ẽαβ‖3 + b̃αβ ẽ33 = 0 on ω̃ × {0},

where ẽij are the covariant components of the tensor field eijg
i ⊗ gj ∈ C1(Ω;S3) associated with the

immersion Θ̃, and b̃αβ ∈ C0(ω̃) are the covariant components of the second fundamental form associated

with the immersion θ̃.
Third, a series of long, but otherwise straightforward, computations show that the functions ẽij satisfy

the above boundary conditions on ω̃ × {0} if and only if the corresponding functions eij satisfy the
following boundary conditions on Γ0:

eαβt
αtβ = eα3t

α = e3βt
β = e33 = 0 on Γ0,

2eαβ‖σt
αnβtσ − eαβ‖σtαtβnσ + eαβn

αnβtσ‖ϕnσtϕ = 0 on Γ0,

eα3‖βn
αtβ + eαβ‖3t

αnβ − eα3‖βt
αnβ + eαβn

αnβtσ‖3nσ = 0 on Γ0,

2eα3‖3n
α − e33‖αn

α = 0 on Γ0.

�

Remark 2 The above boundary conditions on Γ0, that are satisfied by the covariant components eij of
the linearized strain tensor field associated with a displacement field of a shell, generalize similar boundary
conditions that are satisfied by the covariant components eij of the linearized strain tensor field associated
with a displacement field of a plate, identified previously by the authors (see Lemmas 3 and 4 in [6]). To
see this, observe that the immersion Θ : Ω → E3 defining the reference configuration of a plate is the
identity mapping restricted to the set Ω, in which case

eij‖k = ∂keij in Ω,

and
tα(·, x3) = τα and nα(·, x3) = να on Γ,

tσ‖3 = 0 and tσ‖ϕnσtϕ = nσ∂τ t
σ = κ(nσn

σ) = κ on Γ,

where κ : γ → R denotes the curvature along the planar curve γ.

4. Canonical isomorphism between the spaces V](ω) and V](Ω)

Define the linear mappings H : C1(Ω;S3) → C1(ω;S2) × C0(ω;S2) and K : C1(ω;S2) × C1(ω;S2) →
C1(Ω;S3) by letting
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H((eij)) :=
(
(eαβ(·, 0)), (−∂3eαβ(·, 0))

)
for all (eij) ∈ C1(Ω;S3),

K((cαβ), (rαβ)) := (eij) for all ((cαβ), (rαβ)) ∈ C1(ω;S2)× C1(ω;S2),

where

eαβ(·, x3) := cαβ − x3rαβ + x2
3

(1

2
(bσαrσβ + bσβrασ)− bσαb

ϕ
βcσϕ

)
in Ω,

ei3 = e3i := 0 in Ω.

Note that the mapping K is one-to-one and that the range of the mappingH contains the space C1(ω;S2)×
C1(ω;S2).

To begin with, we show that there exists a natural isomorphism between the space V(ω) found in the
intrinsic formulation of Koiter’s model (Sect 2) and a subspace VH(Ω) ⊂ V(Ω) of the space V(Ω) found
in the intrinsic formulation of the three-dimensional equations of a linearly elastic shell (Sect. 3).

In this respect, note that the definition of the subspace VH(Ω) exactly corresponds to an a priori
assumption used by Koiter (Ref. [9]), according to which the covariant components ei3 of the three-
dimensional strain tensor fields inside a shell must vanish.

Theorem 2 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Define the spaces

V(ω) := {((cαβ), (rαβ)) ∈ C1(ω;S2)× C1(ω;S2); cαβ = γαβ(η), rαβ = ραβ(η),

η = (ηi) ∈ C2(ω)× C2(ω)× C3(ω); ηi = ∂αη3 = 0 on γ0},

V(Ω) := {(eij) ∈ C1(Ω;S3); eij = εij(v), v = (vi) ∈ C2(Ω;R3); vi = 0 on Γ0},

VH(Ω) := {(eij) ∈ V(Ω); ei3 = 0 in Ω} ⊂ C1(Ω;S3).

Then the mapping H : VH(Ω) → V(ω) is a well-defined bijection and its inverse is the mapping
K : V(ω)→ VH(Ω).

Proof. If ε is small enough, Lemmas 4 and 5 in [8] show that the mapping F that associates with any
vector field (ηi) in the space

{(ηi) ∈ H1(ω)×H1(ω)×H2(ω); ηi = ∂αη3 = 0 on γ0}

the vector field (vi) : Ω→ R3 whose components are given by

vα(·, x3) := ηα − x3(∂αη3 + 2bσαησ) + x2
3b
β
α(∂βη3 + bσβησ) and v3(·, x3) := η3 in Ω,

is one-to-one, and onto the space

{v := (vi) ∈ H1(Ω;R3); εi3(v) = 0 in Ω, vi = 0 on Γ0}.

Given any (eij) ∈ VH(Ω), there exists v = (vi) ∈ C2(Ω;R3) such that vi = 0 on Γ0 and εi3(v) = ei3 = 0
in Ω. Hence there exists a (unique) vector field η = (ηi) ∈ H1(ω)×H1(ω)×H2(ω) such that ηi = ∂αη3 = 0
on γ0 and F(η) = v. Consequently, ηα ∈ C2(ω), η3 ∈ C3(ω), and

εαβ(v)(·, x3) = γαβ(η)− x3ραβ(η) + x2
3

(1

2
(bσαρσβ(η) + bσβρασ(η))− bσαb

ϕ
βcσϕ

)
in Ω,

which, combined with the relations eαβ = εαβ(v) in Ω, further implies that eαβ(·, 0) = γαβ(η) and
∂3eαβ(·, 0) = −ραβ(η) in ω.

This shows that the mapping H : VH(Ω) → V(ω) is well-defined, linear, and surjective. That it is in
addition injective follows from the infinitesimal rigid displacement lemma on a surface and the boundary
conditions satisfied be the vector field (ηi) defined as above in terms of the vector field (vi). That the
inverse of H : VH(Ω)→ V(ω) is the mapping K : V(ω)→ VH(Ω) is clear. �
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An immediate consequence of Theorems 1 and 2 is that, if ω is simply-connected and γ0 is connected,
then VH(Ω) = V]H(Ω), where

V]H(Ω) := {(eij) ∈ V](Ω); ei3 = 0 in Ω} ⊂ C1(Ω;S3).

It remains to prove that the mapping K maps the subspace V](ω) ⊂ C1(ω;S2) × C1(ω;S2) onto the

subspace V]H(Ω) ⊂ C1(Ω;S3). We divide the proof of this result into two distinct lemmas, which are also
of interest by themselves. The distributions Sαβσϕ and S3βσϕ appearing below are defined in terms of the
functions cαβ and rαβ as in Sect. 2.

Lemma 1 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition
that ω is simply-connected. Let (eij) ∈ C1(Ω;S3) be a matrix field that satisfies ei3 = e3i = 0 in Ω. Then
(eij) satisfies the Saint Venant compatibility conditions

eij‖k` + e`k‖ji − eik‖j` − e`j‖ki = 0 in Ω

if and only if there exist two matrix fields (cαβ) ∈ C1(ω;S2) and (rαβ) ∈ C1(ω;S2) that satisfy the Saint
Venant compatibility conditions on a surface, that is,

Sαβσϕ = 0 and S3βσϕ = 0 in ω,

such that

eαβ(·, x3) := cαβ − x3rαβ + x2
3

(1

2
(bσαrσβ + bσβrασ)− bσαb

ϕ
βcσϕ

)
in Ω.

Proof. First, let (eij) ∈ C1(Ω;S3) be a matrix field that satisfies

ei3 = e3i = 0 in Ω

and
eij‖k` + e`k‖ji − eik‖j` − e`j‖ki = 0 in Ω.

Then Theorem 6.1 in [4] shows that there exists a vector field v = (vi) ∈ C2(Ω;R3) such that eij = εij(v)
in Ω. Since εi3(v) = 0 in Ω by assumption, Lemma 5 in [8] further shows that there exists a vector field
η = (ηi) ∈ C2(ω)× C2(ω)× C3(ω) such that

vα(·, x3) = ηα − x3(∂αη3 + 2bσαησ) + x2
3b
β
α(∂βη3 + bσβησ) and v3(·, x3) = η3 in Ω.

Let cαβ := γαβ(η) ∈ C1(ω;S2) and rαβ := ραβ(η) ∈ C1(ω;S2), where the functions γαβ(η) and ραβ(η)
are defined in terms of η as in Sect. 2. Then Theorem 4.1 in [3] shows that the corresponding distributions
Sαβσϕ and S3βσϕ satisfy

Sαβσϕ = 0 and S3βσϕ = 0 in ω,

and Lemma 2 in [8] shows that the functions eαβ = εαβ(v) satisfy

eαβ(·, x3) = cαβ − x3rαβ + x2
3

(1

2
(bσαrσβ + bσβrασ)− bσαb

ϕ
βcσϕ

)
in Ω.

Second, let (eij) ∈ C1(Ω;S3) be a matrix field that satisfies

ei3 = e3i = 0 in Ω

and

eαβ(·, x3) = cαβ − x3rαβ + x2
3

(1

2
(bσαrσβ + bσβrασ)− bσαb

ϕ
βcσϕ

)
in Ω,

where the matrix fields (cαβ) ∈ C1(ω;S2) and (rαβ) ∈ C1(ω;S2) satisfy

Sαβσϕ = 0 and S3βσϕ = 0 in ω.

10



Then Theorem 5.1 in [3] shows that there exists a vector field η = (ηi) ∈ C2(ω)×C2(ω)×C3(ω) such that

cαβ = γαβ(η) and rαβ = ραβ(η) in ω.

Let the vector field v = (vi) ∈ C2(Ω;R3) be defined by

vα(·, x3) = ηα − x3(∂αη3 + 2bσαησ) + x2
3b
β
α(∂βη3 + bσβησ) and v3(·, x3) = η3 in Ω.

Then Lemma 2 in [8], combined with the above expressions of the functions eij , shows that

εij(v) = eij in Ω,

and Theorem 5.1 in [4] next shows that the matrix field (eij) satisfies the equations

eij‖k` + e`k‖ji − eik‖j` − e`j‖ki = 0 in Ω.

�

Lemma 2 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition
that ω is simply-connected and that γ0 is connected. With each pair of matrix fields (cαβ) ∈ C1(ω;S2) and
(rαβ) ∈ C1(ω;S2) that satisfy

Sαβσϕ = 0 and S3βσϕ = 0 in ω,

associate the matrix field (eij) ∈ C1(Ω;S3) defined by

eαβ(·, x3) := cαβ − x3rαβ + x2
3

(1

2
(bσαrσβ + bσβrασ)− bσαb

ϕ
βcσϕ

)
in Ω,

ei3 = e3i := 0 in Ω.

Then the matrix field (eij) satisfies the boundary conditions

eαβt
αtβ = eα3t

α = e3βt
β = e33 = 0 on Γ0,

2eαβ‖σt
αnβtσ − eαβ‖σtαtβnσ + eαβn

αnβtσ‖ϕnσtϕ = 0 on Γ0,

eα3‖βn
αtβ + eαβ‖3t

αnβ − eα3‖βt
αnβ + eαβn

αnβtσ‖3nσ = 0 on Γ0,

2eα3‖3n
α − e33‖αn

α = 0 on Γ0,

if and only if the matrix fields (cαβ) and (rαβ) satisfy the boundary conditions

cαβτ
ατβ = 0 and cαβ|στ

α(2νβτσ − τβνσ) + κgcαβν
ανβ = 0 on γ0,

rαβτ
ατβ = 0 and rαβτ

ανβ − cαβνα(2κnτ
β + τgν

β) = 0 on γ0.

Proof. The three vector fields τ = ταaα, ν = ναaα, and a3, of the Darboux frames along the curve θ(γ)
and their respective extensions t = tαgα, n = nαgα, and g3, along the surface Θ(Γ) are related to each
other by the relations

t(y, x3) = (1− x3κn(y)) τ (y)− x3τg(y)ν(y),

n(y, x3) =
(
(1− x3κn(y))2 + (x3τg(y))2

)−1/2
(
x3τg(y) τ (y) + (1− x3κn(y))ν(y)

)
,

g3(y, x3) = a3(y),

for all (y, x3) ∈ γ × [−ε, ε], where κg, κn, τg denote respectively the geodesic curvature, the normal
curvature, and the geodesic torsion, along the curve θ(γ) defined in Sect. 2.
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Besides, the vector fields of the Darboux frames along the curve θ(γ) satisfy the equations:

∂ττ = κgν + κna3, ∂τν = −κgτ + τga3, and ∂τa3 = −κnτ − τgν, on γ.

Let the matrix fields (cαβ) and (rαβ) be given that satisfy Sαβσϕ = 0 and S3βσϕ = 0 in D′(ω), and let
the matrix field (eij) be defined in terms of (cαβ) and (rαβ) as in the statement of the lemma. Then a
series of long, and rather technical, computations based on the above relations shows that the following
four assertions hold: First,

2eα3‖3n
α − e33‖αn

α = 0 on Γ0.

Second,
eαβt

αtβ = eα3t
α = e3βt

β = e33 = 0 on Γ0

if and only if the following equations are simultaneously satisfied:

cαβτ
ατβ = 0 on γ0,

rαβτ
ατβ − κn(cαβτ

ατβ) = 0 on γ0,

τg
(
rαβτ

ανβ − cαβνα(2κnτ
β + τgν

β)
)

= 0 on γ0.

Third,
2eαβ‖σt

αnβtσ − eαβ‖σtαtβnσ + eαβn
αnβtσ‖ϕnσtϕ = 0 on Γ0

if and only if(
(1− x3κn(y))2 + (x3τg(y))2

)1/2(
cαβ|στ

α(2νβτσ − τβνσ) + κgcαβν
ανβ

)
= 0 on γ0.

Fourth,
eα3‖βn

αtβ + eαβ‖3t
αnβ − eα3‖βt

αnβ + eαβn
αnβtσ‖3nσ = 0 on Γ0

if and only if

(1− x3κn(y))2
(
(1− x3κn(y))2 + (x3τg(y))2

)−1/2 (
rαβτ

ανβ − cαβνα(2κnτ
β + τgν

β)
)

= 0 on γ0.

The lemma then follows by combining the above four assertions. �

We are now in a position to establish the second main result of this Note. The functions κg, κn, and
τg, resp. the distributions Sβασϕ and S3ασϕ, are defined as in Sect. 1, resp. Sect 2.

Theorem 3 Consider a linearly elastic shell that satisfies the assumptions of Sect. 1. Assume in addition
that ω is simply-connected and that γ0 is connected. Define the spaces

V(ω) := {((cαβ), (rαβ)) ∈ C1(ω;S2)× C1(ω;S2); cαβ = γαβ(η), rαβ = ραβ(η),

η = (ηi) ∈ C2(ω)× C2(ω)× C3(ω); ηi = ∂αη3 = 0 on γ0},

V](ω) :=
{

((cαβ), (rαβ)) ∈ C1(ω;S2)× C1(ω;S2); Sβασϕ = 0 and S3ασϕ = 0 in ω,

cαβτ
ατβ = 0 and cαβ|στ

α(2νβτσ − τβνσ) + κgcαβν
ανβ = 0 on γ0,

rαβτ
ατβ = 0 and rαβτ

ανβ − cαβνα(2κnτ
β + τgν

β) = 0 on γ0

}
.

Then
V(ω) = V](ω).

Proof. Since ω is simply-connected and γ0 is connected, Theorems 1 and 2 show that a pair of matrix fields
((cαβ), (rαβ)) belongs to the space V(ω) if and only if there exists a (unique) matrix field (eij) ∈ V]H(Ω)
such that

cαβ = eαβ(·, 0) and rαβ = −∂3eαβ(·, 0) in ω,
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where

V]H(Ω) =
{

(eij) ∈ C1(Ω;S3); ei3 = 0 in Ω, eij‖k` + e`k‖ji − eik‖j` − e`j‖ki = 0 in Ω,

eαβt
αtβ = eα3t

α = e3βt
β = e33 = 0 on Γ0,

2eαβ‖σt
αnβtσ − eαβ‖σtαtβnσ + eαβn

αnβtσ‖ϕnσtϕ = 0 on Γ0,

eα3‖βn
αtβ + eαβ‖3t

αnβ − eα3‖βt
αnβ + eαβn

αnβtσ‖3nσ = 0 on Γ0,

2eα3‖3n
α − e33‖αn

α = 0 on Γ0}.

Then the conclusion follows from Lemmas 1 and 2, which together show that

V]H(Ω) = {K((cαβ), (rαβ)); ((cαβ), (rαβ)) ∈ V](ω)},

where K is the mapping defined at the beginning of Sect 4 and V](ω) is defined in the statement of the
theorem. �
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