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Introduction

Changes in shape are crucial for mammalian cells 
to accomplish their vital functions such as motility, 
trafficking, or division. These functions are achieved 
through deformations of the cell membrane into 
either protrusions, such as lamellipodia, filopodia, 
or invaginations, such as endocytosis, or into a global 
shape change such as a dumbbell-shape or an elongated 
one in the case of division. Such structures are 
essentially based on a polymerizing actin cytoskeleton 
growing underneath the plasma membrane [1, 2]. This 
actin network can arrange in different organizations 
(parallel bundles, branched network) to drive cell 
shape changes [3].

The mechanism of force production based on 
actin dynamics was first studied by observing intra-
cellular parasites that hijack the actin machinery 
for their own propulsion. The movement of Lis-
teria monocytogenes is indeed based on the dynamic 
assembly of an actin network activated at its surface 
[4, 5]. Beads coated with an activator of actin polym-

erization mimic this actin-based movement and 
move within cell extracts or purified proteins, pro-
pelled by the same ‘actin tail’ that propels Listeria  
[6, 7]. In particular, a branched actin network, gener-
ated by the Arp2/3 complex, is able to create mechan-
ical stresses that build up during the growth of the 
actin network. At the bead surface, these stresses 
operate perpendicularly to the surface whereas fur-
ther at the external edge of the network, they are tan-
gential [8]. Such a stress buildup results in a breakage 
of the actin network (called ‘symmetry breaking’), as 
soon as the tangential stress at the edge of the network 
exceeds a threshold value that is sufficient to break a 
bond in the network and initiate a fracture [9]. As a 
consequence, unbalanced forces following symmetry 
breaking lead to the onset of actin-based propulsion 
[6, 9, 10]. Propulsion of hard objects based on actin 
polymerization involves mechanical deformations 
within the actin network over a distance that is about 
twice the size of the object, as evidenced by photo-
bleaching the actin network [11]. Such deformations 
are the signature of stresses within the actin network, 
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Abstract
The ability of mammalian cells to deform their membrane relies on the action of the cytoskeleton. In 
particular, the dynamics of the actin cytoskeleton, assembling at the plasma membrane, plays a crucial 
role in controlling cell shape. Many proteins are involved to ensure proper growth of the actin network 
at the cell membrane. The detailed structure of this network regulates the force that is necessary for 
membrane deformation. We address here how the presence of capping proteins, which limit the 
length of actin filaments and thus affects network topology, influences membrane shape. We use a 
system of liposomes, activated to polymerize actin at their surface, and placed in a mixture of purified 
proteins that reconstitutes actin dynamics. Our system also allows the variation of membrane tension 
by deflating the liposomes. We show that membrane deformations are clearly favored in the presence 
of capping proteins in the actin network. Moreover, in the absence of capping proteins, membrane 
deformations appear only when the liposomes are deflated. Our results unveil that the interplay 
between membrane tension and actin network structure and dynamics governs cell shape.
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that can be transmitted to the object and lead to its 
propulsion and compression.

When oil droplets or liposomes are used instead of 
beads or bacteria (which have a hard wall and therefore 
are not deformable), the same mechanisms are at work 
except that, this time, the surface is deformable and 
fluid. Symmetry breaking of the actin network occurs, 
oil droplets and liposomes undergo actin-based 
motility [12–14]. They are deformed into a pear or a 
symmetrical elongated kiwi shape depending on the 
attachment strength of the network to the surface (for 
a review see [15]). This propulsion is accompanied by a 
convective movement of the activators of actin polym-
erization on the membrane [16, 17]. Deformations of 
liposomes can lead to vesicle pinch off under the sole 
effect of actin polymerization [18].

Changing the mechanical properties of the actin 
network, through modifying the composition of the 
protein mixture, affects the propulsion velocity of beads 
and time for symmetry breaking, leading generally to 
bell-shaped curves as a function of protein concentra-
tions [9]. With the Arp2/3 complex promoting the for-
mation of new branches at the liposome surface and 
capping proteins tuning filament length, there is a way 
of modulating the detailed network topology through 
the relative concentrations of both proteins. Indeed, 
as already shown on beads and liposomes, the concen-
tration of capping proteins, relatively to the one of the 
Arp2/3 complex, modulates the actin network architec-
ture, such as the network mesh size and entanglement, 
quantified in [19]. However, little is known about the 
role of the detailed actin structure, or of membrane ten-
sion on liposome shape changes. In fact, actin polymeri-
zation and membrane tension forces may play against 
each other. Here, we characterize how liposomes deform 
during symmetry breaking, and address how this 
phenom enon depends on the organization of the actin 
network, and on membrane tension. These parameters 
can be perfectly controlled in a reconstituted system of 
liposomes placed in an actin mix that promotes actin 
polymerization. We generate liposomes at the surface 
of which a dynamic branched actin network grows from 
the assembly of purified proteins. We show that symme-
try breaking of the actin network is correlated with lipo-
some deformability and depends on network composi-
tion and membrane tension.

Methods

Reagents, lipids, proteins
Chemicals are purchased from Sigma Aldrich (St. 
Louis, MO, USA) unless specified otherwise. L-alpha-
phosphatidylcholine (EPC) and 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[biotinyl 
polyethylene glycol 2000] (biotinylated lipids) 
are purchased from Avanti polar lipids (Alabaster, 
USA). Texas Red® 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine, triethylammonium salt is from 
Thermofisher (Walthham, USA). Actin is purchased 

from Cytoskeleton (Denver, USA) and used with no 
further purification. Fluorescent Alexa-488 actin is 
obtained from Molecular Probes (Eugene, Oregon, 
USA). Porcine Arp2/3 complex is purchased from 
Cytoskeleton and used with no further purification. 
Mouse α1β2 capping protein is purified as in [20]. 
Untagged human profilin and SpVCA are purified 
as in [21]. A solution of 30 μM monomeric actin 
containing 15% of labelled Alexa-488 actin is 
obtained by incubating the actin solution in G-Buffer 
(2 mM Tris, 0.2 mM CaCl2, 0.2 mM DTT, pH 8.0) 
overnight at 4 °C. All proteins (SpVCA, profilin, 
capping protein, actin) are mixed in the isotonic or 
hypertonic working buffer. The isotonic working 
buffer contains 25 mM imidazole, 70 mM sucrose, 
1 mM Tris, 50 mM KCl, 2 mM MgCl2, 0.1 mM DTT, 
1.6 mM ATP, 0.02 mg ⋅ mL−1 β-casein, adjusted to pH 
7.4. The hypertonic working buffer differs only by its 
sucrose concentration and contains 25 mM imidazole, 
320 mM sucrose, 1 mM Tris, 50 mM KCl, 2 mM MgCl2, 
0.1 mM DTT, 1.6 mM ATP, 0.02 mg mL−1 β-casein, 
adjusted to pH 7.4. Osmolarities of the isotonic and 
hypertonic working buffers are respectively 200 and 
400 mOsmol, as measured with a vapor pressure 
osmometer (VAPRO 5600).

Liposome preparation
Liposomes are prepared using the electroformation 
technique [22]. Briefly, 10 μL of a mixture of EPC 
lipids, 0.1% biotinylated lipids and 0.1% TexasRed 
lipids with a concentration of 2.5 mg ⋅ mL−1 in 
chloroform/methanol 5:3 (v/v) are spread onto 
indium tin oxide (ITO)-coated plates and placed 
under vacuum for 2 h. A chamber is formed using the 
ITO plates (their conductive sides facing each other) 
filled with a sucrose buffer (0.2 M sucrose, 2 mM Tris 
adjusted at pH 7.4) and sealed with hematocrit paste 
(Vitrex Medical, Denmark). Liposomes are formed by 
applying an alternate current voltage (10 Hz, 1 V rms) 
for 2 h. Liposomes are then incubated with an activator 
of actin polymerization (S-pVCA, 350 nM) for 15 min. 
Liposomes (‘non-deflated’) are used right away for 
polymerizing actin in the isotonic working buffer. For 
‘deflated’ liposomes, an extra step is added, as they are 
diluted twice in the hypertonic working buffer at 400 
mOsmol and incubated for 30 min. The final solution 
is therefore at 300 mOsmol.

Actin cortices with a branched network
Actin polymerization is triggered by diluting the 
non-deflated or deflated liposomes 6 times in a mix 
of respectively isotonic or hypertonic working buffer 
containing final concentrations of 3 μM monomeric 
actin (15% fluorescently labelled with AlexaFluor488), 
3 μM profilin, 37 nM Arp2/3 complex, 25 nM capping 
protein. Note that the final concentrations of salt and 
ATP in both isotonic and hypertonic conditions are 
0.3 mM NaCl, 41 mM KCl, 1.6 mM MgCl2, 0.02 mM 
CaCl2 and 1.5 mM ATP. Hypertonic conditions only 
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differ from isotonic conditions by 250 mM sucrose. 
To be able to keep the same actin activity in non-
deflated or deflated conditions, one point of attention 
is that reagent concentrations for actin polymerization 
must be unchanged in concentration, as noted above 
for both conditions. Therefore we can investigate the 
exclusive role of membrane tension, independently of 
actin dynamics.

Observation of liposomes
Observation in 2D: epifluorescence (GFP filter cube, 
excitation 470 nm, emission 525 nm; Texas red filter 
cube: excitation 545–580 nm, emission 610 nm-
IR), phase contrast and bright-field microscopy 
are performed using an IX70 Olympus inverted 
microscope with a 100×  or a 60×  oil-immersion 
objective. Images are collected by a charge coupled 
device CCD camera (CoolSnap, Photometrics, Roper 
Scientific).

Image analysis
Image analyses are performed with FIJI software and 
data are processed on Matlab and Excel.

Characterization of membrane deformations
Liposome contour is detected from membrane 
fluorescence images either using the Wand tool on FIJI 
software or detected manually. Liposome shape is then 
characterized by its elliptical form factor (latter named 

‘form factor’) e = b
a where b and a are respectively the 

minor and the major axis of the ellipse best fitting the 
liposome contour (same area, orientation and centroid 
as the original selection, FIJI software).

Analysis of the symmetry breaking of the actin 
network
To characterize the anisotropy of the actin network 
representative of a symmetry breaking event, we first 
detect the contour of the liposome on fluorescent 
membrane images (see above). We next record 
the actin fluorescence profile (I is the fluorescence 
intensity) along this contour on a 30 pixel width and 
obtain Imax and Imin as respectively the maximum 
and minimum of the fluorescence intensity over the 

contour length. We define Asym = Imax− Imin
Imax

. Then, 

we proceed in two steps using images (a) and (b) of 
figure S1 as references for an unambiguous symmetry 
breaking event.

 -  For Asym > 0.5, we state that there is an 
asymmetry in the actin network that may reveal 

a symmetry breaking event (figure S1(a)–(d)) 
that will be further analyzed by the width of the 
fluorescence distribution (see below). Then, 
raw intensity profiles, plotted as a normalized 
intensity I− Imin

Imax−Imin
 as a function of the normalized 

contour length, are smoothed by a moving 

average filter of span 5 (‘smooth’ function on 
Matlab, and figure S1).

  ⚬  Cases where profiles have more than one 
peak that crosses the half-height (normalized 
intensity  =0.5) are considered as non-
symmetry breaking events because the actin 
is not distributed only one side.

  ⚬  For other profiles, we measure the width 
at half-height, w, and we set a threshold of 
w = 0.25 for a true symmetry breaking event 
(evaluated from figure S1, images (a) and (b)).

 -  If Asym � 0.5, we conclude that the actin 
network does not break the symmetry (figure 
S1, images (e) and (f)).

Results

Observation of the actin network symmetry 
breaking around cell-sized liposomes
In order to observe the symmetry breaking of an actin 
network, based on what was observed around hard 
spheres [19], a dynamic, branched, Arp2/3-based, 
actin network is reconstituted at the outer surface of 
electroformed liposomes (Methods). The Arp2/3 
complex is activated at the membrane surface through 
the use of a fragment of WASP (the Wiskott–Aldrich 
syndrome protein), pVCA, tagged with a streptavidin, 
hereafter named SpVCA. This protein SpVCA is 
grafted to the biotinylated lipids of the liposomes 
through its streptavidin tag (Methods and figure 1(a)). 
Liposomes, once coated with SpVCA, are then placed 
in a mixture containing monomeric actin, profilin, the 
Arp2/3 complex and capping proteins (CP) (figure 
1(a), left). As already reported, the presence of CP in 
the actin polymerization mixture allows to break the 
symmetry of the actin network within a few to tens of 
minutes, depending on liposome size [21, 23]. Indeed, 
the actin network grows by forming new branches at 
the liposome surface, therefore putting the network 
under tension, especially at the outer layer, until a 
critical stress is reached, and the actin shell breaks open 
[9]. We observe liposomes after 60 min of incubation 
in the actin mix. Whereas they are mainly spherical 
initially, at 60 min, they appear highly deformed by 
the symmetry breaking event into a pear or dumbbell 
(figure 1(c), top row). Symmetry breaking of the actin 
network is defined as the presence of an asymmetric 
actin network around the liposome (Methods). Such 
a symmetry breaking event is spontaneous, and is 
generally followed by directional actin-based motion 
with the growth of a propelling, growing actin ‘comet-
tail’, as it was called for the propulsion of bacteria such 
as Listeria [4, 24] or of beads mimicking Listeria [7, 
6]. We indeed observe such comet tails, as illustrated 
in supplementary figures S1(a) and (b) (stacks.iop.
org/PhysBio/15/065004/mmedia). In order to define 
the symmetry breaking event in a quantitative way, 
we use the fluorescence images and define a threshold 
of asymmetry of the fluorescence of actin along the 
membrane contour (Methods and figure S1). We find 
that in the presence of CP, 47.3% of liposomes display 
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a symmetry breaking event. Using this system, we now 
investigate how the occurrence of symmetry breaking 
depends on the presence of CP and membrane tension.

Role of capping proteins (CP) in actin-based 
symmetry breaking
To investigate the role of CP in actin-based symmetry 
breaking, we reconstitute an actin network in the 
absence of CP at the outer surface of liposomes (figure 
1(a), right). The actin polymerization mixture thus 
contains only monomeric actin, profilin and the 
Arp2/3 complex, in the same conditions as previously 
used, with omission of CP. The absence of CP leads 
to a strong decrease in the occurrence of symmetry 
breaking of the actin network as we find that only 0.6% 
of liposomes display symmetry breaking in the absence 
of CP compared to 47.3% in the presence of CP (see 
above). Thin and homogeneous actin networks are 
indeed mainly observed (example in figure 1(d), top 
row). Thus, we conclude that capping proteins are 

essential to generate the symmetry breaking of the 
actin network, in line with what was observed with 
beads in the same spherical conditions [10].

Change of membrane tension in our system
To unveil the role of membrane tension in symmetry 
breaking of the actin network and how membrane 
shape changes, membrane tension of liposomes 
is decreased prior to actin polymerization (figure 
1(b)). To do so, liposomes are first coated with the 
promotor of actin polymerization, SpVCA, and 
then deflated by incubation in a solution with higher 
osmolarity (400 mOsmol instead of 200 mOsmol). 
In fact, increasing the osmolarity of the outside 
solution creates an osmotic pressure difference, which 
equilibrates fast (within 30 min) with water leaving 
the inside of liposomes (scheme figure 1(b)) [25]. As a 
consequence, the apparent liposome volume decreases 
(images figure 1(b)), resulting in a decrease of 
membrane tension. While increasing the osmolarity of 

Figure 1. Experimental system. (a) Schemes of the purified proteins (legend) for the reconstitution of the branched actin network 
at the outer surface of liposomes (left, in the presence of CP, right, in the absence of CP); proteins not to scale. (b) Illustrative scheme 
of the method to obtain deflated liposomes (light purple, right) from non-deflated ones (dark purple, left) with corresponding 
examples of epifluorescence images of membrane (TexasRed-DHPE). (c) and (d) Epifluorescence images of representative examples 
of liposome deformations induced by actin polymerization in different conditions (indicated). Membrane (left, TexasRed DHPE), 
actin (middle, Alexa488-actin), and overlay (purple: membrane, green, actin). All scale bars, 5 μm.
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the outside solution is necessary to deflate liposomes, it 
is important that all actin reagents are carefully at the 
same total concentration as in non-deflated conditions 
(Methods). Indeed, as an example, a decrease in ATP 
and salt concentration leads to a different percentage of 
symmetry breaking events in non-deflated conditions 
(figure S2).

Effect of liposome deflation on membrane shape 
and symmetry breaking, in the presence or absence 
of capping proteins
Liposome shapes are characterized by their form 
factor e, the ratio of the short and long radii of the best 
ellipse that fits their apparent contour on fluorescent 
membrane images (Methods). A form factor of 1 
refers to a spherical liposome whereas a form factor 
closer to zero characterizes an elongated shape. We 
first observe liposomes only, i.e. in the absence of 
any actin dynamics. Non-deflated liposomes display 
a distribution of form factor close to 1 (figure 2(a), 
83.0% of liposomes display a form factor between 
0.95 and 1). As expected, deflated liposomes display 
a slightly broader distribution of form factors (figure 
2(b), 66.0% of liposomes display a form factor 
between 0.95 and 1), and their contour fluctuates with 
time [26]. When the actin mix is present, liposome 
form factor measurement is complemented by the 
characterization of symmetry breaking (Methods). 
One striking result is that distributions of form 
factors are broader in the presence of an actin network 
than in its absence (figures 2(c), (d) and (f)), where 
respectively 54.7, 53.0, and 30.2% of liposomes display 
a form factor between 0.95 and 1), except when CP 
is absent and in non-deflated liposomes (figure 2(e), 
91.7%).

Actin network symmetry breaking is observed 
more often for more deformed liposomes (green bars 
fill in purple bars of lower form factor, figure 2(c)). 
Strikingly, in the absence of CP and when liposomes 
are deflated, there is a huge increase of the occurrence 
of actin network symmetry breaking (figures 2(e) and 
(f)). In the presence of CP, the difference is less impres-
sive, although there is more correlation of symmetry 
breaking with increased liposome deformation in 
deflated liposomes than in non-deflated ones (figures 
2(c) and (d)). The more the liposomes are deformed 
(lower form factor), the more they display symme-
try breaking (as seen by the coincidence of green and 
purple bars at lower form factor (figures 2(c), (d) and 
(f)). These results reveal that membrane tension, and 
the presence of CP, are key parameters to regulate 
the mechanical effects of actin dynamics, especially 
the ability of the network to break the symmetry and 
deform the membrane.

Discussion

Using a biomimetic system which allows to precisely 
control physical parameters, such as actin network 
detailed structure, or membrane tension, we find 

conditions that favor membrane deformations 
induced by actin polymerization. For that, we first 
confirm that liposome deformation is correlated with 
the asymmetry of the actin network, as the occurrence 
of symmetry breaking is mainly observed when 
liposomes have a lower form factor (figures 2(c), (d) 
and (f)).

In the presence of CP, filaments branch and elon-
gate only at the surface of the liposomes, generating 
a perpendicular stress at the liposome surface and a 
tangential stress in the outer layer, which behaves as 
a dead zone of the network that builds up stress. This 
process can lead to symmetry breaking as described 
in the introduction [8, 9, 19]. This is the case in the 
concentrations we use here as a reference system for 
proper symmetry breaking to happen (37 nM Arp2/3 
complex, 25 nM CP). In the absence of CP, a case that is 
less studied with liposomes, filaments elongate both at 
the liposome surface and at the outer layer of the actin 
shell. Therefore, the outer layer of the actin network is 
an active zone that grows and reforms constantly. As 
a consequence, we expect that the tangential stress of 
the outer layer is less pronounced than in the presence 
of CP. Consequently, in the absence of CP, symmetry 
breaking events are only rarely observed, as shown on 
beads [10], and on our liposome system (compare fig-
ures 2(c) and (e)). Note nevertheless that symmetry 
breaking was observed around beads at very high con-
centrations of the Arp2/3 complex, an indication that 
a stress could build up in the absence of CP [10]. The 
absence of symmetry breaking without CP in our sys-
tem may therefore be attributed to an under-thresh-
old of tangential stress in the outer layer whereas 
the orthogonal stress at the surface of the liposome 
should be unchanged. A way of revealing this pos-
sible remaining orthogonal stress at the surface of 
liposomes in the absence of CP is to decrease their 
membrane tension. This way, liposomes are expected 
to deform more easily if stresses buildup orthogonally 
to their membrane.

We find, indeed, that lowering membrane ten-
sion of liposomes in the absence of CP leads to a huge 
increase of symmetry breaking events and liposome 
deformations (compare figures 2(e) and (f)). This 
experiment proves that stresses are present at the lipo-
some surface when CP is absent. They are revealed only 
when the membrane is deflated, as in these conditions, 
there is not enough opposing pressure to sustain these 
stresses (unlike when the membrane is non-deflated), 
and symmetry breaking occurs. In other words, 
decreasing membrane tension in liposomes resumes 
symmetry breaking and membrane deformations, 
and points to the importance of the interplay between 
membrane tension and network organization. Such 
parameters, especially membrane tension and lipo-
some initial shape are not yet included in symmetry 
breaking theoretical models [6, 9, 27–29]. Based on 
our experiments, the process of symmetry breaking 
of the actin network may be theoretically addressed to 
unveil the role of tension, initial shape, and network 
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topology on the ability of a dynamics network to actu-
ally deform a membrane.

Interestingly, decreasing liposome tension in our 
reference conditions of protein concentrations in the 
presence of CP reveals the efficiency of actin dynamics 
to deform liposomes. This is observed by comparing 
figures 2(c) and (d) where the distribution of form fac-
tors is broader for deflated liposomes and symmetry 
breaking always matches lower form factors.

Membrane tension values of electroformed 
liposomes have been estimated previously in the 
same conditions as our non-deflated conditions, 
here, to 10−6 N · m−1 [30]. Given the typical radius 

of our liposomes, R  =  10 μm, we can estimate the 
Laplace pressure to be ΔP  =  10−1 Pa in non-deflated 
liposomes. The opposing pressure exerted by the 
actin network in the presence of CP is expected to be 

p = E
Ä

h
R

ä2
 where E is the Young modulus of the actin 

network, on the order of 104 Pa [8, 31], h the thickness 
of the actin network and R the radius of the spherical 

liposome. Taking h
R on the order of 0.2 (see images), 

leads to an actin pressure on the order of 4 · 102 Pa, and 
represents an overestimate of the orthogonal pres-
sure that may occur in the absence of CP. These esti-
mates however reveal that the stresses exerted by the 

Figure 2. Membrane deformations and actin network symmetry breaking. Distribution of liposome form factors for non-deflated 
(dark purple bars) and deflated liposomes (light purple bars). (a) and (b) In the absence of actin ((a) n  =  329 and (b) n  =  586). 
(c)–(f) In the presence of actin with the additional count of actin symmetry breaking (green bars); note that green bars are always 
contained in the purple bars, as all liposomes of a population are characterized for form factor whereas only a portion of them 
display a symmetry breaking event. (c) and (d) At 25 nM CP for non-deflated (n  =  203 from 3 experiments) and deflated liposomes 
(n  =  83 from 2 experiments), respectively. (e) and (f) At 0 nM CP for non-deflated (n  =  157 from 4 experiments) and deflated 
liposomes (n  =  96 from 3 experiments), respectively. (a)–(f) Examples of epifluorescence images of membrane (purple, TexasRed 
DHPE) and actin network (green, Alexa488-actin) with indicated liposome form factor. Images surrounded by green boxes 
correspond to actin symmetry breaking whereas images surrounded by purple boxes do not show symmetry breaking of the actin 
network. All scale bars, 5 μm.
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actin network in the presence of CP are well over the 
Laplace pressure and that the liposome system is prone 
to deformation under the effect of the actin network. 
In the absence of CP, these deformations indicate the 
presence of stresses, and only appear when membrane 
tension is lowered and liposome shape able to change.

A careful examination of the effect of membrane 
tension and protein composition unveils here that cell 
shape changes may redundantly rely on both mem-
brane tension and actin network details. This result 
is supported by recent results on endocytosis, where 
actin dynamics and membrane tension may play a 
crucial role on membrane deformation, a role that was 
previously attributed to coat proteins [2, 32, 33].

Conclusion

Our biomimetic system provides evidence that both 
the actin structure (presence of capping proteins) and 
membrane tension govern liposome shape changes 
induced by actin polymerization. When the actin 
structure lacks capping proteins, the sensitivity of the 
system to membrane tension is higher, and a decrease 
in membrane tension rescues membrane deformation 
in the absence of capping proteins. Theoretical 
approaches still need to be developed to unveil the 
mechanistic origin of this phenomenon. In cells, 
robustness is ensured by redundancy mechanisms, 
and may be illustrated by this observed sensitivity to 
membrane deformations by actin dynamics. In vitro 
systems are a powerful tool to dissect and quantify 
detailed mechanisms of shape changes, compared to 
the complexity of cellular systems.
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