A. D. French, N. R. Bertoniere, R. M. Brown, H. Chanzy, D. Gray et al., ) Kirk-Othmer Encyclopedia of Chemical Technology, vol.5, 2003.

R. Seidel, . ;. Ed, and &. Wiley, Sons: Hoboken N.J, vol.5, issue.3, 2004.

T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham et al., Tiny Fiber with Huge Applications. Current Opinion in Biotechnol, vol.39, pp.76-88, 2016.

Y. Habibi, Key Advances in the Chemical Modification of Nanocelluloses, Chem. Soc. Rev, vol.43, pp.1519-1542, 2014.

D. Klemm, F. Kramer, S. Moritz, T. ;. Lindstrom, A. Gray et al., Nanocelluloses: a New Family of Nature-based Materials, Angew. Chem. Int. Ed, vol.50, pp.5438-5466, 2011.

I. Usov, G. Nyström, J. Adamcik, S. Handschin, C. Schütz et al., Understanding Nanocellulose Chirality and Structure-Properties Relationship at the Single Fibril Level, Nature Commun, vol.6, issue.7, pp.1583-1598, 2015.

B. Wicklein, A. Kocjan, G. Salazar-alvarez, F. Carosio, G. Camino et al., Thermally Insulating and Fire-retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide, Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites, vol.10, pp.3941-3994, 2011.

A. Khalil, H. P. Bhat, A. H. Ireana-yusra, and A. F. , Green Composites from Sustainable Cellulose Nanofibrils: A Review, Carbohydr. Polym, vol.87, pp.963-979, 2012.

I. Siro and D. Placket, Microfibrillated Cellulose and New Nanocomposite Materials: a Review, Cellulose, vol.17, pp.459-494, 2010.

C. Handbook-of-nanocellulose, H. Nanocomposites;-kargarzadeh, I. Ahmad, S. Thomas, and A. Dufresne, , vol.1, 2017.

M. M. Lima and R. D. Borsali, Rodlike Cellulose Microcrystals: Structure, Properties, and Applications, vol.25, pp.771-787, 2004.

R. J. Moon, R. Mcgraw-;-boy, N. Ganesh, R. Kotek, and L. Lucia, Science & Technology, McGraw-Hill, issue.15, pp.225-228, 2008.

M. Kaushik, J. Putaux, C. Fraschini, G. Chauve, and A. Moores, Transmission Electron Microscopy for the Characterization of Cellulose Nanocrystals, Prog. Mater. Sci, vol.52, issue.17, pp.1263-1334, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02113167

O. ;. Nechyporchuk, B. M. Bras, and J. , Production of Cellulose Nanofibrils: A Review of Recent Advances, vol.93, pp.2-25, 2016.

E. Fortunati, F. Luzi, A. Jiménez, D. A. Gopakumar, D. Puglia et al., Revalorization of Sunflower Stalks as Novel Sources of Cellulose Nanofibrils and Nanocrystals and their Effect on Wheat Gluten Bionanocomposite Properties, Carbohydr. Polym, vol.149, pp.357-368, 2016.

H. Sehaqui, A. Mautner, U. P. Larraya, N. Pfenninger, P. Tingaut et al., Cationic Cellulose Nanofibers from Waste Pulp Residues and their Nitrate, Fluoride, Sulphate and Phosphate Adsorption Properties, Carbohydr. Polym, vol.135, pp.334-340, 2016.

Y. J. Kang, S. Chun, S. Lee, B. Kim, J. H. Kim et al., AllSolid-State Flexible Supercapacitors Fabricated with Bacterial Nanocellulose Papers, Carbon Nanotubes, and Triblock-Copolymer Ion Gels, ACS Nano, vol.6, pp.6400-6406, 2012.

M. J. John, S. Thomas, . Biofibres, P. B. Biocomposites-;-filson, and B. E. Dawson-andoh, Cellulose Nanocrystals from Recycled Pulp. Green Chem, vol.71, issue.23, pp.1808-1814, 2008.

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chem. Rev, vol.110, pp.3479-3500, 2010.

S. Camarero-espinosa, D. J. Boday, C. Weder, and E. J. Foster, Cellulose Nanocrystal Driven Crystallization of Poly(D,L-Lactide) and Improvement of the Thermomechanical Properties, J. Appl. Polym. Sci, p.41607, 2015.

J. Zhang, N. Luo, X. Zhang, L. Xu, J. Wu et al., All-Cellulose Nanocomposites Reinforced with in Situ Retained Cellulose Nanocrystals during Selective Dissolution of Cellulose in an Ionic Liquid, ACS Sustainable Chem. Eng, vol.4, pp.4417-4423, 2016.

T. ;. Nishino, M. Hirao, and K. , All-Cellulose Composite, Macromolecules, vol.37, pp.7683-7687, 2004.

L. ;. Petersson, K. Oksman, K. Ye, C. Malak, S. T. Hu et al., Structure and Thermal Properties of Poly(lactic acid)/Cellulose Whiskers Nanocomposite Materials, Cellulose Nanocrystal Microcapsules as Tunable Cages for Nano-and Microparticles, vol.67, pp.10887-10895, 2007.

H. Liu, D. Liu, F. Yao, and Q. Wu, Fabrication and Properties of Transparent Polymethylmethacrylate/ Cellulose Nanocrystals Composites, Bioresour. Technol, vol.101, pp.5685-5692, 2010.

S. Shafiei-sabet, W. Y. Hamad, and S. G. Hatzikiriakos, Rheology of Nanocrystalline Cellulose Aqueous Suspensions, Langmuir, vol.28, pp.17124-17133, 2012.

E. Ureña-benavides, G. ;. Ao, D. V. Kitchens, and C. L. , Rheology and Phase Behavior of Lyotropic Cellulose Nanocrystal Suspensions, Macromolecules, vol.44, pp.8990-8998, 2011.

C. L. Malucelli, L. L. Dziedzic, M. Filho, and M. A. , Preparation, Properties and Future Perspectives of Nanocrystals from Agro-industrial Residues: a Review of Recent Research, Rev. Environ. Sci. Biotechnol, vol.16, pp.131-145, 2017.

N. Rehman, M. I. De-miranda, S. M. Rosa, D. M. Pimentel, N. S. Bica et al., Cellulose and Nanocellulose from Maize Straw: An Insight on the Crystal Properties, J. Polym. Environ, vol.22, pp.252-259, 2014.

E. Espino, M. Cakir, S. Domenek, A. D. Roman-gutierrez, N. Belgacem et al., Isolation and Characterization of Cellulose Nanocrystals from Industrial By-products of Agave Tequilana and Barley. Ind. Crop Prod, vol.62, pp.552-559, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173918

R. H. Marchessault, F. F. Morehead, and N. M. Walter, Liquid Crystal Systems from Fibrillar Polysaccharides, Nature, vol.184, pp.632-633, 1959.

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius et al., Frka-Petesic, B. The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance, Adv. Mater, 2017.

J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray, Hellicoidal Selfordering of Cellulose Microfibrils in Aqueous Suspensions, Int. J. Biol. Macromol, vol.14, pp.170-172, 1992.

A. Dufresne and . Nanocellulose, New Ageless Bionanomaterial. Mater. Today, vol.16, pp.220-227, 2013.

I. ;. Sakurada, N. Ito, T. Ahola, S. Osterberg, M. Laine et al., Cellulose Nanofibrils-Adsorption with Poly(amideamine) Epichlorohydrin Studied by QCM-D and Application as a Paper Strength Additive, J. Polym. Sci, vol.57, issue.41, pp.303-314, 1962.

K. ;. Abe, I. Yano, and H. , Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood, Biomacromolecules, vol.8, pp.3276-3278, 2007.

M. Henriksson, L. A. Berglund, P. ;. Isaksson, L. Nishino, and T. , Cellulose Nanopaper Structures of High Toughness, Biomacromolecules, vol.9, pp.1579-1585, 2008.

. Li, J. A. Sirvi, A. Haapala, and H. Liimatainen, Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments, ACS Appl. Mater. Interfaces, vol.9, pp.2846-2855, 2017.

M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola et al., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomacromolecules, vol.8, pp.1934-1941, 2007.

A. Alemdar and M. Sain, Isolation and Characterization of Nanofibers from Agricultural Residues: Wheat Straw and Soy Hulls, Bioresour. Technol, vol.99, pp.1664-1671, 2008.

M. L. Hassan, A. P. Mathew, E. A. Hassan, N. A. El-wakil, and K. Oksman, Nanofibers from Bagasse and Rice Straw: Process Optimization and Properties, Wood Sci. Technol, vol.46, pp.193-205, 2012.

S. Janardhnan and M. Sain, Isolation of Cellulose Microfibrils-An Enzymatic Approach, Bioresources, vol.1, pp.176-188, 2007.

G. H. Tonoli, E. M. Teixeira, A. C. Correa, J. M. Marconcini, L. A. Caixeta et al., Cellulose Micro/Nanofibres from Eucalyptus Kraft Pulp: Preparation and Properties, Carbohydr. Polym, vol.89, pp.80-88, 2012.

J. Desmaisons, E. Boutonnet, M. Rueff, A. Dufresne, and J. Bras, A New Quality Index for Benchmarking of Different Cellulose Nanofibrils, Carbohydr. Polym, vol.174, pp.318-329, 2017.

H. El-saied, A. H. Basta, and R. H. Gobran, Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application)

, Polym. Plast. Technol. Eng, vol.43, pp.797-820, 2004.

A. Bodin, H. Bäckdahl, H. Fink, L. Gustafsson, B. Risberg et al., Influence of Cultivation Conditions on Mechanical and Morphological Properties of Bacterial Cellulose Tubes, Biotechnol. Bioeng, vol.97, pp.425-434, 2007.

H. Bäckdahl, B. Risberg, and P. Gatenholm, Observations on Bacterial Cellulose Tube Formation for Application as Vascular Graft, Mat. Sci. Eng. C, vol.31, pp.14-21, 2011.

J. Tang, X. Li, L. Bao, L. Chen, and F. F. Hong, Comparison of Two Types of Bioreactors for Synthesis of Bacterial Nanocellulose Tubes as Potential Medical Prostheses Including Artificial Blood Vessels, J. Chem. Technol. Biotechnol, vol.92, pp.1218-1228, 2017.

M. ;. Iguchi, Y. Budhiono, and A. , Bacterial Cellulose: A Masterpiece of Nature's Arts, J. Mater. Sci, vol.35, pp.261-270, 2000.

W. Czaja, D. Romanovicz, and R. M. Brown, Structural Investigations of Microbial Cellulose Produced in Stationary and Agitated Culture, Cellulose, vol.11, pp.403-411, 2004.

D. Klemm, D. Schumann, F. Kramer, N. Hessler, M. Hornung et al., Nanocelluloses as Innovative Polymers in Research and Application. Polysaccharides, vol.205, pp.49-96, 2006.
DOI : 10.1007/12_097

S. L. Arias, A. R. Shetty, A. Senpan, M. Echeverry-rendón, L. M. Reece et al., Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles, J. Vis. Exp, p.52951, 2016.

R. T. Olsson, M. A. Samir, G. Salazar-alvarez, L. Belova, V. Strom et al., Making Flexible Magnetic Aerogels and Stiff Magnetic Nanopaper using Cellulose Nanofibrils as Templates, Nature Nanotech, vol.5, pp.584-588, 2010.
DOI : 10.1038/nnano.2010.155

L. Wang, C. ;. Schutz, S. Titirici, and M. , Carbon Aerogels from Bacterial Nanocellulose as Anodes for Lithium Ion Batteries, RSC Adv, vol.4, pp.17549-17554, 2014.
DOI : 10.1039/c3ra47853j

URL : https://pubs.rsc.org/en/content/articlepdf/2014/ra/c3ra47853j

C. Wiegand, S. Moritz, N. Hessler, D. Kralisch, F. Wesarg et al., Antimicrobial Functionalization of Bacterial Nanocellulose by Loading with Polihexanide and Povidone-Iodine, J. Mater. Sci.: Mater. Med, vol.26, pp.245-259, 2015.
DOI : 10.1007/s10856-015-5571-7

W. K. Czaja, D. J. Young, K. Brown, R. M. Wan, W. K. Hutter et al., The Future Prospects of Microbial Cellulose in Biomedical Applications, ACS Symposium Series, vol.8, issue.63, pp.221-241, 2006.

J. Wang, Y. Zhu, and J. Du, Bacterial Cellulose: A Natural Nanomaterial For Biomedical Applications, J. Mech. Med. Biol, vol.11, pp.285-306, 2011.

J. M. Rajwade, P. K. Kumbhar, and J. V. , Applications of Bacterial Cellulose and its Composites in Biomedicine, Appl Microbiol Biotechnol, vol.99, pp.2491-2511, 2015.

C. J. Grande, F. G. Torres, G. C. Bano, M. C. Ullah, H. Wahid et al., Advances in Biomedical and Pharmaceutical Applications of Functional Bacterial Cellulose-based Nanocomposites, Acta Biomaterialia, vol.5, issue.67, pp.330-352, 2009.

J. C. Cintil, M. Lovely, and T. Sabu, 69) Metzger, J. O. H?ttermann, A. Sustainable Global Energy Supply Based on Lignocellulosic Biomass from Afforestation of Degraded Areas, Rev. Adv. Mater. Sci, vol.37, pp.279-288, 2009.

S. H. Mood, A. H. Golfeshan, and M. Tabatabaei, Lignocellulosic Biomass to Bioethanol, a Comprehensive Review with a Focus on Pretreatment. Renew. Sust. Energy Rev, vol.27, pp.77-93, 2013.

R. E. Quiroz-castaneda and J. L. Folch-mallol, Proteínas que Remodelan y Degradan la Pared Celular Vegetal: Perspectivas Actuales, Biotecnol. Apl, vol.28, pp.205-215, 2011.

M. E. Himmel, S. Ding, and D. K. Johnson, Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production, Science, vol.315, pp.804-807, 2007.

A. Limayem and S. C. Ricke, Lignocellulosic Biomass for Bioethanol Production: Current Perspectives, Potential Issues and Future Prospects, Prog. Energy Combust. Sci, vol.38, pp.449-467, 2012.

B. Volynets, F. Ein-mozaffari, and Y. Dahman, Biomass Processing into Ethanol: Pretreatment, Enzymatic Hydrolysis, Fermentation, Rheology, and Mixing, vol.6, pp.1-22, 2017.

Y. Liu, W. Chen, Z. Xia, B. Guo, Q. ;. Wang et al., Efficient Cleavage of Lignin-Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave-Assisted Treatment with Deep Eutectic Solvent, Chem. Sus. Chem, vol.10, pp.1692-1700, 2017.

H. V. Lee, S. B. Hamid, and S. K. Zain, Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process, Scientific World J, pp.631013-631032, 2014.

J. Trifol, C. Sillard, D. Plackett, P. Szabo, J. Bras et al., Chemically Extracted Nanocellulose from Sisal Fibres by a Simple and Industrially Relevant Process, vol.24, pp.107-118, 2017.

H. Tibolla, F. M. Pelissari, and F. C. Menegalli, Cellulose Nanofibers Produced from Banana Peel by Chemical and Enzymatic Treatment, Food Sci. Technol, vol.59, pp.1311-1318, 2014.

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Cellulose Microfibrils/Nanofibrils and its Nanocomposites, J. Appl. Polym. Sci, vol.37, pp.797-813, 1983.

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential, J. Appl. Polym. Sci, vol.37, pp.815-827, 1983.

W. Stelte and A. R. Sanadi, Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps, Ind. Eng. Chem. Res, vol.48, pp.11211-11219, 2009.

J. Leitner, B. Hinterstoisser, M. Wastyn, J. Keckes, and W. Gindl, Sugar Beet Cellulose Nanofibril-reinforced Composites, Cellulose, vol.14, pp.419-425, 2007.

A. Chakraborty, M. Sain, and M. Kortschot, Cellulose Microfibrils: A Novel Method of Preparation using High Shear Refining and Cryocrushing, Holzforschung, vol.59, pp.102-107, 2005.

D. Bandera, J. Sapkota, S. Josset, C. Weder, P. Tingaut et al., Influence of Mechanical Treatments on the Properties of Cellulose Nanofibers Isolated from Microcrystalline Cellulose, React. Funct. Polym, vol.85, pp.134-141, 2014.

K. Uetani and H. Yano, Nanofibrillation of Wood Pulp Using a High-Speed Blender, Biomacromolecules, vol.12, pp.348-353, 2011.

A. Ferrer, I. Filpponen, A. Rodriguez, J. Laine, and O. J. Rojas, Valorization of Residual Empty Palm Fruit Bunch Fibers (EPFBF) by Microfluidization: Production of Nanofibrillated Cellulose and EPFBF Nanopaper, Bioresource Technol, vol.125, pp.249-255, 2012.

S. Panthapulakkal and M. Sain, Preparation and Characterization of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites, Int. J. Polym. Sci, pp.1-6, 2012.

A. N. Frone, D. M. Panaitescu, D. Donescu, C. I. Spataru, C. Radovici et al., Preparation and Characterization of PVA Composites with Cellulose Nanofibers Obtained by Ultrasonication, BioResources, vol.6, pp.487-512, 2011.

A. Frenot, M. W. Henriksson, and P. Walkenstrom, Electrospinning of Cellulose-based Nanofibers, J. Appl. Polym. Sci, vol.10, pp.1473-1482, 2007.

B. M. Cherian, A. L. Leao, S. F. Souza, S. Thomas, L. A. Pothan et al., Isolation of Nanocellulose from Pineapple Leaf Fibres by Steam Explosion, Carbohydr. Polym, vol.81, pp.720-725, 2010.

G. Nyström, A. Mihranyan, A. Razaq, T. ;. Lindström, N. Strømme et al., A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood, J. Phys. Chem. B, vol.114, pp.4178-4182, 2010.

K. L. Spence, R. A. Venditti, O. J. Rojas, Y. Habibi, and J. J. Pawlak, A Comparative Study of Energy Consumption and Physical Properties of Microfibrillated Cellulose Produced by Different Processing Methods, Cellulose, vol.18, pp.1097-1111, 2011.

M. Jonoobi, J. Harun, A. Shakeri, M. Misra, and K. Oksman, Chemical Composition, Crystallinity, and Thermal Degradation of Bleached and Unbleached Kenaf Bast (Hibiscus cannabinus) Pulp and Nanofibers, BioResources, vol.4, pp.626-639, 2009.

Y. M. Zhou, S. Y. Fu, L. M. Zheng, and H. Y. Zhan, Effect of Nanocellulose Isolation Techniques on the Formation of Reinforced Poly(vinyl alcohol) Nanocomposite Films, Exp. Polym. Lett, vol.6, pp.794-804, 2012.

A. N. Nakagaito and H. Yano, The Effect of Morphological Changes from Pulp Fiber Towards Nano-scale Fibrillated Cellulose on the Mechanical Properties of High-strength Plant Fiber Based Composites, Appl. Phys. A: Mater. Sci. Process, vol.78, pp.299-304, 2004.

T. ;. Zimmermann, B. Strub, and E. , Properties of Nanofibrillated Cellulose from Different Raw Materials and its Reinforcement Potential, Carbohydr. Polym, vol.79, pp.1086-1093, 2010.

S. Sharma, S. S. Nair, Z. Zhang, A. J. Ragauskas, and Y. Deng, Characterization of Micro Fibrillation Process of Cellulose and Mercerized Cellulose Pulp, RSC Adv, vol.5, pp.63111-63122, 2015.

A. Boldizar, C. Klason, J. Kubát, P. Näslund, and P. Sáha, Prehydrolyzed Cellulose as Reinforcing Filler for Thermoplastics, Int. J. Polym. Mater, vol.11, pp.229-262, 1987.

M. Henriksson, G. Henriksson, L. A. Berglund, and T. Lindström, An Environmentally Friendly Method for Enzyme-assisted Preparation of Microfibrillated Cellulose (MFC) Nanofibers, Eur. Polym. J, vol.43, pp.3434-3441, 2007.

S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang et al., Dissolution of Cellulose with Ionic Liquids and its Application: a Mini-review, Green Chem, vol.8, pp.325-327, 2006.

L. Wågberg, G. Decher, M. Norgren, T. Lindström, M. Ankerfors et al., The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes, Langmuir, vol.24, pp.784-795, 2008.

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized Cellulose Nanofibers, Nanoscale, vol.3, pp.71-85, 2011.

A. Bhatnagar and M. Sain, Processing of Cellulose Nanofiber-reinforced Composites, J. Reinf. Plast. Compos, vol.24, pp.1259-1268, 2005.

J. Rojas, M. Bedoya, and Y. Ciro, Current Trends in the Production of Cellulose Nanoparticles and Nanocomposites for Biomedical Applications, vol.8, pp.193-228, 2015.

B. G. Rånby, Fibrous Macromolecular Systems. Cellulose and Muscle. The Colloidal Properties of Cellulose Micelles, Discuss. Faraday Soc, vol.11, pp.158-164, 1951.

S. C. Espinosa, T. ;. Kuhnt, F. E. Weder, and C. , Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis, Biomacromolecules, vol.14, pp.1223-1230, 2013.

X. M. Dong, R. J. Gray, and D. G. , Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose, Cellulose, vol.5, pp.19-32, 1998.

O. A. Battista, Hydrolysis and Crystallization of Cellulose, Ind. Eng. Chem. Res, vol.42, pp.502-507, 1950.

T. Okano, S. Kuga, M. ;. Wada, A. Ikuina, J. Japan et al., Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers Polym, vol.98, pp.77-82, 1999.

I. Filpponen and D. S. Argyropoulos, Regular Linking of Cellulose Nanocrystals via Click Chemistry: Synthesis and Formation of Cellulose Nanoplatelet Gels, Biomacromolecules, vol.11, pp.1060-1066, 2010.

D. Liu, T. Zhong, P. R. Chang, K. Li, and Q. Wu, Starch Composites Reinforced by Bamboo Cellulosic Crystals, Bioresource Technol, vol.101, pp.2529-2536, 2010.

Y. Habibi and M. R. Vignon, Optimization of Cellouronic Acid Synthesis by TEMPOMediated Oxidation of Cellulose III from Sugar Beet Pulp, Cellulose, vol.15, pp.177-185, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303877

A. C. Leung, S. Hrapovic, E. Lam, Y. Liu, K. B. Male et al., Characteristics and Properties of Carboxylated Cellulose Nanocrystals Prepared from a Novel One-Step Procedure, Small, vol.7, pp.302-305, 2011.

C. F. Castro-guerrero and D. G. Gray, Chiral Nematic Phase Formation by Aqueous Suspensions of Cellulose Nanocrystals Prepared by Oxidation with Ammonium Persulfate, Cellulose, vol.21, pp.2567-2577, 2014.

Y. Li, Y. Liu, W. Chen, Q. Wang, Y. Liu et al., Facile Extraction of Cellulose Nanocrystals from Wood using Ethanol and Peroxide Solvothermal Pretreatment Followed by Ultrasonic Nanofibrillation, Green Chem, vol.18, pp.1010-1018, 2016.

Y. Peng, D. J. Gardner, Y. Han, A. Kiziltas, Z. Cai et al., Influence of Drying Method on the Material Properties of Nanocellulose I: Thermostability and Crystallinity, Cellulose, vol.20, pp.2379-2392, 2013.

M. A. Hubbe, O. J. Rojas, L. A. Lucia, and M. Sain, Cellulosic Nanocomposites-A Review, Bioresources, vol.3, pp.929-980, 2008.

Z. Karim, S. Afrin, Q. Husain, and R. Danish, Necessity of Enzymatic Hydrolysis for Production and Functionalization of Nanocelluloses, Critical Rev. Biotechnol, vol.37, pp.355-370, 2017.

D. Chung, M. Cha, E. N. Snyder, J. G. Elkins, A. M. Guss et al., Cellulosic Ethanol Production via Consolidated Bioprocessing at 75 °C by Engineered Caldicellulosiruptor Bescii, Biotechnol Biofuels, vol.8, p.163, 2015.
DOI : 10.1186/s13068-015-0346-4

URL : https://biotechnologyforbiofuels.biomedcentral.com/track/pdf/10.1186/s13068-015-0346-4

J. M. Yarbrough, R. Zhang, A. Mittal, T. V. Wall, Y. J. Bomble et al., Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels, ACS Nano, vol.11, pp.3101-3109, 2017.
DOI : 10.1021/acsnano.7b00086

S. Eyley and W. Thielemans, Surface Modification of Cellulose Nanocrystals, Nanoscale, vol.6, pp.7764-7779, 2014.

T. Petreus, B. A. Stoica, O. Petreus, A. Goriuc, C. E. Cotrutz et al., Preparation and Cytocompatibility Evaluation for Hydrosoluble Phosphorous Acid-derivatized Cellulose as Tissue Engineering Scaffold Material, J. Mater. Sci. Mater. Med, vol.25, pp.1115-1127, 2014.
DOI : 10.1007/s10856-014-5146-z

P. L. Granja, L. Pouységu, M. J. Pétraud, B. De-jéso, C. Baquey et al., Cellulose Phosphates as Biomaterials. I. Synthesis and Characterization of Highly Phosphorylated Cellulose Gels, J. Appl. Polym. Sci, vol.82, pp.3341-3353, 2001.

T. Tzanko, M. Stamenova, and A. Cavaco-paulo, Phosphorylation of Cotton Cellulose with Baker's Yeast Hexokinase, Macromol. Rapid Commun, vol.23, pp.962-964, 2002.

C. Gérard, G. Fontaine, and S. Bourbigot, New Trends in Reaction and Resistance to Fire of Fire-Retardant Epoxies, Materials, vol.3, pp.4476-4499, 2010.

J. E. Blanchard, S. J. Bruno, A. G. Gatreaux, U. S. Patent, and . U. Ed, , vol.4, p.68, 1980.

G. Leone, P. Torricelli, R. Giardino, and R. Barbucci, New Phosphorylated Derivatives of Carboxymethylcellulose with Osteogenic Activity, Polym. Adv. Technol, vol.19, pp.824-830, 2008.

J. Ma and Y. Sahai, Chitosan Biopolymer for Fuel Cell Applications. Carbohyd. Polym, vol.92, pp.955-975, 2013.

D. M. Suflet, G. C. Chitanu, and V. I. Popa, Phosphorylation of Polysaccharides: New Results on Synthesis and Characterisation of Phosphorylated Cellulose. Reactive and Functional Polymers, vol.66, pp.1240-1249, 2006.

T. Oshima, S. Taguchi, K. Ohe, and Y. Baba, Phosphorylated Bacterial Cellulose for Adsorption of Proteins, Carbohyd. Polym, vol.83, pp.953-958, 2011.

. Liu, .. F. Borrell, M. Bo?i?, V. Kokol, K. Oksman et al., Nanocelluloses and their Phosphorylated Derivatives for Selective Adsorption of Ag + , Cu 2+ and Fe 3+ from Industrial Effluents, J. Hazard. Mater, vol.294, issue.134, pp.759-924, 1956.

M. Roman and W. T. Winter, Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose, Biomacromolecules, vol.5, pp.1671-1677, 2004.

M. Ghanadpour, F. Carosio, P. T. Larsson, and L. Wågberg, Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically FlameRetardant Materials, Biomacromolecules, vol.16, pp.3399-3410, 2015.

D. , R. J. Mazzeno, and L. W. , Preparation and Properties of Cellulose Phosphates, Ind. Eng. Chem. Res, vol.41, issue.137, pp.2828-2831, 1949.

, Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods

D. Klemm, B. Philipp, T. Heinze, and U. Heinze, , vol.1, 1998.

J. C. Fricaina, P. L. Granja, M. A. Barbosa, B. De-jeso, N. Barthe et al., Cellulose Phosphates as Biomaterials, In Vivo Biocompatibility Studies. Biomaterials, vol.23, pp.971-980, 2002.

A. C. Nuessle, F. M. Ford, W. P. Hall, and A. L. Lippert, Some Aspects of the CellulosePhosphate-Urea Reaction, Text. Res. J, vol.26, pp.32-39, 1956.

D. Aoki and Y. Nishio, Phosphorylated Cellulose Propionate Derivatives as Thermoplastic Flame Resistant/Retardant Materials: Influence of Regioselective Phosphorylation on their Thermal Degradation Behaviour, Cellulose, vol.17, pp.963-976, 2010.

J. Garcia-ubasart, T. Vidal, A. L. Torres, and O. J. Rojas, Laccase-Mediated Coupling of Nonpolar Chains for the Hydrophobization of Lignocellulose, Biomacromolecules, vol.14, pp.1637-1644, 2013.

M. Bo?i?, . Liu, and A. Mathew,

V. Kokol, N. Gospodinova, A. Grelard, M. Jeannin, G. C. Chitanu et al., Efficient Solvent-free Microwave Phosphorylation of Microcrystalline Cellulose, Enzymatic Phosphorylation of Cellulose Nanofibers to New Highly-ions Adsorbing, Flame-retardant and Hydroxyapatite-growth Induced Natural Nanoparticles. Cellulose, vol.21, pp.220-222, 2002.

V. Kokol, M. R. Bo?i?, V. Mathew, and A. , Characterisation and roperties of Homoand Heterogenously Phosphorylated Nanocellulose, Carbohydr. Polym, vol.125, pp.301-313, 2015.

I. Siró, D. Plackett, M. Hedenqvist, M. Ankerfors, and T. Lindström, Highly Transparent Films from Carboxymethylated Microfibrillated Cellulose: The Effect of Multiple Homogenization Steps on Key Properties, J. Appl. Polym. Sci, vol.119, pp.2652-2660, 2011.

R. Arvidsson, D. Nguyen, and M. Svanström, Life Cycle Assessment of Cellulose Nanofibrils Production by Mechanical Treatment and Two Different Pretreatment Processes, Environ. Sci. Technol, vol.49, pp.6881-6890, 2015.

A. E. De-nooy, A. C. Besemer, and H. Van-bekkum, Highly Selective Tempo Mediated Oxidation of Primary Alcohol Groups in Polysaccharides, Recl. Trav. Chim. Pays-Bas, vol.113, pp.165-166, 1994.

S. Iwamoto, A. Isogai, and T. Iwata, Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers, Biomacromolecules, vol.12, pp.831-836, 2011.

K. Xhanari, K. Syverud, G. Chinga-carrasco, K. Paso, and P. Stenius, Reduction of Water Wettability of Nanofibrillated Cellulose by Adsorption of Cationic Surfactants, Cellulose, vol.18, pp.257-270, 2011.

T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi et al., Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions, Biomacromolecules, vol.10, pp.1992-1996, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00413875

J. Araki, M. Wada, and S. Kuga, Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting, Langmuir, vol.17, pp.21-27, 2001.

E. Lasseuguette, D. Roux, and Y. Nishiyama, Rheological Properties of Microfibrillar Suspension of TEMPO-Oxidized Pulp, Cellulose, vol.15, pp.425-433, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303849

J. Revol, H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray, Helicoidal SelfOrdering of Cellulose Microfibrils in Aqueous Suspension, Int. J. Biol. Macromol, vol.14, pp.170-172, 1992.

X. Mu and D. G. Gray, Formation of Chiral Nematic Films from Cellulose Nanocrystal Suspensions Is a Two-Stage Process, Langmuir, vol.30, pp.9256-9260, 2014.

N. Wang, E. Ding, and R. Cheng, Preparation and Liquid Crystalline Properties of Spherical Cellulose Nanocrystals, Langmuir, vol.24, pp.5-8, 2008.

H. Liimatainen, M. Visanko, J. A. Sirviö, O. E. Hormi, and J. Niinimaki, Enhancement of the Nanofibrillation of Wood Cellulose through Sequential Periodate-Chlorite Oxidation, Biomacromolecules, vol.13, pp.1592-1597, 2012.

C. Ruiz-palomero, M. L. Soriano, and M. Valcárcel, Sulfonated Nanocellulose for the Efficient Dispersive Micro Solid-phase Extraction and Determination of Silver Nanoparticles in Food Products, J. Chromatogr. A, vol.8, issue.159, pp.6867-6870, 1428.

A. K. Bledzki, A. A. Mamun, M. Lucka-gabor, and V. S. Gutowski, The Effects of Acetylation on Properties of Flax Fibre and its Polypropylene Composites, Exp. Polym. Lett, vol.2, pp.413-422, 2008.

J. Sassi and H. Chanzy, Ultrastructural Aspects of the Acetylation of Cellulose, Cellulose, vol.2, pp.111-127, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00310744

N. S. Çetin, P. Tingaut, N. Özmen, N. Henry, D. Harper et al., Acetylation of Cellulose Nanowhiskers with Vinyl Acetate under Moderate Conditions, Macromol. Biosci, vol.9, pp.997-1003, 2009.

M. Bulota, K. Kreitsmann, M. Hughes, and J. Paltakari, Acetylated Microfibrillated Cellulose as a Toughening Agent in Poly(lactic acid), J. Appl. Polym. Sci, vol.126, pp.448-457, 2012.
DOI : 10.1002/app.36787

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, Surface Acylation of Cellulose Whiskers by Drying Aqueous Emulsion, Biomacromolecules, vol.7, pp.696-700, 2006.
DOI : 10.1021/bm050828j

URL : https://hal.archives-ouvertes.fr/hal-00305821

K. Missoum, M. N. Belgacem, J. P. Barnes, M. C. Brochier-salon, and J. Bras, Nanofibrillated Cellulose Surface Grafting in Ionic Liquid, Soft Matter, vol.8, pp.8338-8349, 2012.
DOI : 10.1039/c2sm25691f

M. Bo?i?, V. Vinod, S. Kav?i?, M. Leitgeb, and V. Kokol, New Findings about the Lipase Acetylation of Nanofibrillated Cellulose using Acetic Anhydride as Acyl Donor, Carbohydr. Polym, vol.125, pp.340-351, 2015.

J. Xie and Y. Hsieh, Enzyme-catalyzed Transesterification of Vinyl Esters on Cellulose Solids, J. Polym. Sci. A: Polym. Chem, vol.39, pp.1931-1939, 2001.
DOI : 10.1002/pola.1170

J. Li, H. N. Cheng, R. G. Nickol, and P. G. Wang, Enzymatic Modification of Hydroxyethylcellulose by Transgalactosylation with Beta-Galactosidases, Carbohyd. Res, vol.316, pp.133-137, 1999.
DOI : 10.1016/s0008-6215(99)00041-5

, Biocatalysis in Polymer Science, 2003.

J. E. Puskas, M. Y. Sen, K. S. Seo, and . Green, Polymer Chemistry using Nature's Catalysts, Enzymes, J. Polym. Sci. Part A: Polym. Chem, vol.47, pp.2959-2976, 2009.

C. Eyholzer, P. Tingaut, T. Zimmermann, K. Oksman, M. Hasani et al., Dispersion and Reinforcing Potential of Carboxymethylated Nanofibrillated Cellulose Powders Modified with 1Hexanol in Extruded Poly(Lactic Acid) (PLA) Composites, J. Polym. Environ, vol.20, issue.172, pp.2238-2244, 2008.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, Surface Silylation of Cellulose Microfibrils: Preparation and Rheological Properties, Polymer, vol.45, pp.1569-1575, 2004.

M. Andresen, L. S. Johansson, B. S. Tanem, and P. Stenius, Properties and Characterization of Hydrophobized Microfibrillated Cellulose, Cellulose, vol.13, pp.665-677, 2006.

Z. Zhang, G. Sèbe, D. Rentsch, T. Zimmermann, and P. Tingaut, Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water, Chem. Mater, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366155

G. Siqueira, J. Bras, and A. Dufresne, New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate, Langmuir, vol.26, pp.402-411, 2009.

M. V. Biyani, E. J. Foster, and C. Weder, Light-Healable Supramolecular Nanocomposites Based on Modified Cellulose Nanocrystals, ACS Macro Lett, vol.2, pp.236-240, 2013.

C. Ruiz-palomero, M. L. Soriano, M. J. Valcárcel, and . .-?-cyclodextrin, Decorated Nanocellulose: a Smart Approach Towards the Selective Fluorimetric Determination of Danofloxacin in Milk Samples, Analyst, vol.140, pp.3431-3438, 2015.

A. Carlmark and E. Malmström, Atom Transfer Radical Polymerization from Cellulose Fibers at Ambient Temperature, J. Am. Chem. Soc, vol.124, pp.900-901, 2002.

Y. Lu, H. L. Tekinalp, W. H. Peter, C. Eberle, A. K. Naskar et al., Nanocellulose in Polymer Composites and Biomedical: Research and Applications. Tappi Journal, vol.13, pp.47-54, 2014.

D. Roy, M. Semsarilar, J. T. Guthrie, and S. Perrier, Cellulose Modification by Polymer Grafting: a Review, Chem. Soc. Rev, vol.385, pp.2046-2064, 2009.

A. Carlmark, E. Larsson, and E. Malmström, Grafting of Cellulose by Ring-opening Polymerisation-A Review, European Polym. J, vol.48, p.1646, 2012.

E. Malmström and A. Carlmark, Controlled Grafting of Cellulose Fibres-an Outlook Beyond Paper and Cardboard, Polym. Chem, vol.3, pp.1702-1713, 2012.

J. Araki, Electrostatic or Steric?-Preparations and Characterizations of Well-dispersed Systems Containing Rod-like Nanowhiskers of Crystalline Polysaccharides, Soft Matter, vol.9, pp.4125-4141, 2013.

S. Harrisson, G. L. Drisko, E. Malmström, A. Hult, and K. L. Wooley, Hybrid Rigid/Soft and Biologic/Synthetic Materials: Polymers Grafted onto Cellulose Microcrystals, Biomacromolecules, vol.12, pp.1214-1223, 2011.

J. Lindqvist, D. Nyström, E. Östmark, P. Antoni, A. Carlmark et al., Thermo-Responsive CelluloseBased Architectures: Tailoring LCST using Poly(ethylene glycol) Methacrylates, Biomacromolecules, vol.9, pp.1114-1123, 2008.

D. Nyström, J. Lindqvist, E. Östmark, A. Hult, and E. Malmström, Superhydrophobic Biofibre Surfaces via Tailored Grafting Architecture, Chem. Commun, vol.34, pp.3594-3596, 2006.

E. Larsson, A. Boujemaoui, E. Malmström, and A. Carlmark, Thermoresponsive Cryogels Reinforced with Cellulose Nanocrystals. RSC Adv, vol.5, pp.77643-77650, 2015.

T. Tischer, T. K. Claus, K. K. Oehlenschlaeger, V. Trouillet, M. Bruns et al., Ambient Temperature Ligation of Diene Functional Polymer and Peptide Strands onto Cellulose via Photochemical and Thermal Protocols, Macromol. Rapid Commun, vol.35, pp.1121-1127, 2014.

A. Leppänen, C. Xu, . Eklund, J. Lucenius, M. Österberg et al., Targeted Functionalization of Spruce O-Acetyl Galactoglucomannans-2,2,6,6Tetramethylpiperidin-1-oxyl-oxidation and Carbodiimide-mediated Amidation, J. Appl. Polym. Sci, vol.130, pp.3122-3129, 2013.

S. Harrisson, Radical-Catalyzed Oxidation of Thiols by Trithiocarbonate and Dithioester RAFT Agents: Implications for the Preparation of Polymers with Terminal Thiol Functionality, Macromolecules, vol.42, pp.897-898, 2009.

H. Lönnberg, Q. Zhou, and H. Brumer,

T. T. Teeri, E. Malmström, and A. Hult, Grafting of Cellulose Fibers with oly(?-caprolactone) and Poly(l-lactic acid) via Ring-Opening Polymerization, Biomacromolecules, vol.7, pp.2178-2185, 2006.

S. Hansson, E. Östmark, A. Carlmark, and E. Malmström, ARGET ATRP for Versatile Grafting of Cellulose Using Various Monomers, ACS Appl. Mater. Interfaces, vol.11, pp.2651-2659, 2009.

H. Wang, R. D. Roeder, R. A. Whitney, P. Champagne, and M. F. Cunningham, Graft Modification of Crystalline Nanocellulose by Cu(0)-mediated SET Living Radical Polymerization, J. Polym. Sci. A: Polym. Chem, vol.53, pp.2800-2808, 2015.

A. Carlmark and E. E. Malmström, ATRP Grafting from Cellulose Fibers to Create BlockCopolymer Grafts, Biomacromolecules, vol.4, pp.1740-1745, 2003.

E. Östmark, S. Harrisson, K. L. Wooley, and E. E. Malmström, Comb Polymers Prepared by ATRP from Hydroxypropyl Cellulose, Biomacromolecules, vol.8, pp.1138-1148, 2007.

R. Westlund, A. Carlmark, A. Hult, E. Malmstr?m, and I. M. Saez, Grafting Liquid Crystalline Polymers from Cellulose Substrates Using Atom Transfer Radical Polymerization, Soft Matter, vol.3, pp.866-871, 2007.

S. Hansson, A. Carlmark, E. Malmstr-m, L. Fogelstr?m, M. Semsarilar et al., Synthesis of a Cellulose Supported Chain Transfer Agent and its Application to RAFT Polymerization, J. Polym. Sci. Part A: Polym. Chem, vol.132, pp.4361-4365, 2010.

D. Roy, J. T. Guthrie, and S. Perrier, Synthesis of Natural-Synthetic Hybrid Materials from Cellulose via the RAFT Process, Soft Matter, vol.4, pp.145-155, 2008.

D. Roy, J. T. Guthrie, and S. Errier, Graft olymerization: Grafting oly(styrene) from Cellulose via Reversible Addition?Fragmentation Chain Transfer (RAFT) Polymerization, Macromolecules, vol.38, pp.10363-10372, 2005.

D. Roy, J. S. Knapp, J. T. Guthrie, and S. Perrier, Antibacterial Cellulose Fiber via RAFT Surface Graft Polymerization, Biomacromolecules, vol.9, pp.91-99, 2008.

K. Li, J. Huang, H. Gao, Y. Zhong, X. Cao et al., Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(l-lactide-co-caprolactone) Nanocomposites, Biomacromolecules, vol.17, pp.1506-1515, 2016.

H. Lönnberg, K. Larsson, T. Lindström, A. Hult, and E. Malmström, Synthesis of Polycaprolactone-Grafted Microfibrillated Cellulose for Use in Novel Bionanocomposites-Influence of the Graft Length on the Mechanical Properties, ACS Appl. Mater. Interfaces, vol.3, pp.1426-1433, 2011.

M. Giese, L. K. Blusch, M. K. Khan, and M. J. Maclachlan, Functional Materials from Cellulose-Derived Liquid-Crystal Templates, Angew. Chem. Int. Ed, vol.54, pp.2888-2910, 2015.

J. A. Kelly, M. Giese, K. E. Shopsowitz, W. Y. Hamad, and M. J. Maclachlan, The Development of Chiral Nematic Mesoporous Materials, Acc. Chem. Res, vol.47, pp.1088-1096, 2014.

E. Kontturi, P. Laaksonen, M. B. Linder, and . Nonappa,

A. H. Groschel, O. J. Rojas, and O. Ikkala, Advanced Materials Through Assembly of Nanocelluloses, Adv. Mater, 2018.

E. D. Cranston and D. G. Gray, Birefringence in Spin-coated Films Containing Cellulose Nanocrystals. Colloid Surf. A, vol.325, pp.44-51, 2008.

A. G. Dumanli, G. Kamita, J. Landman, H. Van-der-kooij, B. J. Clover et al., Controlled Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors, Adv. Opt. Mater, vol.2, pp.646-650, 2014.

B. Frka-petesic, G. Guidetti, G. Kamita, and S. Vignolini, Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets, Adv. Mater, vol.29, p.1701469, 2017.

K. E. Shopsowitz, H. Qi, W. Y. Hamad, and M. J. Maclachlan, Free-standing Mesoporous Silica Films with Tunable Chiral Nematic Structures, Nature, vol.468, pp.422-425, 2010.

K. E. Shopsowitz, W. Y. Hamad, and M. J. Maclachlan, Flexible and Iridescent Chiral Nematic Mesoporous Organosilica Films, J. Am. Chem. Soc, vol.134, pp.867-870, 2012.

K. E. Shopsowitz, A. Stahl, W. Y. Hamad, and M. J. Maclachlan, Hard Templating of Nanocrystalline Titanium Dioxide with Chiral Nematic Ordering, Angew. Chem. Int. Ed, vol.51, pp.6886-6890, 2012.

W. Lin, W. Hong, L. Sun, D. Yu, D. Yu et al., Bioinspired Mesoporous Chiral Nematic Graphitic Carbon Nitride Photocatalysts Modulated by Polarized Light, Chem. Sus. Chem, vol.11, pp.114-119, 2018.

A. Ivanova, K. Fominykh, D. Fattakhova-rohlfing, P. Zeller, M. Doblinger et al., Nanocellulose-Assisted Formation of Porous Hematite Nanostructures, Inorg. Chem, vol.54, pp.1129-1135, 2014.

B. Vollick, P. Kuo, H. Thérien-aubin, N. Yan, and E. Kumacheva, Composite Cholesteric Nanocellulose Films with Enhanced Mechanical Properties, Chem. Mater, vol.29, pp.789-795, 2017.

A. Querejeta-fernández, G. Chauve, M. Methot, J. Bouchard, and E. Kumacheva, Chiral Plasmonic Films Formed by Gold Nanorods and Cellulose Nanocrystals, J. Am. Chem. Soc, vol.136, pp.4788-4793, 2014.

P. Wang, W. Y. Hamad, and M. J. Maclachlan, Structure and Transformation of Tactoids in Cellulose Nanocrystal Suspensions, Nature Commun, vol.7, p.11515, 2016.
DOI : 10.1038/ncomms11515

URL : https://www.nature.com/articles/ncomms11515.pdf

P. Wang, W. Y. Hamad, and M. J. Maclachlan, Polymer and Mesoporous Silica Microspheres with Chiral Nematic Order from Cellulose Nanocrystals, Angew. Chem. Int. Ed, vol.55, pp.12460-12464, 2016.
DOI : 10.1002/anie.201606283

J. Xue, F. Song, X. Yin, Z. Zhang, Y. Liu et al., Cellulose Nanocrystal-Templated Synthesis of Mesoporous TiO 2 with Dominantly Exposed (001) Facets for Efficient Catalysis, ACS Sustainable Chem. Eng, vol.5, pp.3721-3725, 2017.

Y. Chen, H. Liu, B. Geng, J. Ru, C. Cheng et al., A Reusable Surfacequaternized Nanocellulose-based Hybrid Cryogel Loaded with N-doped TiO 2 for Selfintegrated Adsorption/Photo-degradation of Methyl Orange Dye, vol.7, pp.17279-17288, 2017.

K. J. De-france, T. Hoare, and E. D. Cranston, Review of Hydrogels and Aerogels Containing Nanocellulose, Chem. Mater, vol.29, pp.4609-4631, 2017.

N. Lavoine and L. Bergström, Nanocellulose-based Foams and Aerogels: Processing, Properties, and Applications, J. Mater. Chem. A, vol.5, pp.16105-16117, 2017.
DOI : 10.1039/c7ta02807e

E. E. Ureña-benavides, G. Ao, V. A. Davis, C. L. Kitchens, M. Chau et al., Rheology and Phase Behavior of Lyotropic Cellulose Nanocrystal Suspensions, Biomacromolecules, vol.44, issue.226, pp.2455-2462, 2011.

A. Oechsle, L. Lewis, W. Y. Hamad, S. G. Hatzikiriakos, and M. J. Maclachlan, CO 2Switchable Cellulose Nanocrystal Hydrogels, Chem. Mater, vol.30, pp.376-385, 2018.
DOI : 10.1021/acs.chemmater.7b03939

T. Abitbol, T. Johnstone, T. M. Quinn, and D. G. Gray, Reinforcement with Cellulose Nanocrystals of Poly(vinyl alcohol) Hydrogels Prepared by Cyclic Freezing and Thawing, Soft Matter, vol.7, pp.2373-2379, 2011.
DOI : 10.1039/c0sm01172j

H. Jingquan, T. Lei, and Q. Wu, Facile Preparation of Mouldable Polyvinyl Alcohol-borax Hydrogels Reinforced by Well-dispersed Cellulose Nanoparticles: Physical, Viscoelastic and Mechanical Properties, Cellulose, vol.20, pp.2947-2958, 2013.

J. S. Gonzalez, L. N. Ludueña, A. Ponce, and V. A. Alvarez, Poly(vinyl alcohol)/Cellulose Nanowhiskers Nanocomposite Hydrogels for Potential Wound Dressings, Mater. Sci. Engin, vol.34, pp.54-61, 2014.
DOI : 10.1016/j.msec.2013.10.006

M. Chau, K. J. De-france, B. Kopera, V. R. Machado, S. Rosenfeldt et al., Composite Hydrogels with Tunable Anisotropic Morphologies and Mechanical Properties, Chem. Mater, vol.28, pp.3406-3415, 2016.
DOI : 10.1021/acs.chemmater.6b00792

URL : https://macsphere.mcmaster.ca/bitstream/11375/22238/1/Chau%20De%20France%20et%20al%20-%20Chemistry%20of%20Materials%202016%20-%20Post%20print.pdf

M. J. Lundahl, A. G. Cunha, E. Rojo, A. C. Papargeorgiou, L. Rautkari et al., Strength and Water Interactions of Cellulose I Filaments Wet-spun from, Cellulose Nanofibril Hydrogels. Sci. Rep, vol.6, p.30695, 2016.
DOI : 10.1038/srep30695

URL : https://www.nature.com/articles/srep30695.pdf

A. P. Mathew, K. Oksman, D. Pierron, and M. F. Harmand, Biocompatible Fibrous Networks of Cellulose Nanofibres and Collagen Crosslinked using Genipin: Potential as Artificial Ligament/Tendons
DOI : 10.1002/mabi.201200317

, Macromol. Biosci, vol.13, pp.289-298, 2013.

Z. Li, K. Ahadi, K. Jiang, B. Ahvazi, P. Li et al., Freestanding Hierarchical Porous Carbon Film Derived from Hybrid Nanocellulose for High-power Supercapacitors, Nano Res, vol.10, pp.1847-1860, 2017.

X. Yang and E. D. Cranston, Chemically Cross-linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties, Chem. Mater, vol.26, pp.6016-6025, 2014.

L. Heath and W. Thielemans, Cellulose Nanowhisker Aerogels. Green Chem, vol.12, pp.1448-1453, 2010.

Y. Kobayashi, T. Saito, and A. Isogai, Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators, Angew. Chem. Int. Ed, vol.126, pp.10562-10565, 2014.

K. Shi, X. Yang, E. D. Cranston, and I. Zhitomirsky, Efficient Lightweight Supercapacitor with Compression Stability, Adv. Funct. Mater, vol.26, pp.6437-6445, 2016.

Y. Xu, Y. Dai, T. D. Nguyen, W. Y. Hamadb, and M. J. Maclachlan, Aerogel Materials with Periodic Structures Imprinted with Cellulose Nanocrystals, Nanoscale, vol.10, pp.3805-3812, 2018.

Y. Li, V. A. Tanna, Y. Zhou, H. H. Winter, J. J. Watkins et al., Nanocellulose Aerogels Inspired by Frozen Tofu, ACS Sustainable Chem. Eng, vol.5, pp.6387-6391, 2017.

F. Jiang and Y. Hsieh, Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate, ACS Appl. Mater. Interfaces, vol.9, pp.2825-2834, 2017.

F. Zhang, H. Ren, J. Dou, G. Tong, and Y. Deng, Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System, vol.7, p.40096, 2017.

J. Wang, R. Ran, J. Sunarso, C. Yin, H. Zou et al., Nanocellulose-Assisted Low-temperature Synthesis and Supercapacitor Performance of Reduced Graphene Oxide Aerogels, vol.347, pp.259-269, 2017.

C. Zhu, P. Liu, and A. P. Mathew, Self-Assembled TEMPO Cellulose Nanofibers: Graphene Oxide-Based Biohybrids for Water Purification, ACS Appl. Mater. Interfaces, vol.9, pp.21048-21058, 2017.

R. Xiong, K. Hu, A. M. Grant, R. Ma, W. Xu et al., Ultrarobust Transparent Cellulose Nanocrystal-Graphene Membranes with High Electrical Conductivity, Adv. Mater, vol.28, pp.1501-1509, 2016.

Q. Meng, I. Manas-zloczower, M. G. Adsul, D. A. Rey, D. V. Gokhale et al., Combined Strategy for the Dispersion/dissolution of Single Walled Carbon Nanotubes and Cellulose in Water, Biotemplate Synthesis of Polyaniline@Cellulose Nanowhiskers/Natural Rubber Nanocomposites with, vol.120, p.3, 2011.

, Hierarchical Multiscale Structure and Improved Electrical Conductivity. ACS Appl. Mater. Interfaces, vol.6, pp.21078-21085, 2014.

X. Zhang, X. Wu, C. Lu, and Z. Zhou, Dialysis-Free and in Situ Doping Synthesis of Polypyrrole@Cellulose Nanowhiskers Nanohybrid for Preparation of Conductive Nanocomposites with Enhanced Properties, ACS Sustain. Chem. Eng, vol.3, pp.675-682, 2015.

S. Fujisawa, E. Togawa, and K. Kuroda, Facile Route to Transparent, Strong, and Thermally Stable Nanocellulose/Polymer Nanocomposites from an Aqueous Pickering Emulsion, Biomacromolecules, vol.18, pp.266-271, 2017.

J. Cao, X. Zhang, X. Wu, S. Wang, and C. Lu, Cellulose Nanocrystals Mediated Assembly of Graphene in Rubber Composites for Chemical Sensing Applications, Carbohydr. Polym, vol.140, pp.88-95, 2016.

B. Fugetsu, E. Sano, M. Sunada, Y. Sambongi, T. Shibuya et al., Electrical Conductivity and Electromagnetic Interference Shielding Efficiency of Carbon Nanotube/Cellulose Composite Paper, Carbon, vol.46, pp.1256-1258, 2008.

Q. Fang, X. Zhou, W. Deng, Z. Zheng, and Z. Liu, Freestanding Bacterial CelluloseGraphene Oxide Composite Membranes with High Mechanical Strength for Selective Ion Permeation, Sci. Rep, vol.6, p.33185, 2016.

J. Zeng and L. Yan, Metal-free Transparent Luminescent Cellulose Films, Cellulose, vol.22, pp.729-736, 2015.

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart et al., Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, J. Am. Chem. Soc, vol.126, pp.12736-12737, 2004.

C. Wang, C. Wang, P. Xu, A. Li, Y. Chen et al., Synthesis of Cellulose-derived Carbon Dots using Acidic Ionic Liquid as a Catalyst and its Application for Detection of Hg 2+, J. Mater. Sci, vol.51, pp.861-867, 2016.

G. Yang, X. Wan, Y. Su, X. Zeng, and J. Tang, Acidophilic S-doped Carbon Quantum Dots Derived from Cellulose Fibers and their Fluorescence Sensing Performance for Metal Ions in an Extremely Strong Acid Environment, J. Mater. Chem. A, vol.4, pp.12841-12849, 2016.

M. Biswal, A. Deshpande, S. Kelkar, and S. Ogale, Water Electrolysis with a Conducting Carbon Cloth: Subthreshold Hydrogen Generation and Superthreshold Carbon Quantum Dot Formation, Chem. Sus. Chem, vol.7, pp.883-889, 2014.

H. Qi, B. Schulz, T. Vad, J. Liu, E. Mäder et al., Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials, ACS Appl. Mater. Interfaces, vol.7, pp.22404-22412, 2015.

J. Wan, X. Yan, J. Ding, and R. Ren, A Simple Method for Preparing Biocompatible Composite of Cellulose and Carbon Nanotubes for the Cell Sensor, Sensors Actuators B, vol.146, pp.221-225, 2010.

A. Hajian, S. B. Lindström, T. Pettersson, M. M. Hamedi, and L. Wågberg, Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials, Nano Lett, vol.17, pp.1439-1447, 2017.

S. Yun and J. A. Kim, Bending Electro-Active Paper Actuator Made by Mixing MultiWalled Carbon Nanotubes and Cellulose, Smart Mater. Struct, vol.16, pp.1471-1476, 2007.
DOI : 10.1088/0964-1726/16/4/062

T. Oya and T. Ogino, Production of Electrically Conductive Paper by Adding Carbon Nanotubes, Carbon, vol.46, pp.169-171, 2008.
DOI : 10.1016/j.carbon.2007.10.027

H. Qi, E. Mäder, and J. Liu, Electrically Conductive Aerogels Composed of Cellulose and Carbon Nanotubes, J. Mater. Chem. A, issue.1, pp.9714-9720, 2013.
DOI : 10.1039/c3ta11734k

F. Wang and D. Li, Foldable and Free-standing 3D Network Electrodes Based on Cellulose Nanofibers, Carbon Nanotubes and Elongated TiO 2 Nanotubes, Mater. Lett, vol.158, pp.119-122, 2015.
DOI : 10.1016/j.matlet.2015.06.008

A. Jasim, M. W. Ullah, Z. Shi, X. Lin, and G. Yang, Fabrication of Bacterial Cellulose/Polyaniline/Single-Walled Carbon Nanotubes Membrane for Potential Application as Biosensor, Carbohydr. Polym, vol.163, pp.62-69, 2017.
DOI : 10.1016/j.carbpol.2017.01.056

C. Yang, C. Chen, Y. Pan, S. Li, F. Wang et al., Flexible Highly Specific Capacitance Aerogel Electrodes Based on Cellulose Nanofibers, Carbon Nanotubes and Polyaniline, Electrochimica Acta, vol.182, pp.264-271, 2015.
DOI : 10.1016/j.electacta.2015.09.096

C. Yang and D. Li, Flexible and Foldable Supercapacitor Electrodes From the Porous 3D Network of Cellulose Nanofibers, Carbon Nanotubes and Polyaniline, Mater. Lett, vol.155, pp.78-81, 2015.

S. Yun, J. Kim, and Z. Ounaies, Single-walled Carbon Nanotube/Polyaniline Coated Cellulose Based Electro-Active Paper (EAPap) as Hybrid Actuator, Smart Mater. Struct, vol.15, pp.61-65, 2006.
DOI : 10.1088/0964-1726/15/3/n02

J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/Graphene Aerogel Supported Phase Change Composites with High Thermal Conductivity and Good Shape Stability for Thermal Energy Storage, Carbon, vol.98, pp.50-57, 2016.
DOI : 10.1016/j.carbon.2015.10.082

S. Kim, R. Xiong, and V. V. Tsukruk, Probing Flexural Properties of Cellulose Nanocrystal-Graphene Nanomembranes with Force Spectroscopy and Bulging Test, Langmuir, vol.32, pp.5383-5393, 2016.
DOI : 10.1021/acs.langmuir.6b01079

Q. Fang, X. Zhou, W. Deng, Z. Zheng, and Z. Liu, Freestanding Bacterial CelluloseGraphene Oxide Composite Membranes with High Mechanical Strength for Selective Ion Permeation, Sci. Rep, vol.6, p.33185, 2016.
DOI : 10.1038/srep33185

URL : https://www.nature.com/articles/srep33185.pdf

Q. Jiang, C. Kacica, T. Soundappan, K. Liu, S. Tadepalli et al., An In Situ Grown Bacterial Nanocellulose/Graphene Oxide Composite for Flexible Supercapacitors, J. Mater. Chem. A, vol.5, pp.13976-13982, 2017.
DOI : 10.1039/c7ta03824k

A. Kafy, K. K. Sadasivuni, A. Akther, S. Min, and J. Kim, Cellulose/Graphene Nanocomposite as Multifunctional Electronic and Solvent Sensor Material, Mater. Lett, vol.159, pp.20-23, 2015.
DOI : 10.1016/j.matlet.2015.05.102

L. Jin, Z. Zeng, S. Kuddannaya, D. Wu, Y. Zhang et al., FreeStanding Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite, ACS Appl. Mater. Interfaces, vol.8, pp.1011-1018, 2016.
DOI : 10.1021/acsami.5b11241

Y. Liu, B. Sun, J. Li, D. Cheng, X. An et al., Aqueous Dispersion of Carbon Fibers and Expanded Graphite Stabilized from the Addition of Cellulose Nanocrystals to Produce Highly Conductive Cellulose Composites, ACS Sustain. Chem. Eng, vol.6, pp.3291-3298, 2018.

G. L. Drisko and C. Sanchez, Hybridization in Materials Science-Evolution, Current State, and Future Aspirations, European J. Inorganic. Chem, pp.5097-5105, 2012.
DOI : 10.1002/ejic.201201216

URL : https://hal.archives-ouvertes.fr/hal-01468415

V. Favier, H. Chanzy, and J. Y. Cavaille, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules, vol.28, pp.6365-6367, 1995.
DOI : 10.1021/ma00122a053

URL : https://hal.archives-ouvertes.fr/hal-00310722

A. E. Way, L. Hsu, K. Shanmuganathan, C. Weder, S. J. Rowan et al., StimuliResponsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis, ACS Macro Lett, vol.319, issue.280, pp.1370-1374, 1001.

K. L. Dagnon, K. Shanmuganathan, C. Weder, and S. J. Rowan, Water-Triggered Modulus Changes of Cellulose Nanofiber Nanocomposites with Hydrophobic Polymer Matrices, Macromolecules, vol.45, pp.4707-4715, 2012.
DOI : 10.1021/ma300463y

J. Mendez, P. K. Annamalai, S. J. Eichhorn, R. Rusli, S. J. Rowan et al., Bioinspired Mechanically Adaptive Polymer Nanocomposites with WaterActivated Shape-Memory Effect, Macromolecules, pp.44-6827, 2011.
DOI : 10.1021/ma201502k

URL : http://doc.rero.ch/record/27393/files/wed_bma.pdf

L. Tang and C. Weder, Cellulose Whisker/Epoxy Resin Nanocomposites, ACS Appl. Mater. Interfaces, vol.2, 1073.
DOI : 10.1021/am100954n

URL : http://doc.rero.ch/record/20317/files/wed_cwe.pdf

S. Wang, X. Zhang, X. Wu, and C. Lu, Tailoring Percolating Conductive Networks of Natural Rubber Composites for Flexible Strain Sensors via a Cellulose Nanocrystal Templated Assembly, Soft Matter, vol.12, pp.845-852, 2016.

E. Robles, A. M. Salaberria, R. Herrera, S. C. Fernandes, and J. Labidi, Self-Bonded Composite Films Based on Cellulose Nanofibers and Chitin Nanocrystals as Antifungal Materials, Carbohydr. Polym, vol.144, pp.41-49, 2016.
DOI : 10.1016/j.carbpol.2016.02.024

URL : https://hal.archives-ouvertes.fr/hal-01600449

J. Cai, J. Chen, Q. Zhang, M. Lei, J. He et al., WellAligned Cellulose Nanofiber-Reinforced Polyvinyl Alcohol Composite Film: Mechanical and Optical Properties, Carbohydr. Polym, vol.140, pp.238-245, 2016.
DOI : 10.1016/j.carbpol.2015.12.039

C. Geng, X. Hu, G. Yang, Q. Zhang, F. Chen et al., Mechanically Reinforced Chitosan/Cellulose Nanocrystals Composites with Good Transparency and Biocompatibility, Chin. J. Polym. Sci, vol.33, pp.61-69, 2015.
DOI : 10.1007/s10118-015-1558-6

B. Soni, E. B. Hassan, M. W. Schilling, and B. Mahmoud, Transparent Bionanocomposite Films Based on Chitosan and TEMPO-oxidized Cellulose Nanofibers with Enhanced Mechanical and Barrier Properties, Carbohydr. Polym, vol.151, pp.779-789, 2016.
DOI : 10.1016/j.carbpol.2016.06.022

URL : https://manuscript.elsevier.com/S0144861716306853/pdf/S0144861716306853.pdf

N. Rescignano, E. Fortunati, S. Montesano, C. Emiliani, J. M. Kenny et al., nanocomposites: A New Take-off Using Cellulose Nanocrystals and PLGA Nanoparticles, vol.99, pp.47-58, 2014.
DOI : 10.1016/j.carbpol.2013.08.061

URL : https://digital.csic.es/bitstream/10261/98238/1/accesoRestringido.pdf

T. Hees, F. Zhong, T. Rudolph, A. Walther, and R. Mülhaupt, Nanocellulose Aerogels for Supporting Iron Catalysts and In Situ Formation of Polyethylene Nanocomposites, Adv. Funct. Mater, vol.27, pp.1605586-1605594, 2017.

T. Pullawan, A. N. Wilkinson, and S. J. Eichhorn, Discrimination of Matrix-Fibre Interactions in All-Cellulose Nanocomposites, Compos. Sci. Technol, vol.70, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00696565

C. Qin, N. Soykeabkaew, N. Xiuyuan, T. Peijs, T. Pullawan et al., Deformation Micromechanics of All-Cellulose Nanocomposites: Comparing Matrix and Reinforcing Components, Carbohyd. Polym, vol.71, issue.293, pp.31-39, 2008.

Y. Wang and L. Chen, Impacts of Nanowhisker on Formation Kinetics and Properties of All-Cellulose Composite Gels, Carbohyd. Polym, vol.83, pp.1937-1946, 2011.
DOI : 10.1016/j.carbpol.2010.10.071

W. Gindl, J. Keckes, T. Huber, S. Bickerton, J. Ssig et al., Solvent Infusion Processing of All-Cellulose Composite Materials, Carbohydr. Polym, vol.46, issue.296, pp.730-733, 2005.

Y. Tan, Y. Liu, W. Chen, Y. Liu, Q. Wang et al., Homogeneous Dispersion of Cellulose Nanofibers in Waterborne Acrylic Coatings with Improved Properties and Unreduced Transparency, ACS Sustainable Chem. Eng, vol.4, pp.3766-3772, 2016.

S. Bhadra, N. K. Singha, and D. Khastgir, Effect of Aromatic Substitution in Aniline on the Properties of Polyaniline, Eur. Polym. J, vol.44, pp.1763-1770, 2008.

X. Xia, D. Chao, X. Qi, Q. Xiong, Y. Zhang et al., Controllable Growth of Conducting Polymers Shell for Constructing High-Quality Organic/Inorganic Core/Shell Nanostructures and Their Optical-Electrochemical Properties, Nano Lett, vol.13, pp.4562-4568, 2013.
DOI : 10.1021/nl402741j

S. Zhang, G. Sun, Y. He, R. Fu, Y. Gu et al., Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films, ACS Appl. Mater. Interfaces, vol.9, pp.16426-16434, 2017.
DOI : 10.1021/acsami.7b02794

S. Zhang, R. Fu, Y. Gu, L. Dong, J. Li et al., Preparation of Nanocellulose-based Polyaniline Composite Film and its Application in Electrochromic Device, J. Mater. Sci.: Mater. Electron, vol.28, pp.10158-10165, 2017.

S. Zhang, R. Fu, S. Wang, Y. Gu, and S. Chen, Novel Nanocellulose/Conducting Polymer Composite Nanorod Films with Improved Electrochromic Performances, Mater. Lett, vol.202, pp.127-130, 2017.
DOI : 10.1016/j.matlet.2017.05.044

S. Zhang, R. Fu, Z. Du, M. Jiang, M. Zhou et al., High-Performance Electrochromic Device Based on Nanocellulose/polyaniline and Nanocellulose/poly(3,4ethylenedioxythiophene) Composite Thin Films, Opt. Eng, vol.56, p.77101, 2017.

H. Lee, T. Chung, H. Kwon, H. Kim, and W. T. Tze, Fabrication and Evaluation of Bacterial Cellulose-Polyaniline Composites by Interfacial Polymerization, Cellulose, vol.19, pp.1251-1258, 2012.

J. Majoinen, J. S. Haataja, D. Appelhans, A. Lederer, A. Olszewska et al., Supracolloidal Multivalent Interactions and Wrapping of Dendronized Glycopolymers on Native Cellulose Nanocrystals, J. Am. Chem. Soc, vol.136, pp.866-869, 2014.

C. Sanchez, G. J. Soler-illia, F. Ribot, T. Lalot, C. R. Mayer et al., Designed Hybrid Organic?Inorganic Nanocomposites from Functional Nanobuilding Blocks, Chem. Mater, vol.13, pp.3061-3083, 2001.

M. A. Woehl, C. D. Canestraro, A. Mikowski, M. R. Sierakowski, R. L. Wypych et al., Bionanocomposites of Thermoplastic Starch Reinforced with Bacterial Cellulose Nanofibres: Effect of Enzymatic Treatment on Mechanical Properties, Carbohyd. Polym, vol.80, pp.866-873, 2010.

M. Farhadi-khouzani, C. Schütz, G. M. Durak, J. Fornell, J. Sort et al., CaCO 3 /Nanocellulose-based Bioinspired Nacre-like Material, J. Mater. Chem. A, vol.5, pp.16128-16133, 2017.

M. Sureshkumar, D. Y. Siswanto, and C. K. Lee, Magnetic Antimicrobial Nanocomposite Based on Bacterial Cellulose and Silver Nanoparticles, J. Mater. Chem, vol.20, pp.6948-6955, 2010.

Z. Liu, M. Li, L. Turyanska, O. Makarovsky, A. Patanè et al., SelfAssembly of Electrically Conducting Biopolymer Thin Films by Cellulose Regeneration in Gold Nanoparticle Aqueous Dispersions, Chem. Mater, vol.22, pp.2675-2680, 2010.

L. Turyanska, O. Makarovsky, A. Patanè, N. V. Kozlova, Z. Liu et al., High Magnetic Field Quantum Transport in Au Nanoparticle-Cellulose Films, vol.23, p.45702, 2012.

Z. Shi, G. O. Phillips, and G. Yang, Nanocellulose Electroconductive Composites. Nanoscale, vol.5, pp.3194-3201, 2013.

M. Kaushik and A. Moores, Review: Nanocelluloses as Versatile Supports for Metal Nanoparticles and their Applications in Catalysis, Green Chem, vol.18, pp.622-637, 2016.

X. Yu, S. Tong, M. Ge, J. Zuo, C. Cao et al., One-step Synthesis of Magnetic Composites of Cellulose@iron Oxide Nanoparticles for Arsenic Removal, J. Mater. Chem. A, issue.1, pp.959-965, 2013.

T. T. Ho, T. Zimmermann, S. Ohr, and W. R. Caseri, Composites of Cationic Nanofibrillated Cellulose and Layered Silicates: Water Vapor Barrier and Mechanical Properties, ACS Appl. Mater. Interfaces, vol.4, pp.4832-4840, 2012.

T. T. Ho, Y. S. Ko, T. Zimmermann, T. Geiger, and W. Caseri, Processing and Characterization of Nanofibrillated Cellulose/Layered Silicate Systems, J. Mater. Sci, vol.47, pp.4370-4382, 2012.

H. Liimatainen, N. Ezekiel, R. Sliz, K. Ohenoja, J. A. Sirviö et al., High-Strength Nanocellulose-Talc Hybrid Barrier Films, ACS Appl. Mater. Interfaces, vol.5, pp.13412-13418, 2013.

E. Morales-narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv et al., Nanopaper as an Optical Sensing Platform, ACS Nano, vol.9, pp.7296-7305, 2015.

C. Wu, T. Saito, S. Fujisawa, H. Fukuzumi, and A. Isogai, Ultrastrong and High GasBarrier Nanocellulose/Clay-Layered Composites, Biomacromolecules, vol.13, 1927.

V. Khoshkava and M. R. Kamal, Effect of Drying Conditions on Cellulose Nanocrystal (CNC) Agglomerate Porosity and Dispersibility in Polymer Nanocomposites, Powder Technol, vol.261, pp.288-298, 2014.

L. Johnson, W. Thielemans, and D. A. Walsh, Nanocomposite Oxygen Reduction Electrocatalysts Formed using Bioderived Reducing Agents, J. Mater. Chem, vol.20, pp.1737-1743, 2010.

Z. Shi, J. Tang, L. Chen, C. Yan, S. Tanvir et al., Enhanced Colloidal Stability and Antibacterial Performance of Silver Nanoparticles/Cellulose Nanocrystal Hybrids, J. Mater. Chem. B, vol.3, pp.603-611, 2015.

R. J. Pinto, P. A. Marques, M. A. Martins, C. P. Neto, and T. Trindade, Electrostatic Assembly and Growth of Gold Nanoparticles in Cellulosic Fibres, J. Colloid Interface Sci, vol.312, pp.506-512, 2007.

M. Kaushik, A. Y. Li, R. Hudson, M. Masnadi, C. Li et al., Reversing Aggregation: Direct Synthesis of Nanocatalysts From Bulk Metal. Cellulose Nanocrystals as Active Support to Access Efficient Hydrogenation Silver Nanocatalysts, Green Chem, vol.18, pp.129-133, 2016.
DOI : 10.1039/c5gc01281c

URL : https://pubs.rsc.org/en/content/articlepdf/2016/gc/c5gc01281c

M. Kaushik, H. M. Friedman, M. Bateman, and A. Moores, Cellulose Nanocrystals as Noninnocent Supports for the Synthesis of Ruthenium Nanoparticles and their Application to Arene Hydrogenation, Curr. Opin. Colloid Interface Sci, vol.5, pp.32-45, 2015.

S. Mondal and . Preparation, Properties and Applications of Nanocellulosic Materials. Carbohydrate Polym, vol.163, pp.301-316, 2017.
DOI : 10.1016/j.carbpol.2016.12.050

F. Hoeng, A. Denneulin, and J. Bras, Use of Nanocellulose in Printed Electronics: a Review, Nanoscale, vol.8, pp.13131-13154, 2016.

H. Zhu, W. Luo, P. N. Ciesielski, Z. Fang, J. Y. Zhu et al., Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications, Chem. Rev, vol.116, pp.9305-9374, 2016.
DOI : 10.1021/acs.chemrev.6b00225

S. M. Salah, P. Gatenholm, and D. Klemm, Bacterial Nanocellulose as a Renewable Material for Biomedical Applications, J. Textile Sci. Eng, vol.3, issue.331, pp.208-213, 2010.

N. Lin and A. Dufresne, Nanocellulose in biomedicine: Current Status and Future Prospect, European Poly. J, vol.59, pp.302-325, 2014.
DOI : 10.1016/j.eurpolymj.2014.07.025

URL : https://doi.org/10.1016/j.eurpolymj.2014.07.025

F. T. Wallengberg, J. C. Watson, and H. Li, Glass Fibers, Materials Information Society: Materials Park, 2001.

W. Y. Yeh and R. J. Young, Molecular Deformation Processes in Aromatic High Modulus Polymer Fibres, Polymers, vol.40, pp.857-870, 1999.
DOI : 10.1016/s0032-3861(98)00308-5

T. Tabarsa, S. Sheykhnazari, A. Ashori, M. Mashkour, and A. Khazaeian, Preparation and Characterization of Reinforced Papers using Nanobacterial Cellulose, Int. J. Biol. Macromol, vol.101, pp.334-340, 2017.
DOI : 10.1016/j.ijbiomac.2017.03.108

M. Hervy, S. Evangelisti, P. Lettieri, and K. Lee, Life Cycle Assessment of Nanocellulose-Reinforced Advanced Fibre Composites, Compos. Sci. Technol, vol.118, pp.154-162, 2015.
DOI : 10.1016/j.compscitech.2015.08.024

URL : https://doi.org/10.1016/j.compscitech.2015.08.024

M. He, J. Zhou, H. Zhang, Z. Luo, and J. Yao, Microcrystalline Cellulose as Reactive Reinforcing Fillers for Epoxidized Soybean Oil Polymer Composites, J. Appl. Polym. Sci, vol.132, pp.42488-42490, 2015.
DOI : 10.1002/app.42488

L. Gan, J. Liao, N. Lin, C. Hu, H. Wang et al., Focus on Gradientwise Control of the Surface Acetylation of Cellulose Nanocrystals to Optimize Mechanical Reinforcement for Hydrophobic Polyester-Based Nanocomposites, ACS Omega, vol.2, pp.4725-4736, 2017.

F. Mohammadkazemi, R. Aguiar, and N. Cordeiro, Improvement of Bagasse Fiber-cement Composites by Addition of Bacterial Nanocellulose: an Inverse Gas Chromatography Study, vol.24, pp.1803-1814, 2017.

M. V. Zimmermann, M. P. Silva, A. J. Zattera, and R. M. Santana, Effect of Nanocellulose Fibers and Acetylated Nanocellulose Fibers on Properties of Poly(ethylene-co-vinyl acetate) Foams, J. Appl. Polym. Sci, vol.134, p.44760, 2017.

B. Wei, H. Li, Q. Li, Y. Wen, L. Sun et al., Stabilization of Foam Lamella Using Novel Surface-Grafted Nanocellulose-Based Nanofluids, Langmuir, vol.33, pp.5127-5139, 2017.
DOI : 10.1021/acs.langmuir.7b00387

S. S. Nair, J. Y. Zhu, Y. Deng, and A. J. Ragauskas, High Performance Green Barriers Based On Nanocellulose, Sustain. Chem. Process, vol.2, p.23, 2014.
DOI : 10.1186/s40508-014-0023-0

URL : https://sustainablechemicalprocesses.springeropen.com/track/pdf/10.1186/s40508-014-0023-0

H. M. Azeredo, M. F. Rosa, and L. H. Mattoso, Nanocellulose in Bio-based Food Packaging Applications. Ind. Crops Prod, vol.97, pp.664-671, 2017.
DOI : 10.1016/j.indcrop.2016.03.013

M. A. Hubbe, A. Ferrer, P. Tyagi, Y. Yin, C. Salas et al., Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review, vol.12, pp.2143-2233, 2017.
DOI : 10.15376/biores.12.1.2143-2233

URL : http://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_12_1_2143_Hubbe_Review_Nanocellulose_Thin_Films_Coatings_Plies/5093

A. Ferrer, L. Pal, and M. A. Hubbe, Nanocellulose in Packaging: Advances in Barrier Layer Technologies, vol.95, pp.574-582, 2017.

C. Aulin and G. Ström, Multilayered Alkyd Resin/Nanocellulose Coatings for Use in Renewable Packaging Solutions with a High Level of Moisture Resistance, Ind. Eng. Chem. Res, vol.52, pp.2582-2589, 2013.

E. Fortunati, M. Peltzer, I. Armentano, A. Jiménez, and J. M. Kenny, Combined Effects of Cellulose Nanocrystals And Silver Nanoparticles on the Barrier and Migration Properties of PLA Nano-Biocomposites, J. Food Eng, vol.118, pp.117-124, 2013.

K. Syverud and P. Stenius, Strength and Barrier Properties of MFC Films, Cellulose, vol.16, pp.75-85, 2009.

Y. J. Choi and J. Simonsen, Cellulose Nanocrystal-Filled Carboxymethyl Cellulose Nanocomposites, J. Nanosci. Nanotechnol, vol.6, pp.633-639, 2006.

M. Minelli, M. G. Baschetti, F. Doghieri, M. Ankerfors, T. Lindström et al., Investigation of Mass Transport Properties of Microfibrillated Cellulose (MFC) Films, J. Membr. Sci, vol.358, pp.67-75, 2010.

H. Wang, D. Li, and R. Zhang, Preparation of Ultralong Cellulose Nanofibers and Optically Transparent Nanopapers Derived from Waste Corrugated Paper Pulp, Bioresources, vol.8, pp.1374-1384, 2013.

F. Li, P. Biagioni, M. Bollani, A. Maccagnan, and L. Piergiovanni, Multi-Functional Coating of Cellulose Nanocrystals for Flexible Packaging Applications, Cellulose, vol.20, pp.2491-2504, 2013.

M. Nogi and H. Yano, Optically Transparent Nanofiber Sheets By Deposition Of Transparent Materials: A Concept For A Roll-To-Roll Processing, Appl. Phys. Lett, p.233117, 2009.

M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Optically Transparent Nanofiber Paper, Adv. Mater, vol.21, pp.1595-1598, 2009.

M. Nogi, H. Yano, M. Hsieh, H. Koga, K. Suganuma et al., Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry, Hazy Transparent Cellulose Nanopaper. Sci. Rep, vol.20, p.41590, 2008.

C. Honorato, V. Kumar, J. Liu, H. Koivula, C. Xu et al., Transparent Nanocellulose-Pigment Composite Films, J. Mater. Sci, vol.50, pp.7343-7352, 2015.

C. Aulin, M. Gällstedt, and T. Lindström, Oxygen and Oil Barrier Properties of Microfibrillated Cellulose Films and Coatings, Cellulose, vol.17, pp.559-574, 2010.

G. Chinga-carrasco, N. Averianova, M. Gibadullin, V. Petrov, I. Leirset et al., Structural Characterisation of Homogeneous and Layered MFC Nano-Composites. Micron, vol.44, pp.331-338, 2013.

J. M. Lagaron, R. Catalá, and R. Gavara, Structural Characteristics Defining High Barrier Properties in Polymeric Materials, Mater. Sci. Technol, vol.20, pp.1-7, 2004.

M. Österberg, J. Vartiainen, J. Lucenius, U. Hippi, J. Seppälä et al., A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials, ACS Appl. Mater. Interfaces, vol.5, pp.4640-4647, 2013.

J. Vartiainen, Y. F. Shen, T. Kaljunen, T. Malm, M. Vähä-nissi et al., Bio-Based Multilayer Barrier Films by Extrusion, Dispersion Coating and Atomic Layer Deposition, J. Appl. Polym. Sci, vol.133, pp.42260-42265, 2016.

M. Vähä-nissi, H. M. Koivula, H. M. Räisänen, J. Vartiainen, P. Ragni et al., Cellulose Nanofibrils in Biobased Multilayer Films for Food Packaging, J. Appl. Polym. Sci, vol.134, p.44830, 2017.

M. Schade, S. Weinkoetz, J. Assmann, W. Patent, and . Ed, , vol.2015, pp.20128-20129, 2015.

H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, pp.162-165, 2009.

S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito, and A. Isogai, Preparation and Characterization of TEMPO-Oxidized Cellulose Nanofibril Films with Free Carboxyl Groups, Carbohydr. Polym, vol.84, pp.579-583, 2011.
DOI : 10.1016/j.carbpol.2010.12.029

M. S. Peresin, K. Kammiovirta, H. Heikkinen, L. Johansson, J. Vartiainen et al., Understanding the Mechanisms of Oxygen Diffusion Through Surface Functionalized Nanocellulose Films. Carbohydrate Polym, vol.174, pp.309-317, 2017.

W. Yang, H. Bian, L. Jiao, W. Wu, Y. Deng et al., High Wet-strength, Thermally Stable and Transparent TEMPO-oxidized Cellulose Nanofibril Film via Cross-linking with Poly-amide Epichlorohydrin Resin, vol.7, pp.31567-31573, 2017.
DOI : 10.1039/c7ra05009g

URL : https://pubs.rsc.org/en/content/articlepdf/2017/ra/c7ra05009g

X. Tian, D. Yan, Q. Lu, and X. Jiang, Cationic Surface Modification of Nanocrystalline Cellulose as Reinforcements for Preparation of the Chitosan-based Nanocomposite Films, vol.24, pp.163-174, 2017.

K. Yao, S. Huang, H. Tang, Y. Xu, G. Buntkowsky et al., Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites, ACS Appl. Mater. Interfaces, vol.9, issue.371, pp.253-260, 2017.
DOI : 10.1021/acsami.7b02177

N. C. Martins, C. S. Freire, C. P. Neto, A. J. Silvestre, J. Causio et al., Antibacterial Paper Based on Composite Coatings of Nanofibrillated Cellulose and ZnO, Colloids Surf. Physicochem. Eng. Asp, vol.417, pp.111-119, 2013.
DOI : 10.1016/j.colsurfa.2012.10.042

J. Henschen, P. A. Larsson, J. Illergård, M. Ek, and L. Wågberg, Bacterial Adhesion to Polyvinylamine-Modified Nanocellulose Films, Colloids Surfaces B: Biointerfaces, vol.151, pp.224-231, 2017.
DOI : 10.1016/j.colsurfb.2016.12.018

M. A. El-samahy, S. A. Mohamed, M. H. Rehim, and M. E. Mohram, Synthesis of Hybrid Paper Sheets With Enhanced Air Barrier and Antimicrobial Properties for Food Packaging. Carbohydrate Polym, vol.168, pp.212-219, 2017.

C. Zhijiang and Y. Guang, Bacterial Cellulose/Collagen Composite: Characterization and First Evaluation of Cytocompatibility, J. Appl. Polym. Sci, vol.120, pp.2938-2944, 2011.
DOI : 10.1002/app.33318

S. Saska, L. N. Teixeira, L. M. Spinola-de-castro-raucci, R. M. Scarel-caminaga, S. H. Santagneli et al., Nanocellulose-Collagen-apatite Composite Associated with Osteogenicgrowth Peptide for Bone Regeneration, Inter. J. Bio. Macromol, vol.103, pp.467-476, 2017.
DOI : 10.1016/j.ijbiomac.2017.05.086

K. Hua, D. O. Carlsson, E. Ålander, T. Lindström, M. Strømme et al., Translational Study Between Structure and Biological Response of Nanocellulose from Wood and Green Algae, RSC Adv, vol.4, pp.2892-2903, 2014.
DOI : 10.1039/c3ra45553j

A. L. Menas, N. Yanamala, M. T. Farcas, M. Russo, S. Friend et al., Fibrillar vs Crystalline Nanocellulose Pulmonary Epithelial Cell Responses: Cytotoxicity or Inflammation, vol.171, pp.671-680, 2017.
DOI : 10.1016/j.chemosphere.2016.12.105

URL : http://europepmc.org/articles/pmc5459363?pdf=render

K. Hua, E. Ålander, T. Lindström, A. Mihranyan, M. Strømme et al., Surface Chemistry of Nanocellulose Fibers Directs Monocyte/ Macrophage Response, Biomacromolecules, vol.16, pp.2787-2795, 2015.
DOI : 10.1021/acs.biomac.5b00727

H. Mertaniemi, C. Escobedo-lucea, A. Sanz-garcia, C. Gandía, A. Mäkitie et al., Human Stem Cell Decorated Nanocellulose Threads for Biomedical Applications, Biomaterials, vol.82, pp.208-220, 2016.
DOI : 10.1016/j.biomaterials.2015.12.020

URL : https://helda.helsinki.fi/bitstream/10138/160438/1/mertaniemi2015.pdf

A. Basu, J. Lindh, E. Ålander, M. Strømme, and N. ;-'ferraz, On the Use of Ion-crosslinked Nanocellulose Hydrogels for Woundhealing Solutions: Physicochemical Properties and Application-oriented Biocompatibility Studies. Carbohydrate Polym, vol.174, pp.299-308, 2017.

N. E. Zander, H. ;. Dong, S. Grant, and J. T. , Metal Cation Cross-Linked Nanocellulose Hydrogels as Tissue Engineering Substrates, ACS Appl. Mater. Interfaces, vol.6, pp.18502-18510, 2014.
DOI : 10.1021/am506007z

G. K. Tummala, T. Joffre, R. Rojas, C. Persson, and A. Mihranyan, Strain-induced Stiffening of Nanocellulosereinforced Poly(vinyl alcohol) Hydrogels Mimicking Collagenous Soft Tissues, Soft Matter, vol.13, pp.3936-3945, 2017.
DOI : 10.1039/c7sm00677b

URL : http://uu.diva-portal.org/smash/get/diva2:1126013/FULLTEXT01

N. Lin, A. Gèze, D. Wouessidjewe, J. Huang, and A. Dufresne, Biocompatible DoubleMembrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Co-Delivery, ACS Appl. Mater. Interfaces, vol.8, pp.6880-6889, 2016.
DOI : 10.1021/acsami.6b00555

N. ;. Lavoine, D. Bras, and J. , Microfibrillated Cellulose Coatings as New Release Systems for Active Packaging, Carbohydr. Polym, vol.103, pp.528-537, 2014.
DOI : 10.1016/j.carbpol.2013.12.035

S. Dong, H. J. Cho, Y. W. Lee, and M. Roman, Synthesis and Cellular Uptake of Folic Acid-Conjugated Cellulose Nanocrystals for Cancer Targeting, Biomacromolecules, vol.15, pp.1560-1567, 2014.
DOI : 10.1021/bm401593n

T. M. Gunathilake, Y. C. Ching, C. H. Chuah, L. Saïdi, C. Vilela et al., Poly(N-methacryloyl glycine)/nanocellulose Composites as pH-sensitive Systems for Controlled Release of Diclofenac. Carbohydrate Polym, vol.9, pp.357-365, 2017.

F. Metreveli, L. Wågberg, E. Emmoth, S. Belák, M. Strømme et al., A SizeExclusion Nanocellulose Filter Paper for Virus Removal, Adv. Healthcare Mater, vol.3, pp.1546-1550, 2014.
DOI : 10.1002/adhm.201300641

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.201300641

A. Quellmalz and A. Mihranyan, Citric Acid Cross-Linked Nanocellulose-Based Paper for Size-Exclusion Nanofiltration, ACS Biomater. Sci. Eng, vol.1, pp.271-276, 2015.
DOI : 10.1021/ab500161x

S. Gustafsson and A. Mihranyan, Strategies for Tailoring the Pore-Size Distribution of Virus Retention Filter Papers, ACS Appl. Mater. Interfaces, vol.8, pp.13759-13767, 2016.

M. Asper, T. Hanrieder, A. Quellmalz, and A. Mihranyan, Removal of Xenotropic Murine Leukemia Virus by Nanocellulose Based Filter Paper, Bilogicals, vol.43, pp.452-456, 2015.
DOI : 10.1016/j.biologicals.2015.08.001

G. Junter and L. Lebrun, Cellulose-Based Virus-Retentive Filters: a, Review. Rev. Environ. Sci. Bio/Technol, vol.16, pp.455-489, 2017.
DOI : 10.1007/s11157-017-9434-1

J. O. Zoppe, V. Ruottinen, J. Ruotsalainen, S. Rönkkö, L. Johansson et al., Synthesis of Cellulose Nanocrystals Carrying Tyrosine Sulfate Mimetic Ligands and Inhibition of Alphavirus Infection, Biomacromolecules, vol.15, pp.1534-1542, 2014.

J. V. Edwards, N. Prevost, K. Sethumadhavan, A. Ullah, and B. Condon, Peptide Conjugated Cellulose Nanocrystals with Sensitive Human Neutrophil Elastase Sensor Activity, Cellulose, vol.20, pp.1223-1235, 2013.
DOI : 10.1007/s10570-013-9901-y

K. Markstedt, A. Mantas, I. Tournier, H. M. Ávila, D. Hägg et al., 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications, Biomacromolecules, vol.16, pp.1489-1496, 2015.
DOI : 10.1021/acs.biomac.5b00188

J. Leppiniemi, P. Lahtinen, A. Paajanen, R. Mahlberg, S. Metsä-kortelainen et al., 3D-Printable Bioactivated Nanocellulose?Alginate Hydrogels, vol.9, pp.21959-21970, 2017.
DOI : 10.1021/acsami.7b02756

URL : https://doi.org/10.1021/acsami.7b02756

Q. M. Zhang, M. R. Islam, X. Li, W. Xu, Y. Gao et al., In Encyclopedia of Analytical Chemistry, 2015. (399) Photonic Materials for Sensing, Biosensing and Display Devices, Nanocellulose in Sensing and Biosensing, vol.29, pp.5426-5446, 2015.

R. Mangayil, S. Rajala, A. Pammo, E. Sarlin, J. Luo et al., Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material, Nanocellulose in Sensing and Biosensing. Chem. Mater, vol.9, issue.402, pp.5426-5446, 2017.
DOI : 10.1021/acsami.7b04927

J. D. Yuen, S. A. Walper, B. J. Melde, M. A. Daniele, and D. A. Stenger, ElectrolyteSensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose. Sci. Rep, vol.7, p.40867, 2017.

D. Xie, D. Qian, F. Song, X. Wang, and Y. Wang, A Fully Biobased Encapsulant Constructed of Soy Protein and Cellulose Nanocrystals for Flexible Electromechanical Sensing, ACS Sustain. Chem. Eng, vol.5, pp.7063-7070, 2017.

Y. Gao and Z. Jin, Iridescent Chiral Nematic Cellulose Nanocrystal/Polyvinylpyrrolidone Nanocomposite Films for Distinguishing Similar Organic Solvents, ACS Sustain. Chem. Eng, vol.6, pp.6192-6202, 2018.

S. Lombardo, S. Eyley, C. Schütz, H. Van-gorp, S. Rosenfeldt et al., Thermodynamic Study of the Interaction of Bovine Serum Albumin and Amino Acids with Cellulose Nanocrystals, vol.33, pp.5473-5481, 2017.

P. Liou, F. X. Nayigiziki, F. Kong, A. Mustapha, and M. Lin, Cellulose Nanofibers Coated with Silver Nanoparticles as a SERS Platform for Detection of Pesticides in Apples. Carbohydrate Polym, vol.157, pp.643-650, 2017.

Z. Li, C. Yao, F. Wang, Z. Cai, and X. Wang, Cellulose Nanofiber-Templated ThreeDimension TiO 2 Hierarchical Nanowire Network for Photoelectrochemical Photoanode, Nanotechnology, vol.25, p.504005, 2014.

D. J. Gardner, G. S. Oporto, R. Mills, and M. A. Samir, Adhesion and Surface Issues in Cellulose and Nanocellulose, J. Adhes. Sci. Tech, vol.22, pp.545-567, 2008.

C. Ruiz-palomero, S. Benítez-martínez, M. L. Soriano, and M. Valcárcel, Fluorescent Nanocellulosic Hydrogels Based on Graphene Quantum Dots for Sensing Laccase, Analytica Chim. Acta, vol.974, pp.93-99, 2017.

R. Weishaupt, G. Siqueira, M. Schubert, M. M. Kämpf, T. Zimmermann et al., A Protein-Nanocellulose Paper for Sensing Copper Ions at the Nano-to Micromolar Level, Adv. Funct. Mater, p.1604291, 2017.

Z. Wang, D. O. Carlsson, P. Tammela, K. Hua, P. Zhang et al., Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances, ACS Nano, vol.9, pp.7563-7571, 2015.

W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink et al., Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-Life Anode Material for Rechargeable Sodium-Ion Batteries, J. Mater. Chem. A, vol.1, pp.10662-10666, 2013.

C. Legnani, C. Vilani, V. Calil, H. Barud, W. Quirino et al., Bacterial Cellulose Membrane as Flexible Substrate for Organic Light Emitting Devices, Thin Solid Films, vol.517, pp.1016-1020, 2008.

F. Hoeng, J. Bras, E. Gicquel, G. Krosnicki, and A. Denneulin, Inkjet Printing of Nanocellulose-Silver Ink onto Nanocellulose Coated Cardboard, vol.7, pp.15372-15381, 2017.

L. Valentini, S. B. Bon, M. Cardinali, E. Fortunati, and J. M. Kenny, Cellulose Nanocrystals Thin Films as Gate Dielectric for Flexible Organic Field-Effect Transistors, Mater. Lett, vol.126, pp.55-58, 2014.

H. Jin, G. Marin, A. Giri, T. Tynell, M. Gestranius et al., Strongly Reduced Thermal Conductivity in Hybrid ZnO/Nanocellulose Thin Films, J. Mater. Sci, vol.52, pp.6093-6099, 2017.

J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach et al., Highly Transparent and Flexible Nanopaper Transistors, ACS Nano, vol.7, pp.2106-2113, 2013.

M. Hsieh, C. Kim, M. Nogi, K. Suganuma, Y. Shin et al., Electrically Conductive Lines on Cellulose Nanopaper for Flexible Electrical Devices, Mater. Lett, vol.5, issue.420, pp.3215-3217, 2007.

Y. Shin, J. M. Blackwood, I. Bae, B. W. Arey, and G. J. Exarhos, Synthesis and Stabilization of Selenium Nanoparticles on Cellulose Nanocrystal, Mater. Lett, vol.61, pp.4297-4300, 2007.

J. Xue, F. Song, X. Yin, X. Wang, and Y. Wang, Let It Shine: A Transparent and Photoluminescent Foldable Nanocellulose/Quantum Dot Paper, ACS Appl. Mater. Interfaces, vol.7, pp.10076-10079, 2015.

N. M. Park, J. B. Koo, J. Oh, H. J. Kim, C. W. Park et al., Electroluminescent Nanocellulose Paper. Mater. Lett, vol.196, pp.12-15, 2017.

Z. Karim, M. Hakalahti, T. Tammelin, and A. P. Mathew, Situ TEMPO Surface Functionalization of Nanocellulose Membranes for Enhanced Adsorption of Metal Ions from Aqueous Medium. RSC Adv, vol.7, pp.5232-5241, 2017.

Y. Li, S. Yu, P. Chen, R. Rojas, A. Hajian et al., Cellulose Nanofibers Enable Paraffin Encapsulation and the Formation of Stable Thermal Regulation Nanocomposites, Nano Energy, vol.34, pp.541-548, 2017.

N. M. Julkapli and S. Bagheri, Nanocellulose as a Green and Sustainable Emerging Material in Energy Applications: a Review, Polym. Adv. Technol, vol.28, pp.1583-1594, 2017.

Z. Wang, P. Tammela, M. Strømme, and L. Nyholm, Cellulose-based Supercapacitors: Material and Performance Considerations, Adv. Energy Mater, vol.334, p.1700130, 2017.

M. Hamedi, E. Karabulut, A. Marais, A. Herland, G. Nyström et al., Nanocellulose Aerogels Functionalized by Rapid Layer-by-Layer Assembly for High Charge Storage and Beyond, Angew. Chem. Int. Ed, vol.52, pp.12038-12042, 2013.

N. Blomquist, T. Wells, B. Andres, J. Bäckström, S. Forsberg et al., Metal-free Supercapacitor with Aqueous Electrolyte and Low-cost, Carbon Materials. Sci. Rep, vol.7, p.39836, 2017.

L. Ma, R. Liu, H. Niu, F. Wang, L. Liu et al., Freestanding Conductive Film Based on Polypyrrole/Bacterial Cellulose/Graphene Paper for Flexible Supercapacitor: Large Areal Mass Exhibits Excellent Areal Capacitance, Electrochimica Acta, vol.222, pp.429-437, 2016.

Y. Liu, J. Zhou, J. Tang, and W. Tang, Three-Dimensional, Chemically Bonded Polypyrrole/Bacterial Cellulose/Graphene Composites for High-Performance Supercapacitors, Chem. Mater, vol.27, pp.7034-7041, 2015.

R. Liu, L. Ma, S. Huang, J. Mei, J. Xu et al., Large Areal Mass, Flexible and Freestanding Polyaniline/Bacterial Cellulose/Graphene Film for High-Performance Supercapacitors, RSC Adv, vol.6, pp.107426-107432, 2016.

W. Zheng, R. Lv, B. Na, H. Liu, T. Jin et al., Nanocellulose-mediated Hybrid Polyaniline Electrodes for High Performance Flexible Supercapacitors, J. Mater. Chem. A, vol.5, pp.12969-12976, 2017.

R. Kabiri and H. Namazi, Synthesis of Cellulose/Reduced Graphene Oxide/Polyaniline Nanocomposite and its Properties, Inter. J. Polymer. Mater. Polymer. Biomater, vol.65, pp.675-682, 2016.

Y. Zhou, Y. Lee, H. Sun, J. M. Wallas, S. M. George et al., Coating Solution for High-Voltage Cathode: AlF 3 Atomic Layer Deposition for Freestanding LiCoO 2 Electrodes with High Energy Density and Excellent Flexibility, ACS Appl. Mater. Interfaces, vol.9, pp.9614-9619, 2017.

H. Kim, E. Yim, J. Kim, S. Kim, J. Park et al., Bacterial Nano-Cellulose Triboelectric Nanogenerator, Nano Energy, vol.33, pp.130-137, 2017.

N. Mohammed, N. Grishkewich, and K. C. Tam, Cellulose Nanomaterials: Promising Sustainable Nanomaterials for Application in Water/Wastewater Treatment Processes, Environ. Sci. Nano, vol.5, pp.623-658, 2018.

T. A. Dankovich and D. G. Gray, Bactericidal Paper Impregnated with Silver Nanoparticles for Point-of-Use Water Treatment, Environ. Sci. Technol, vol.45, 1992.

J. Nemoto, T. Saito, and A. Isogai, Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters, ACS Appl. Mater. Interfaces, vol.7, 2015.

X. Wu, C. Lu, Z. Zhou, G. Yuan, R. Xiong et al., Green Synthesis and Formation Mechanism of Cellulose Nanocrystal-Supported Gold Nanoparticles with Enhanced Catalytic Performance, Environ. Sci. Nano, vol.1, pp.71-79, 2014.

J. T. Korhonen, M. Kettunen, R. H. Ras, and O. Ikkala, Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents, vol.3, pp.1813-1816, 2011.

J. Israelachvili and H. Wennerström, Role of Hydration and Water Structure in Biological and Colloidal Interactions, Nature, vol.379, pp.219-225, 1996.

S. Huang and D. A. Wang, Simple Nanocellulose Coating for Self-Cleaning upon Water Action: Molecular Design of Stable Surface Hydrophilicity, Angew. Chem. Int. Ed, vol.56, pp.1-6, 2017.

W. Wang, T. Zhang, D. Zhang, H. Li, Y. Ma et al., Amperometric Hydrogen Peroxide Biosensor Based on the Immobilization of Heme Proteins on Gold Nanoparticles-Bacteria Cellulose Nanofibers Nanocomposite, Talanta, vol.84, pp.71-77, 2011.

L. Hu, N. Liu, M. Eskilsson, G. Zheng, J. Mcdonough et al., SiliconConductive Nanopaper for Li-Ion Batteries, Nano Energy, issue.2, pp.138-145, 2013.

N. Mahfoudhi and S. Boufi, Nanocellulose as a Novel Nanostructured Adsorbent for Environmental Remediation: a Review, vol.24, pp.1171-1197, 2017.

X. Zhang, L. Wang, S. Dong, X. Zhang, Q. Wu et al., Nanocellulose 3, 5Dimethylphenylcarbamate Derivative Coated Chiral Stationary Phase: Preparation and Enantioseparation Performance, Chirality, vol.28, pp.376-381, 2016.

S. Dong, Y. Sun, Z. Zhang, H. Li, G. Luo et al., Nanocellulose Crystals Derivative-silica Hybrid Sol Open Tubularcapillary Column for Enantioseparation, Carbohydr. Polym, vol.165, pp.359-367, 2017.

P. C. Tato, E. O. Quiles, K. V. Figueroa, L. S. Martoral, M. Flynn et al., Metalized Nanocellulose Composites as a Feasible Material for Membrane Supports: Design and Applications for Water Treatment, Environ. Sci. Technol, vol.51, pp.4585-4595, 2017.

C. Zhu, A. Soldatov, and A. P. Mathew, Advanced Microscopy and Spectroscopy Reveal the Adsorption and Clustering of Cu(II) onto TEMPO-oxidized Cellulose Nanofibers, vol.9, pp.7419-7428, 2017.

Q. Zhu, Y. Wang, M. Li, K. Liu, C. Hu et al., Activable Carboxylic Acid Functionalized Crystalline Nanocellulose/PVAco-PE Composite Nanofibrous Membrane with Enhanced Adsorption for Heavy Metal Ions, Sep. Purif. Technol, vol.186, pp.70-77, 2017.

A. D. Dwivedi, N. D. Sanandiya, J. P. Signh, S. M. Husnain, K. H. Chae et al., Tuning and Characterizing Nanocellulose Interface for Enhanced Removal of Dual-Sorbate (AsV and CrVI) from Water Matrices, ACS Sustainable Chem. Eng, vol.5, pp.518-528, 2017.

A. Mautner, H. A. Maples, T. Kobkeatthawin, V. ;. Kokol, K. Li et al., Phosphorylated Nanocellulose Papers for Copper Adsorption from Aqueous Solutions, Int. J. Environ. Sci. Technol, vol.13, pp.1861-1872, 2016.

L. Ansaloni, J. Salas-gay, S. Ligi, and M. G. Baschetti, Nanocellulose-based Membranes for CO 2 Capture, J. Membrane Sci, vol.522, pp.216-225, 2017.

R. Tankhiwale and S. K. Bajpai, Graft Copolymerization onto Cellulose-Based Filter Paper and its Further Development as Silver Nanoparticles Loaded Antibacterial FoodPackaging Material, Colloid Surf. B-Biointerfaces, vol.69, pp.164-168, 2009.

A. Fernández, P. Picouet, and E. Lloret, Cellulose-Silver Nanoparticle Hybrid Materials to Control Spoilage-Related Microflora in Absorbent Pads Located in Trays of Fresh-Cut Melon, Int. J. Food Microbiol, vol.142, pp.222-228, 2010.

A. C. Balazs, T. Emrick, and T. P. Russell, Nanoparticle Polymer Composites: Where Two Small Worlds Meet, Science, vol.314, pp.1107-1110, 2006.

T. Jiang, L. Liu, and J. Yao, Situ Deposition Of Silver Nanoparticles On The Cotton Fabrics. Fiber. Polym, vol.12, pp.620-625, 2011.

S. S. Kim, J. E. Park, and J. Lee, Properties and Antimicrobial Efficacy of Cellulose Fiber Coated with Silver Nanoparticles and 3-Mercaptopropyltrimethoxysilane (3-MPTMS), J. Appl. Polym. Sci, vol.119, pp.2261-2267, 2011.

H. Wei, K. Rodriguez, S. Renneckar, and P. J. Vikesland, Environmental Science and Engineering Applications of Nanocellulose-Based Nanocomposites, Environ. Sci.: Nano, vol.1, pp.302-316, 2014.

P. A. Marques, H. I. Nogueira, R. J. Pinto, N. C. Trindade, and T. , SilverBacterial Cellulosic Sponges As Active Sers Substrates, J. Raman Spectrosc, vol.39, pp.439-443, 2008.

A. M. El-nahas, T. A. Salaheldin, T. Zaki, H. H. El-maghrabi, A. M. Marie et al., Cellulose Nanocrystal/Hexadecyltrimethylammonium Bromide/Silver Nanoparticle Composite as a Catalyst for Reduction of 4-Nitrophenol. Carbohydrate Polym, Composites of Cellulose and Metal Nanoparticles-Chapter, vol.322, issue.463, pp.253-258, 2017.

J. B. Ricardo, M. C. Neves, C. P. Neto, and . Trindade, , 2012.

D. Sun, J. Yang, J. Li, J. Yu, X. Xu et al., Novel Pd-Cu/Bacterial Cellulose Nanofibers: Preparation And Excellent Performance In Catalytic Denitrification, Appl. Surf. Sci, vol.256, pp.2241-2244, 2010.

C. M. Cirtiu, A. F. Dunlop-brière, and A. Moores, Cellulose Nanocrystallites as an Efficient Support for Nanoparticles of Palladium: Application for Catalytic Hydrogenation and Heck Coupling Under Mild Conditions, Green Chem, vol.13, pp.288-291, 2011.

Y. Li, L. Xu, B. Xu, Z. Mao, H. Xu et al., Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts, ACS Appl. Mater. Interfaces, vol.9, pp.17155-17162, 2017.

M. Kaushik, K. Basu, C. Benoit, C. M. Cirtiu, H. Vali et al., Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization, J. Am. Chem. Soc, vol.137, pp.6124-6127, 2015.

H. Koga, A. Azetsu, E. Tokunaga, T. Saito, A. Isogai et al., Topological Loading of Cu(I) Catalysts onto Crystalline Cellulose Nanofibrils for the Huisgen Click Reaction, J. Mater. Chem, vol.22, pp.5538-5542, 2012.

T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabouille, Modeling of the Thermal Decomposition of a Treated Plywood from Thermo-gravimetry and Fourier-Transformed Infrared Spectroscopy Experimental Analysis, J. Anal. Appl. Pyrolysis, vol.101, pp.35-44, 2013.

S. V. Levchik and E. D. Weil, , 2008.

H. Horacek and S. Pieh, The Importance of Intumescent Systems for Fire Protection of Plastic Materials, Polym. Int, vol.49, pp.1106-1114, 2000.

F. Hshieh and H. D. Beeson, Flammability Testing of Pure and Flame Retardant-Treated Cotton Fabrics, Fire Mater, vol.19, pp.223-239, 1995.

J. A. Sirviö, T. Hasa, J. Ahola, H. Liimatainen, J. Niinimaki et al., Phosphonated Nanocelluloses from Sequential Oxidative-Reductive Treatment-Physicochemical Characteristics and Thermal Properties, Carbohydr. Polym, vol.133, pp.524-532, 2015.

M. B. Agustin, F. Nakatsubo, and H. Yano, Improved Resistance of Chemically-modified Nanocellulose Against Thermally-induced Depolymerization. Carbohydrate Polym, vol.164, pp.1-7, 2017.

N. Lavoine, J. Bras, T. Saito, and A. Isogai, Optimization of Preparation of Thermally Stable Cellulose Nanofibrils via Heat-Induced Conversion of Ionic Bonds to Amide Bonds, J. Polym. Sci. A: Polym. Chem, vol.55, pp.1750-1756, 2017.

, Green Chemistry: Frontiers in Chemical Synthesis and Processes

P. T. Anastas, T. C. Williamson, . Eds, P. T. Anastas, and M. M. Kirchhoff, Current Status, and Future Challenges of Green Chemistry, Acc. Chem. Res, vol.35, issue.478, pp.686-693, 1998.

, Green Chemistry and Catalysis

R. A. Sheldon and I. Arends, , 2007.

A. Z. Fadhel, P. ;. Pollet, L. C. Eckert, and C. A. , Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water, 481) Inorganic and Bioinorganic Chemistry, vol.15, pp.8400-8424, 2010.

E. Farnetti, R. Di-monte, and J. Ka?par, , vol.II, p.440, 2009.