R. K. Benninger, Y. Koç, O. Hofmann, J. Requejo-isidro, M. A. Neil et al., Quantitative 3D Mapping of Fluidic Temperatures within Microchannel Networks Using Fluorescence Lifetime Imaging, vol.78, pp.2272-2278, 2006.

F. H. Wong and C. Fradin, Simultaneous pH and Temperature Measurements Using Pyranine as a Molecular Probe, J. Fluoresc, vol.21, pp.299-312, 2011.

S. Uchiyama, N. Kawai, A. P. Silva, and K. Iwai, Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs, J. Am. Chem. Soc, vol.126, pp.3032-3033, 2004.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi et al., Quantum-dot optical temperature probes, Appl. Phys. Lett, vol.83, pp.3555-3557, 2003.

V. A. Vlaskin, N. Janssen, J. Van-rijssel, R. Beaulac, and D. R. Gamelin, Tunable Dual Emission in Doped Semiconductor Nanocrystals, Nano Lett, vol.10, pp.3670-3674, 2010.

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco et al., CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging, vol.7, pp.1774-1778, 2011.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz-de-la-fuente, F. Sanz-rodríguez et al., Temperature Sensing Using Fluorescent Nanothermometers, vol.4, pp.3254-3258, 2010.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, Neodymium(III) doped ?uoride nanoparticles as non-contact optical temperature sensors, Nanoscale, 2012.

M. D. Drami´canindrami´canin, Sensing temperature via downshi?ing emissions of lanthanide-doped metal oxides and salts. A review, Methods Appl. Fluoresc, 2016.

L. Marciniak and A. Bednarkiewicz, Nanocrystalline NIR-toNIR luminescent thermometer based on Cr 3+ ,Yb 3+ emission, Sens. Actuators, B, vol.243, pp.388-393, 2017.

B. Del-rosal, E. Ximendes, U. Rocha, and D. Jaque, vivo Luminescence Nanothermometry: from Materials to Applications, 2017.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral et al., Thermometry at the nanoscale, 2012.

D. Jaque, F. Vetrone, and L. Nanothermometry, Nanoscale, 2012.

H. Peng, H. Song, B. Chen, J. Wang, S. Lu et al., Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y 2 O 3 :Eu 3+, J. Chem. Phys, vol.118, pp.3277-3282, 2003.

E. Teston, S. Richard, T. Maldiney, N. Lì-evre, G. Y. Wang et al., Non-Aqueous SolGel Synthesis of Ultra Small Persistent Luminescence Nanoparticles for Near-Infrared In Vivo Imaging, Chem.Eur. J, vol.21, pp.7350-7354, 2015.

S. K. Sharma, D. Gourier, E. Teston, D. Scherman, C. Richard et al., Persistent luminescence induced by near infrared photostimulation in chromium-doped zinc gallate for in vivo optical imaging, Opt. Mater, vol.63, pp.51-58, 2017.

T. Maldiney, A. Bessì-ere, J. Seguin, E. Teston, S. K. Sharma et al., The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and gra?ed cells, Nat. Mater, vol.13, pp.418-426, 2014.

T. Lécuyer, E. Teston, G. Ramirez-garcia, T. Maldiney, B. Viana et al., Chemically engineered persistent luminescence nanoprobes for bioimaging, vol.6, pp.2488-2524, 2016.

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston et al., Long term in vivo imaging with Cr 3+ doped spinel nanoparticles exhibiting persistent luminescence, J. Lumin, vol.170, pp.879-887, 2016.
DOI : 10.1016/j.jlumin.2015.09.014

Y. Zhuang, J. Ueda, and S. Tanabe, Enhancement of Red Persistent Luminescence in Cr 3+-Doped ZnGa 2 O 4

, Phosphors by Bi 2 O 3 Codoping, Appl. Phys. Express, issue.6, p.52602, 2013.

Y. Zhuang, J. Ueda, and S. Tanabe, Tunable trap depth in Zn(Ga1-xAl x ) 2 O 4 :Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence, J. Mater. Chem. C, issue.1, p.7849, 2013.

M. Pellerin, C. Coelho-diogo, C. Bonhomme, N. Touatib, L. Binet et al., Proc. SPIE 10100, Optical Components and Materials XIV, p.101000, 2017.

Z. Zou, X. Tang, C. Wu, D. Wang, J. Zhang et al., How to tune trap properties of persistent phosphor: photostimulated persistent luminescence of NaLuGeO 4 :Bi 3+ ,Cr 3+ tailored by trap engineering, Mater. Res. Bull, vol.97, pp.251-259, 2018.

E. Martín-rodríguez, G. López-peña, E. Montes, G. Lifante, J. García et al., Persistent luminescence nanothermometers, Appl. Phys. Lett, p.81901, 2017.

J. Yang, Y. Liu, Y. Zhao, Z. Gong, M. Zhang et al., Ratiometric A?erglow Nanothermometer for Simultaneous in situ Bioimaging and Local Tissue Temperature Sensing, Chem. Mater, vol.29, pp.8119-8131, 2017.

D. Gourier, A. Bessì-ere, S. K. Sharma, L. Binet, B. Viana et al., Origin of the visible light induced persistent luminescence of Cr 3+-doped zinc gallate, J. Phys. Chem. Solids, vol.75, pp.826-837, 2014.

W. Mikenda and A. Preisinger, N-lines in the luminescence spectra of Cr 3+-doped spinels (I) identi?cation of N-lines, J. Lumin, vol.26, pp.53-66, 1981.

A. Bessì-ere, R. A. Benhamou, G. Wallez, A. Lecointre, and B. Viana, Site occupancy and mechanisms of thermally stimulated luminescence in Ca 9 Ln(PO 4 ) 7 (Ln ¼ lanthanide), Acta Mater, vol.60, pp.6641-6649, 2012.

A. Bessì-ere, A. Lecointre, R. A. Benhamou, E. Suard, G. Wallez et al., How to induce red persistent luminescence in biocompatible Ca 3 (PO 4 ) 2, J. Mater. Chem. C, issue.1, pp.1252-1259, 2013.

D. C. Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, Persistent and Photostimulated Red Emission in CaS:Eu 2+ ,Dy 3+ Nanophosphors, Adv. Opt. Mater, vol.3, pp.551-557, 2015.

D. Chen, Z. Wan, Y. Zhou, and Z. Ji, Cr 3+-doped galliumbased transparent bulk glass ceramics for optical temperature sensing, J. Eur. Ceram. Soc, vol.35, pp.4211-4216, 2015.

R. Liang, R. Tian, W. Shi, Z. Liu, D. Yan et al., A temperature sensor based on CdTe quantum dots-layered double hydroxide ultrathin ?lms via layer-bylayer assembly, Chem. Commun, vol.49, pp.969-971, 2013.

M. G. Nikoli´cnikoli´c, ?. Z. Anti´canti´c, S. Culubrk, J. M. Nedeljkovi´cnedeljkovi´c, and M. D. Drami´canindrami´canin, Temperature sensing with Eu 3+ doped TiO 2 nanoparticles, Sens. Actuators, B, vol.201, pp.46-50, 2014.

M. K. Mahata, K. Kumar, and V. K. Rai, Er 3+-Yb 3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior, Sens. Actuators, B, vol.209, pp.775-780, 2015.