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Positional Scoring Rules with Uncertain
Weights?

Paolo Viappiani1

Sorbonne Université, UMR7606 CNRS, LIP6, 4 pl. Jussieu, 75005 Paris, France
paolo.viappiani@lip6.fr

Abstract. Positional scoring rules are frequently used for rank aggrega-
tion (for example in social choice and in sports). These rules are highly
sensitive to the weights associated to positions: depending on the weights,
a different winner may be selected. In this paper we explicitly consider
the role of weight uncertainty in both the case of monotone decreasing
weights and of convex decreasing weights. First we discuss the problem
of finding possible winners (candidates that may win for a feasible in-
stantiation of the weights) based on previous works that established a
connection with the notion of stochastic dominance. Second, we adopt
decision-theoretic methods (minimax regret, maximum advantage, ex-
pected value) to pick a winner based on the weight uncertainty and we
provide a characterization of these methods. Finally, we show some ap-
plications of our methodology in real datasets.

Keywords: Scoring rules · rank aggregation · possible winners · mini-
max regret · stochastic dominance · convex sequences

1 Introduction

In many contexts it is necessary to aggregate several rankings and either pick a
winner or determine an output ranking. For example, rank aggregation emerges
in recommender systems and social choice (preference aggregation), in informa-
tion retrieval (aggregation of the output of several search engines), in sports
(aggregation of the performance in several races into a single score). Positional
scoring rules are frequently used due to their simplicity; in addition they satisfy
a number of interesting properties (one of the most prominent results is that
of Young [14]: a symmetric social choice function is continuous and consistent
if and only if it is a scoring rule). Among positional scoring rules, Borda is a
well-known method whose properties have been studied in depth [13, 4].

A scoring rule assigns a scores to each candidate based on the rank obtained
in each ranking. The output of a scoring rule crucially depends on the weights
(attached to ranks); in general several different winners are possible with different
weights. In this article we consider methods to generate a winner using positional
scoring rules under weight uncertainty. We assume non increasing weights; we
also discuss the case of scoring rules where weights constitute a convex sequence.

? Work supported by the ANR project Cocorico-CoDec (ANR-14-CE24-0007-01).
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We assume n agents express preferences in the form of rankings involving
a set of m candidates A = {a, b, c, . . .}; rankings are assumed to be linear or-
ders (complete, transitive, asymmetric and irreflexive binary relation). Positional
scoring rules discriminate between candidates by assigning a fixed score to each
rank. Scoring rules assign a score to each alternative based on its rank distribu-
tion; let vxj be the number of times alternative x was ranked in the j-th position.

Note that
∑m
j=1 v

x
j = n for each x ∈ A and

∑
x∈A v

x
j = n for each j = 1, . . . ,m.

A scoring rule specifies the vector of weights w1, . . . , wm (also called scoring
vector) to be assigned to each position. The score obtained by a candidate ac-
cording to weight vector w = (w1, . . . , wm) is sw(x) =

∑m
j=1 wjv

x
j . These total

scores can be used to pick a winner or to rank the alternatives. For example
plurality is obtained by setting w1 = 1 and wj = 0 for all j ∈ {2, . . . ,m}.

By choosing a particular w, it is possible to specify some preferences on
which kind of aggregation is desired, by giving more or less weight to the first
positions compared to the positions that came afterwards in the ranking. First
of all, we assume that not all weights are null, otherwise the alternatives are not
discriminated (degenerated scoring rule). A natural hypothesis1, that we adopt
here, is to require that the sequence of weights is non-increasing: wi ≥ wi+1

for all i ∈ {1, . . . ,m − 1}; intuitively, in a ranking an alternative is (weakly)
preferred to the alternatives that comes afterwards in the ranking.

A scoring rule is invariant to affine positive transformation of the scoring
vector, that means that ranking the w′ = αw + β with α > 0 and arbitrary β
gives the same output. Therefore, with no loss of generality, we let w1 = 1 and
wm = 0 (therefore we have m − 2 degrees of freedom). Given this assumption
the Borda rule is given by setting wj = m−j

m−1 .
Moreover, it is often (but not always) assumed in practice that the positional

weights constitute a convex sequence, meaning that the difference between the
first and the second weight is not less than the difference between the second and
of the third, and so on. In such a case the weights need to satisfy the following
constraint, for each i between 1 and m− 2:

wi − wi+1 ≥ wi+1 − wi+2 ⇐⇒ wi − 2wi+1 + wi+2 ≥ 0. (1)

Note that Borda and plurality are convex; furthermore convexity is often
satisfied by the weights used when combining ranks in sports, races and other
situations (e.g. formula one world championship, alpine skiing world cup).

We argue that setting a precise vector of weights for a scoring rule can be seen
arbitrary; indeed the decision of which weights to use is critical since different
weights often lead to different winners. Therefore there is interest to reason not
just with a fixed vector w but about possible sets of parameters.

Notation We introduce some of the notation that we will use in the paper. We
use [[m]] to denote the set {1, . . . ,m}. Given two vectors v1 and v2 we write

1 This hypothesis is removed in Goldsmith et al. [5] where the authors allow preferences
for intermediate positions.
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v1 � v2 iff v1
j ≥ v2

j for all components j. If the inequalities are strict, v1
j > v2

j

for all components j, then we write v1 � v2.
We will use WD to denote the set of scoring vectors with non-increasing

weights and WC to denote the set of non-increasing (i.e. weakly decreasing)
scoring vectors whose weights constitute a convex sequence2 (with our boundary
assumptions, w1 = 1 and wm = 0):

WD =
{

(w1, . . . , wm)
∣∣∣1 = w1 ≥ w2 ≥ . . . ≥ wm−1 ≥ wm = 0

}
, (2)

WC =
{

(w1, . . . , wm)
∣∣∣w ∈WD ∧ wi − 2wi+1 + wi+2 ≥ 0 ∀i∈ [[m−2]]

}
. (3)

2 Dominance and Possible Winners

In this section we discuss dominance relations and possible winners. The first
step is to reformulate scoring rules in terms of cumulative ranks. This is useful
in order to establish dominance relations between alternatives in the context of
scoring rules. Dominance [11] holds between alternative x and alternative y iff
the former has higher score than the latter alternative for any possible scoring
rule; y is then said to be dominated. A rational decision maker will then never
choose a dominated alternative; since, no matter how the weights are defined,
there is another alternative that is at least as good (in case of weak dominance)
or strictly better (strict dominance).

We will then refine undominated alternatives in order to identify which can-
didates are possible winners.

2.1 Reformulation using Cumulative Standings

We consider cumulative standings that represent the fraction of times that a
candidate was ranked over a certain point. Cumulative standings are defined as
the cumulative sum of the rank vectors, starting from the first position. The
vector V x = (V x1 , . . . , V

x
m−1) is such that V xj =

∑j
l=1 v

x
l is the number of times

that alternative x has been ranked in position j or better. Note that we consider
in V x only m− 1 components: indeed V xm, the number of cumulative standings
in the last place, would always equal to the number of voters n.

We now define the vector δ = (δ1, . . . , δm−1), dubbed differential weights,
as the vector of the differences between two successive positional weights of the
original scoring vector:

δj = wj − wj+1 ∀j ∈ [[m−1]].

Remember that we assumed that w1 = 1 and wm = 0; this assumption means
that we have δ1 = 1−w2 and δm−1 = wm−1. The score obtained by an alternative

2 There is some redundancy in the constraints: it is enough to assume convexity and
wm−1 ≥ 0 to ensure that the sequence is not increasing.
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x can now be expressed in function of δ and the cumulative standings V :

sδ(x) =

m−1∑
j=1

δjV
x
j

where we use the subscript δ to underline the dependency on the differential
weight. Decreasing weights in the original formulation correspond to positive
differential weights. Note that the original rank vectors can be expressed in terms
of cumulative standings: vj = Vj − Vj−1; similarly the original weights can be

recovered from the differential weights: wj =
∑m−1
l=j δl. The requirement that the

first weight should be equal to one can therefore be written as:
∑m
j=1 δj = 1 (and

this indirectly bounds all other weights to be lower than 1 due to monotonicity).
The score of an alternative can therefore be seen as a convex combination of the
cumulative ranks.

We now derive a reformulation that is useful for scoring vectors that constitute
convex sequences. To do so we need to introduce the vector of cumulative of the
cumulative standings:

Vxj =

j∑
l=1

V xl =

j∑
l=1

l∑
o=1

vxo =

j∑
l=1

(j − l + 1)vxl j ∈ [[m]]

We now define a new vector of parameters φ that represents the convexity of the
weights w:{

φj = δj − δj+1 = wj − 2wj+1 + wj+2 j ∈ [[m− 2]]
φm−1 = δm−1 = wm−1.

(4)

Given that we assumed w1 = 1, we have φ1 = 1− 2w2 + w3 and, since wm = 0,
we have φm−2 = δm−2 − δm−1 = wm−2 − 2wm−1. Stating that φj ≥ 0 for all
components j is equivalent to require the weight vector w to be convex.

The score sw(x) of an alternative x under a scoring rule with weight vector

w can now be expressed as
∑m−1
j=1 φjVxj with φ obtained from w using Equation

4. The constraint that all weights should be bounded and the highest weight, w1

has value equal to one, becomes, in terms of convex weights, in assuming that∑m−1
l=1 l φl = 1.

We now show, in the following table, how some common scoring rules are
expressed in terms of differential weights and in terms of convex weights.

rule positional weights differential weights convex weights

Plurality w = (1, 0, . . . , 0︸ ︷︷ ︸
m−1

) δ = (1, 0, . . . , 0︸ ︷︷ ︸
m−2

) φ = (1, 0, . . . , 0︸ ︷︷ ︸
m−2

)

k-approval w = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k

) δ = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−k−1

) φ = (0, . . . , 0︸ ︷︷ ︸
k−2

,−1, 1, 0, . . . , 0)︸ ︷︷ ︸
m−k−2

Borda w = (1, m−2
m−1 ,

m−3
m−1 , . . . , 0) δ = ( 1

m−1 , . . . ,
1

m−1 ) φ = (0, . . . , 0︸ ︷︷ ︸
m−2

, 1
m−1 )

top-k Borda w = (1, k−2
k−1 , . . . ,

1
k−1 , 0, . . . , 0︸ ︷︷ ︸

m−k

) δ = (
1

k
, . . . ,

1

k︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k−1

) φ = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1
k , 0, . . . , 0︸ ︷︷ ︸

n−k−1

)
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We highlight the following observations:

– k-approval is not convex when k ≥ 2. The k-approval score of alternative x
is exactly V xk .

– we call top-K Borda the scoring rule based on Borda restricted to the top k

positions. The score of an alternative x with respect to top-k Borda is
Vx

k

k .

2.2 Dominance relations

The usefulness of the reformulations presented in Section 2.1 is that they can
be used to discriminate candidates according to dominance relations, that allow
to identify candidates that are less preferred than another one for any feasible
scoring vector. Note that dominance only gives us with a partial order, so it is
usually not enough to unambiguously define a winner.

Non-increasing weights When dealing with scoring vectors in WD, i.e. with non
increasing sequences of weights the set of possible scores obtained by a candidate
x, with cumulative ranks V x, are given by{m−1∑

j=1

δjV
x
j

∣∣∣δ1 ≥ 0, . . . , δm ≥ 0 ∧
m∑
j=1

δj = 1
}
.

Basically, all convex combinations of the components of V x are possible. Since
all elements of δ are non-negative, we can compare the cumulative ranks of two
candidates componentwise to check if a dominance relation exists.

Proposition 1 [11] If V x � V y then the score x is necessarily at least as good
than y for any scoring rule with non-increasing weights (and x is necessarily
strictly better than x when V x � V y):

– V x � V y =⇒ sw(x) ≥ sw(y) ∀w ∈WD,
– V x � V y =⇒ sw(x) > sw(y) ∀w ∈WD.

We say that x weakly dominates y in the first case, and that x strongly dominates
y in the second case.

The previous statement can be seen as a form of first-order stochastic dominance.
A candidate is said dominated if there exists another candidate that dominates
the former.

Convex weights Assuming a non-increasing convex sequence (the scoring vector
belongs to WC), the space of possible scores associated to an alternative is given
by {m−1∑

j=1

φjVj
∣∣∣φ1 ≥ 0, . . . , φm ≥ 0 ∧

m−1∑
j=1

j φj = 1
}
.

All φj are non-negative since the sequence is convex. If each element of the vector
Vx is at least as big as the corresponding element of Vy, than x has at least the
same score of y for any scoring rule with convex weight (and the analogous
relation holds with strict inequalities).
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Proposition 2 [11] If Vx � Vy, then x is at least as good than y, for any
scoring rule with a convex sequence of decreasing weights (and x is necessarily
strictly better than x when Vx � Vy):

– Vx � Vy =⇒ ∀w ∈WC sw(x) ≥ sw(y),
– Vx � Vy =⇒ ∀w ∈WC sw(x) > sw(y).

Again, the first case is referred as weak dominance and the second as strong
dominance.

This is akin to second order stochastic dominance, but considering convex and
not concave utility.

Example 1. Consider the following numeric example.The first table reports the
distribution of the ranks, the second the cumulative ranks and the third the
double cumulative ranks.

Candidate v·1 v
·
2 v
·
3 v
·
4

a 2 2 2 2
b 0 6 2 0
c 2 0 4 2
d 4 0 0 4

Candidate V ·1 V
·
2 V

·
3

a 2 4 6
b 0 6 8
c 2 2 6
d 4 4 4

Candidate V ·1 V ·2 V ·3
a 2 6 12
b 0 6 14
c 2 4 10
d 4 8 12

– When considering monotone weights, one can establish dominance by pair-
wise comparisons of rows in the table of cumulative ranks; for instance a
weakly-dominates c since V a1 = V c1 , V a2 > V c2 , and V a3 = V c3 . The set
of weakly-undominated candidates is then {a, b, d}. No strong domination
holds.

– When considering convex weights, now d weakly dominates a; moreover d
strongly dominates c since V dj > V cj for all j ∈ [[m−1]]. The set of weakly
undominated candidates is {b, d}, while the set of strictly undominated is
{a, b, d}.

2.3 Possible Winners

In the following we present the notions of possible and necessary winners under
different assumptions about the scoring vector. The possible winners are all those
candidates that may be winners under a realization of the weights; a necessary
winner (if it exists) is a winner under any possible weight. Possible winners (and
necessary winners) need to be undominated according to the relations described
in the previous section. However it is important to note that there might be
undominated alternatives that may not be a possible winner.

In what follows, let let W be the set of feasible weights; we focus on W being
either WC or WD.

Definition 1. A candidate x is a possible co-winner iff there is a weight vector
w such that the score of x under w is higher or equal than the score of all other
candidates.

∃w ∈W : sw(x) ≥ sw(y) ∀y ∈ A
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If the above formula holds with a strict inequality sign, x is a possible winner.

Definition 2. A candidate x is a necessary co-winner iff for all weight vectors
w ∈ W the score of x under w is higher or equal than the score of all other
candidates.

∀w ∈W : sw(x) ≥ sw(y) ∀y ∈ A
If the above holds with a strict inequality sign, x is a necessary winner.

Possible winners are a subset of maximal elements of the dominance relations
seen in the previous sections; indeed a dominated candidate (in either sense, weak
or strong) cannot be a possible winner for any scoring rule. A candidate that is
weakly dominated by another candidate but it is not strongly dominated may
be a possible co-winner. Moreover, note that if there is only a single candidate
that is undominated, then it is a necessary winner.

We show that it may occur that an undominated alternative is not a possible
winner with an example.

Example 2. Assume the rank distributions (n = 12, m = 3) associated to three
candidates a, b, c presented in the following table (to be read as follows: a is
ranked first 4 time, second 3 times and 5 times last).

v·1 v
·
2 v
·
3

a 4 3 5
b 6 0 6
c 2 9 1

As usual we let w1 = 1 and w3 = 0, so the only free parameter is w2. The score of
a is s(a) = 4+3w2; the score of b is s(b) = 6 and the score of c is s(c) = 2+9w2.
Can a be a winner for some values of w2 ? The answer is no: for a to be better
than b, we need w2 ≥ 2

3 but for a to be better than c, w2 should be less than 1
3 .

The cumulative ranks are V a = (4, 7), V b = (6, 6), V c = (2, 11) and no
pairwise domination holds between a, b, or c. Therefore a is neither dominated
by b or c but is not a possible winner (and not even a co-winner).

This kind of reasoning has been discussed in [1], dealing with combinatorial
problems; we now present similar techniques for computing possible winners.

Computation of Possible Winners We test whether candidate x is a possible
winner by finding the maximum difference between its score and that of the best
ranked alternative other than x. If this is positive, then candidate x is a possible
winner, if it is zero is only a possible co-winner; otherwise it is not a possible
winner. Formally, define the maximum advantage or margin MA(x) of x by:

MA(x) = max
w∈W

min
y 6=x

sw(x)− sw(y) = max
w∈W

min
y 6=x

m∑
j=1

wjv
x
j −

m∑
j=1

wjv
y
j (5)

= max
w∈W

{ m∑
j=1

wjv
x
j −max

y 6=x

m∑
j=1

wjv
y
j

}
(6)
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where W ∈ {WD,WC} is the set of possible weight vectors (either the class
of non-increasing or the class of convex weights). This can be achieved by the
following optimization:

max
Z,w

Z (7)

s.t. Z ≤
m∑
j=1

wjv
x
j −

m∑
j=1

wjv
y
j ∀y ∈ A−{x} (8)

wj ≥ wj+1 (9)

wj − 2wj+1 + wj+2 ≥ 0 ∀j ∈ [[m− 2]] (10)

w1 = 1;wm = 0 (11)

Equations 7-11 represent a linear program that can be solved with standard
optimization tools such as CPLEX or Gurobi. The alternative x is given in
input. There are m− 1 decision variables, of which m− 2 represent the scoring
vector (we have m−2 degrees of freedom, since we assume w1 = 1 and wm = 0),
and an additional decision variable Z (representing the margin) whose value is
constrained (equation 8) to be less than the difference in score between the score
of x and any other alternative y ∈ A. The resulting value of Z gives us the best
margin with x being the winner when choosing w in W . If this value is positive
then x is a possible winner. Constraint 10 refers to convex weights (region WC)
and should be removed when dealing with non-increasing weights (region WD).

Example 3. Consider again the values of Example 1. The maximum advantage
is given in the second table, once computed w.r.t. WD and once w.r.t. WC .

Candidate v·1 v
·
2 v
·
3 v
·
4

a 2 2 2 2
b 0 6 2 0
c 2 0 4 2
d 4 0 0 4

Candidate MAWD MAWC

a 0 -0.29
b 2 0.66
c 0 -0.86
d 2 2

Note that when considering convex weights, we reduce the feasibility region and
therefore the maximum margin will be less. Candidates b, d are possible winners
in both cases, since they are associated with a positive maximum advantage.
Note that even if a was undominated in WD, it is not a possible winner; in WD

a and c are possible co-winners for scoring weight w = (1, 0.5, 0.5, 0).

3 Aggregation of scoring rules with uncertain weights

In general there may be many possible winners, it is therefore often necessary
to have a method to pick a single winner. We now discuss how to adapt classic
criteria for decision-making under uncertainty for the case of scoring rules with
uncertain weights.
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Maximin and maximax Selecting the alternative according to maximin (criterion
that picks the alternative whose worst score is highest) corresponds to setting
each weight to zero, except w1 that is equal to 1 by assumption; therefore this
case corresponds to plurality. Instead maximizing the maximum possible score3

(that means using maximax decision rule) corresponds to setting each weight to
one, except wm that is set to 0 by assumption; this case corresponds to (m−1)-
approval for the case of non-increasing scoring rules. For convex rules, maximax
is attained by Borda. Of course, these methods are trivial and do not actually
support the idea that we should possibly consider a variety of scoring vectors
(in Wm or in W c depending on the case) for evaluating different candidates.

Minimax regret Minimax regret is a robust decision criterion classically used for
optimization under uncertainty [10, 6]; it has been more recently advocated to
be used in decision-making where the uncertainty is over utility values [2, 9]. In
the context of voting, it has been proposed by Lu and Boutilier [8] as a way
to deal with partially elicited rankings (but they assume that the social choice
function is known precisely).

We consider now using minimax regret to identify a candidate (to be declared
winner) in face of uncertainty over the values of the scoring vector w1, . . . , wm.
The idea is to associate each alternative with the maximum loss incurred in terms
of score points (with respect to the “true” winner) assuming that an adversary
can freely set the scoring vector; the minimax-regret alternative is the one that
minimizes such loss. The max regret of alternative x is:

MR(x) = max
w∈W

max
y∈A

sw(y)− sw(x) = max
w∈W

s∗w−sw(x) (12)

= max
w∈W

[
max
y∈A

m∑
j=1

wjv
y
j

]
−

m∑
j=1

wjv
x
j (13)

where W is either WD (decreasing weights) or WC (convex weights), depend-
ing on the context. We then pick the alternative with minimum max regret:
arg minx∈A Z

MR(x); whatever the weight in W , the picked alternatives is at
most MR(x) score points from optimality.

We now show that we can characterize the minimax regret alternative in
a way that it is not necessary to solve an optimization problem. As before,
we slice out our analysis dealing with 1) non-decreasing weights and 2) convex
sequences. Before presenting our results note that the winner according to k-
approval is then just the alternative with highest value Vk (number of times x
was ranked in position k or better); let V ∗k = maxx∈A V

x
k be such value. Similarly

let V∗k = maxx∈A Vxk be the maximum value of the double cumulative ranks for
a given position j.

3 Several authors, including [3], have proposed to take a similar optimistic approach,
although the way the feasible set is defined makes the resulting rules quite different.
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Proposition 3 In the case of non-increasing weights:

MR(x) =
m−1
max
j=1

V ∗j − V xj ; (14)

instead, assuming convex weights:

MR(x) =
m−1
max
j=1

V∗j − Vxj
j

. (15)

Proposition 3 allows4 us to compute max regret in an efficient way without
solving an optimization problem. While in the original formulation of maximum
regret (Equation 13) the maximization is over a continuum of values (all feasible
scoring vectors w), Equations 14 and 15 compute the maximum among a fixed
number of alternatives (in the two cases, monotone and convex).

For non-increasing scoring vectors, note that that, since V ∗j is equivalent to
the best score according to j-approval, the term V ∗j − V xj is the loss occurred
to x when considering j-approval; max regret can be seen as the maximum loss
occurred by x with respect to the family of k-approval voting rules. The minimax
regret optimal alternative is then the candidate that is the least far away from
the optimal score attained with any k-approval voting rule.

Example 4. We provide an example of max regret computation using the first
case of Proposition 3. One needs to consider the table of the cumulative stand-
ings; the max-regret of a given candidate is the the maximum shortfall between
the values in the candidate’s row compared to the best value (in bold below) in
each column.

Candidate v·1 v
·
2 v
·
3 v
·
4

a 2 2 2 2
b 0 6 2 0
c 2 0 4 2
d 4 0 0 4

Candidate V ·1 V
·
2 V

·
3

a 2 4 6
b 0 6 8
c 2 2 6
d 4 4 4

Candidate MRWD

a 2
b 4
c 4
d 4

Since we wish to minimize the maximum regret MR, the optimal alternative
w.r.t. minimax regret is therefore a when considering non-increasing weights.

Now, note that, since
Vx

j

j represent the score associated to the top-j Borda rule,
Equation 15 basically states that the computation of max regret when w lies in
WC is equivalent to consider the loss occurred by x with respect to the family of
top-k Borda aggregators (that includes plurality and Borda as a special case).

Example 5. We consider again the running example and compute the max regret
values when considering that the scoring vector is a convex sequence, using
Equation 15. First, we compute the double cumulative distribution of the ranks;
we then divide the second column by two, the third by three, etc. Then, for
computing the maximum regret of a, we consider the maximum, among columns,
between the value of a and the best (bold) values, i.e. max{4−2, 4−3, 4.66−4} =
2. The minimax regret optimal candidate in this case is therefore d.

4 Proofs are available from the author upon request.
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Candidate
V·

1

1
V·

2

2
V·

3

3

a 2 3 4
b 0 3 4.66
c 2 2 3.33
d 4 4 4

Candidate MRWC

a 2
b 4
c 2
d 0.66

Expected score Assuming a distribution over the weights, it is possible to rank
alternatives by the expected score. Let P (w) be the such distribution. By the
linearity of expectation, we can sort alternatives by using a scoring rules using the
expected values of the uncertain weights: Ew∼P (w)[sw(x)] =

∑m
j=1 Ew∼P (w)[wj ]v

x
j .

Therefore it means that sorting the candidates by expected score – under distri-
bution P (w) – is equivalent to using a scoring rule whose weights are given by
E[wj ], the expectations of the weights. The choice of the probability distribution
over the weights is critical; we observe that if we assume an uniform distribution
over non-increasing weights, sorting by expectation is equivalent to Borda.

Proposition 4 Assume w uniformly distributed in WD (non-increasing weights)

Ew∼U [sw(x)] = sBorda(x)

For convex sequences, we don’t have a closed formula for the expected weights
in WC . We rely on Monte Carlo methods based on Gibbs sampling to derive
numerical values for the expected weights. In Figure 1 we show the weights ob-
tained by using expectation assuming an uniform distribution over all possible
convex sequences. In the plot we compare the expected weights with that (nor-
malized) used in official F1 car races (that adopt a fixed convex sequence). The
F1 weights (dashed lines) can be considered rather “steep” since they only award
points to a small number of top drivers while often there are about 15-20 drivers
(cfr with expected weights with m = 22, in light blue); but if one wishes to
award points only to the best 8 or 9 drivers, then the F1 weights are actually
less “steep” than the ones obtained by expectation over convex sequence (in the
plot consider the line representing m = 9, in violet).

4 Numerical Tests

We consider the rankings of the F1 race championship from 1961 to 20085. In
this context, a candidate is a driver and each ranking is the result of a race. In
Table 1 below, we show the number of undominated alternatives and the number
of possible winners in the case of monotone weights and that of convex weights.
Several alternatives are Pareto dominated (e.g. a driver is Pareto dominated if
there is another one that is better ranked in all races); the number of Pareto
candidates is shown on the fourth column (for instance 16 drivers out of 54 are
Pareto in 1961, while 17 out 22 in 2008).

5 Obtained from the PREFLIB data repository (http://www.preflib.org/).
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Monotone Convex
dataset m n Pareto #Und. #P.W. #Und. #P.W.

1961 54 8 16 3 3 2 2
1962 51 9 12 1 1 1 1
1963 54 10 8 1 1 1 1
1964 42 10 17 6 5 4 4

1965 52 10 13 2 2 2 2
1966 43 9 20 4 4 2 2
1967 47 11 14 4 4 3 3
1968 44 12 22 4 4 2 2

1969 42 11 15 4 4 1 1
1970 43 13 21 8 8 5 4
1971 50 11 21 4 4 1 1
1972 44 12 25 7 7 1 1

1973 44 15 19 4 3 1 1
1974 62 15 23 3 3 2 2
1975 52 14 22 6 6 1 1
1976 57 16 23 6 6 3 3

1977 61 17 26 5 5 5 4
1978 49 16 26 6 6 1 1
1979 36 15 20 3 3 3 3
1980 41 14 23 2 2 1 1

1981 40 15 22 5 5 3 3
1982 40 16 26 6 6 4 4
1983 35 15 26 3 3 2 2
1984 35 16 24 3 3 2 2

1985 36 16 24 3 3 1 1
1986 32 16 20 4 4 2 2
1987 32 16 25 8 8 2 2
1988 36 16 16 2 2 2 2

1989 47 16 30 5 5 2 2
1990 40 16 20 5 5 3 3
1991 41 16 19 1 1 1 1
1992 39 16 23 5 5 1 1

1993 35 16 24 1 1 1 1
1994 46 16 24 4 4 2 2
1995 35 17 26 6 6 1 1
1996 24 16 20 2 2 1 1

1997 28 17 22 4 4 2 2
1998 23 16 17 3 3 2 2
1999 24 16 18 2 2 2 2
2000 23 17 21 4 4 2 2

2001 26 17 19 2 2 1 1
2002 23 17 5 1 1 1 1
2003 24 16 16 3 3 2 2
2004 25 18 16 2 2 1 1

2005 27 19 19 2 2 1 1
2006 27 18 19 2 2 1 1
2007 26 17 17 4 4 3 3
2008 22 18 17 4 4 2 2

Table 1. Number of undominated items
and possible winners in actual rank data.
(Legend: #Und.=number of undominated,
#P.W.:=number of possible winners,
m=number of drivers, n=number of races).

Disagreement Monotone Convex
F1 5-approval MR EU MR EU

F1 - 0.30 0.17 0.29 0.17 0.05
5-approval - - 0.31 0.35 0.38 0.32
monotone-MR - - - 0.28 0.18 0.15
m.-EU (Borda) - - - - 0.39 0.27
convex-MR - - - - - 0.11
convex-EU - - - - - -

Distance Monotone Convex
F1 5-approval MR EU MR EU

F1 - 0.15 0.17 0.22 0.16 0.15
5-approval - - 0.18 0.24 0.21 0.21
monotone-MR - - - 0.20 0.14 0.15
m.-EU (Borda) - - - - 0.16 0.14
convex-MR - - - - - 0.11
convex-EU - - - - - -

Table 2. Top: average disagremeent
(with respect to winner) beween the
different rank aggregation methods.
Bottom: average Spearman distance
between the aggregated rankings.
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m w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

3 1.00 0.25 0.00 - - - - - - -
4 1.00 0.39 0.12 0.00 - - - - - -
5 1.00 0.47 0.21 0.07 0.00 - - - - -
6 1.00 0.55 0.29 0.13 0.04 0.00 - - - -
7 1.00 0.57 0.32 0.17 0.08 0.02 0.00 - - -
8 1.00 0.61 0.39 0.23 0.13 0.06 0.02 0.00 - -
9 1.00 0.64 0.42 0.27 0.16 0.09 0.04 0.01 0.00 -
10 1.00 0.69 0.48 0.33 0.21 0.13 0.07 0.03 0.01 0.00

2 4 6 8 10 12 14 16 18 20 22
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Fig. 1. Table (on the left): weights obtained by uniformly sampling a convex sequence
of m positions; plot (right): sampled weights with the weights used by F1 races.

We then analyze (using the propositions of Section 2) which drivers are un-
dominated, and which are possible winners (Section 2.3). For monotone scoring
vectors, there are often several possible winners but never more than 8. In just 5
years we have a necessary winner (1962, 1963, 1991, 1993, 2002), meaning that
setting the scoring vector correctly is critical. When assuming convex scoring
vectors, the number of possible winners is considerably reduced (and there is a
necessary winner in several circumstances). Note that, although not frequently,
there are sometimes undominated candidates that are not possible winners.

In Table 2 (top) we analyze how often the different rank aggregation meth-
ods (including ranking with the F1 point system and k-approval) disagree6 on
picking the winner; while most of the time they pick the same winners, there is
a considerable difference between. There is a considerable disagreement between
Borda and the expected score assuming convexity (more than 1 out of 4 times
the winner is different), and as well between Borda and convex MR. Since scoring
rules can also be used to produce rankings, we also compare (Table 2 bottom)
the rankings obtained by the different methods (e.g. sorting by ascending MR
scores) using the Spearman distance.

5 Conclusions

In this article we have considered preference aggregation in the context of social
choice when the scoring vectors are not defined apriori. The fact that using
scoring rules with different weights may produce very different outputs have
been noticed before; some of these methods are reviewed in [7]. In this paper
we first considered the problem of discriminating which alternatives are possible
winners, and the considered aggregation methods motivated by decision-theory
(in particular, minimax regret and expected score).

6 To handle the case of ties (when a method returns multiple winners) we compute
disagreement as the cardinality of the symmetric set difference normalized by the
cardinality of the union.
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In this paper we take the assumption that a committee specifies a generic
settings for the scoring vector, that is using monotone or convex sequences; we
believe that this is quite reasonable if one wish to use our proposed methods
as social choice function. For minimax regret, the computation is quite easy
using the cumulative (and double cumulative) ranks, therefore one could adopt
such technique as an aggregation method. One could of course add additional
desiderata about the weights or even consider elicitation protocols – in that case
one would need to compute regret using optimization tools [12].

Note that the provided methods could be also used with an informative goal:
for instance, for inspecting which candidates are possible winners (letting the
decision maker discriminate between such alternatives in a second moment). The
fact that the expectation of a uniformly distributed decreasing sequence gives
the weights that are linearly spaced (as Borda), can be seen as an additional
theoretical justification for using Borda.
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