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Abstract. We study the linearized Vlasov-Poisson-Ampère equation for
non constant Boltzmannian states with one region of trapped particles
in dimension one and construct the eigenstructure in the context of the
scattering theory. This is based on the use of semi-discrete variables
(moments in velocity) and it leads to a new Lippmann-Schwinger vari-
ational equation. The continuity in quadratic norm of the operator is
proved, and the well-posedness is proved for a small value of the scaling
parameter. It gives a proof of Linear Landau damping for inhomoge-
neous Boltzmannian states. The linear HMF model is an example.

1. Introduction

The goal is, by means of an original scattering structure for the Vlasov-
Ampère equation, to construct the first proof of linear Landau damping
[37, 13, 52] for a particular family of inhomogeneous Boltzmannian states
f(x, v, t) = n0(x) exp(−v2/2) + g(x, v, t). This work contributes to the solu-
tion of two problems addressed in [7] which are, for non homogeneous profiles,
the construction are quasi-modes and the long time behavior of the Vlasov
equation. Other works on the stability of the Vlasov equation for non ho-
mogeneous states are in [50, 6, 39, 43], with particular mention to [7, 3] on
the dynamics of the HMF equation around inhomogeneous backgrounds and
to the recent exposure [8]. The stability of the linear and non linear Vlasov
equation is studied by numerical methods in many works, let us mention
[40, 7] where trapped particles are discussed and [17, 23, 24] for various tests
cases.
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The scattering structure is written as linear Schrodinger equation [16,
55, 29] and it is an extension of a previous work [18] on the linearized
Vlasov-Poisson-Ampère equation with homogeneous states, but without ex-
plicit mention nor to scattering theory neither to linear Schrodinger equation.
It seems that the artillery of abstract scattering theory per se [33, 38, 29, 55,
25, 49] has not been used in the literature for the study of linearized Vlasov-
Poisson equation, at least not in [5, 19, 48, 21, 10, 11, 42]. See however the
recent contribution [44] in a different direction for the Navier-Stokes equa-
tion around rapidly rotating Oseen vortices. In our case, instead of relying
on general theories such as the Weil theorem [55, 33] for compact perturba-
tions (see remarks at the end of Section 2.2) and the abstract Kato-Birman
theory [49][page 22] for trace class operators or ways to construct the gen-
eralized wave operators [55][page 3], we focus on the explicit calculation of
the eigenstructure. The keystone of this work is the derivation of an origi-
nal integral equation, the Lippmann-Schwinger equation [49] of the problem.
Once the Lippmann-Schwinger equation is solved, one gets a representation
of the solution of the linearized Vlasov-Poisson-Ampère equation with os-
cillatory integrals. The method and tools are strongly related to the physi-
cal context: they are an alternative to Hamiltonian theories [45, 46, 3] with
action-angle variables popular in plasma physics, and we use a good deal
of Koopmanism [35, 53, 54] to construct the eigenstructure of the different
operators; the HMF model [7, 3, 22] is one example. The extension to non
linear equations is an open problem, the techniques seem so far very different
[48, 47, 30, 32, 50, 39, 41, 43, 10, 9, 22].

The principles of abstract scattering applied to the specific Vlasov-
Poisson-Ampère considered in this work generate the Lipmann-Schwinger
equation using a straightforward and mostly algebraic path. The justifica-
tion of the well-posedness of the Lipmann-Schwinger equation requires much
more involved analytical arguments.

Rescaled Vlasov-Ampère system. The modeling starts from the 1d-1v Vlasov-
Poisson system{

∂tf + v∂xf − q
mE∂vf = 0, t > 0, (x, v) ∈ R× R,

∂xE = ε0
(
ρref(x)−

∫
R fdv

)
, t > 0, x ∈ R.

The unknowns are the density of electrons f(t, x, v) and the electric field
E(t, x). One has E = −∂xϕ where ϕ(t, x) is the electric potential. The con-
stants are q > 0 the unit positive charge, m the mass of electrons and ε0 the
dielectric constant. The reference ion density is ρref . After rescaling x

x = x′,
t
t

= t′, v
v = v′, E

E
= E′, ϕ

ϕ = ϕ′ and ρref
ρref

= ρ′ref , one obtains{
∂t′f + vt

x v
′∂x′f − q

m
Et
v E
′∂v′f = 0,

∂x′E
′ = ε0xv

(
ρref
v ρ′ref(x)−

∫
R fdv

′
)
, E′ = −xϕ

E
∂x′ϕ

′.

It will be mathematically convenient to consider a small parameter ε > 0

and the specific scaling vt
x = 1, q

m
Et
v = ε2, ε0xv

E
= 1, ρref

v = 1 and xϕ

E
= 1.
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The second relation can combined with the first and third ones under the
form qmε0

x2

v = ε2. Adding periodic boundary conditions, an interpretation
is that we focus on solutions which are periodic over the small spatial length
x = O(ε). Other combinations of the parameters are possible which reach
similar rescaled equations. We rewrite the non dimensional system with orig-
inal variables and consider periodic conditions at the boundaries of the space
interval I = [0, 1]{

∂tf + v∂xf − ε2E∂vf = 0, t > 0, (x, v) ∈ I × R,
∂xE = ρref(x)−

∫
R fdv, E = −∂xϕ, t > 0, x ∈ I.

One has the fundamental identity ∂x
(
∂tE −

∫
R fvdv

)
= ∂t (∂xE)−∂x

∫
R fvdv =

−∂t
∫
R fdv − ∂x

∫
R fvdv = 0. Since the third identity of the Vlasov-Poisson

system above implies
∫
I
E(t, x)dx = 0 for all t ≥ 0, one finds that the Gauss

law can be written as the Ampère law under the form ∂tE = 1∗
∫
R vfdv, to

be compared with the one in [34, 43].

Notation 1.1. We will note 1∗ : L2(I)→ L2
0(I) the usual projection operator

such that 1∗g = g −
∫
I
g(x)dx.

One gets the Vlasov-Ampère system with periodic boundary conditions{
∂tf + v∂xf − ε2E∂vf = 0, t > 0, (x, v) ∈ I × R,
∂tE = 1∗

∫
R vfdv, t > 0, x ∈ I. (1.1)

This formulation is the most convenient one for the development of the meth-
ods proposed in this work. Even if the Poisson and Ampère equations are
equivalent provided the Poisson relation holds at initial time, and we will
always use this assumption, the rewriting of the model problem within a
scattering setting is much clearer with the Vlasov-Ampère system (1.1).

Elementary considerations and the ion positivity condition. The solutions of
the Vlasov-Ampère equation are bounded 0 ≤ f(t, x, v) ≤ ‖fini‖L∞(I×R) and

satisfy the conservation of the physical energy 1
ε2

∫
I

∫
R fv

2dvdx +
∫
I
E2dx.

The initial data (f,E) will be considered as a perturbation of a stationary
state (f0, E0) v∂xf0− ε2E0(x)∂vf0 = 0 with E0 = −ϕ′0. A natural possibility
to represent such stationary states is

f0(x, v) = h

(
v2

2
− ε2ϕ0 (x)

)
(1.2)

where ϕ0 is the reference electric potential and h is an arbitrary function
which could be multivalued as well. We consider a single valued and regular
function h ∈ C1(R). The Poisson equation recasts as

−ϕ′′0(x) +

∫
R
h(v2/2− ε2ϕ0(x))dv = ρref(x). (1.3)

There are two ways to understand this equation. Either one assumes the
ionic density ρref is given: the determination of ϕ0 can be performed after
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reformulation as a minimization problem (ĥ′ = − h
ε2 )

ϕ0 = argmin
ϕ∈H1

0 (I)

(∫
I

[
1

2
ϕ′(x)2 − ρref(x)ϕ(x) +

∫
R
ĥ(v2/2− ε2ϕ0(x))dv

]
dx

)
in the space in H1

0 (I) := H1(I)per ∩
{∫
I
ϕ(x)dx = 0

}
. This problem is well

posed under standard conditions [4] on the convexity of ĥ. The second way,
which is the one adopted in this work because it simplifies the mathematical
analysis, is to assume that ϕ0 is given, and in this case the ionic density is
given by (1.3). However a condition is required for physical relevance, that
is ρref ≥ 0: indeed the periodic function ϕ′′0 necessarily takes both signs, so
ρref ≥ 0 does not hold automatically. Nevertheless is it sufficient to require
what we call hereafter the ion positivity condition

ϕ′′0(x) <

∫
R
h(v2/2)dv, ∀x ∈ I. (1.4)

Indeed (1.4) guarantees that ρref ≥ 0 for ε > 0 small enough.

Linearization and the rest state. We consider a linearization under the form
f(t, x, v) = f0(x, v) + g(t, x, v) and E(t, x) = E0(x) + F (t, x), inject in (1.1)
and drop the quadratic terms. It yields the model linearized Vlasov-Poisson-
Ampère system (1.5)-(2.1) studied in this work ∂tg + v∂xg − ε2E0∂vg − ε2F∂vf0 = 0, t > 0, (x, v) ∈ I × R,

∂tF = 1∗
∫
R vgdv, t > 0, x ∈ I,

∂xF = −
∫
R gdv, t > 0, x ∈ I,

(1.5)

equipped with periodic boundary conditions. A first family of solutions (gst, Fst)
to (1.5) corresponds to stationary solutions such that ∂t = 0.

Lemma 1.2. Stationary solutions of (1.5) can be parametrized under the form{
gst(x, v) = −ε2h′(v2/2− ε2ϕ0(x))ϕst(x) + h1(v2/2− ε2ϕ0(x)),
F ′st(x) = −

∫
R gst(x, v)dv

(1.6)

where h is such that (1.2) holds and h1 is an arbitrary function. The potential
ϕst (ϕ′st = −Fst) is solution to the equation

−ϕ′′st(x)−ε2
(∫

R
h′(v2/2− ε2ϕ0(x))dv

)
ϕst(x) = −

∫
R
h1(v2/2−ε2ϕ0(x))dv.

(1.7)

Proof. Take a pair (g, F ) stationary solution of (1.5){
v∂xg − ε2E0∂vg − ε2F∂vf0 = 0, (x, v) ∈ I × R,
∂xF = −

∫
R gdv, x ∈ I,

and define ĝ(x, v) = g(x, v)+ε2h′(v2/2−ε2ϕ0(x))ϕ(x) where ϕ′(x) = −F (x).
In view of (1.2), one has (v∂x − ε2E0∂v)ĝ = (v∂x − ε2E0∂v)g + vε2h′(v2/2−
ε2ϕ0(x))ϕ′(x) = ε2F∂vf0 − vε2h′(v2/2 − ε2ϕ0(x))F (x) = 0. Therefore ĝ is
in the kernel of the transport operator, so can be represented as ĝ(x, v) =
h1(v2/2− ε2ϕ0(x)). The closure relation (1.7) is evident. �
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Since ϕst is stationary and can be non zero, no damping of the electric
field shows up with this first family (1.6-1.7). Additionally the density gst is
stationary, so the total density f = f0 + g is constant. In the context of this
work, such stationary profiles are of little interest and will not been studied.
To pursue the main topic of this work which is non stationary solutions,
we make additional hypothesis. The first one is the Boltzmanian hypothesis
because it is compatible with the common physical sense and it helps to
concentrate on the main difficulties.

Hypothesis 1.3 (Boltzmanian hypothesis). h(w) = exp(−w).

With this assumption, the reference density of electrons (1.2) is given by
f0(x, v) = n0(x)G(v), n0(x) = exp(ε2ϕ0(x)) and G(v) = exp

(
−v2/2

)
. The

Poisson-Poincaré equation (1.3) becomes −ϕ′′0 + α2 exp(ε2ϕ0) = ρref with

α2 =
∫
R exp

(
−v

2

2

)
dv =

√
2π. The compatibility relation (1.7) is well posed

in the sense that the term in parenthesis is negative, so the equation is elliptic
coercive.

We will make one more assumption illustrated in Fig. 1. As in [6], it
corresponds to a potential with one region of trapped particles. More regions
of trapped particles can be included, at the price of heavier notations.

10

x

zone c

zone -

zone +
v

Figure 1. The separatrix in solid line v2

2 − ε2ϕ0(x) =

−ε2ϕ−0 = −ε2ϕ0(0) = −ε2ϕ0(1) splits the domain in three
zones. Zone + is above the separatrix. Zone - is below the
separatrix. The central zone of trapped particules, indexed
by the letter c, corresponds to closed loops that cross the
horizontal axis.
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Hypothesis 1.4 (Structural assumption). The electric potential ϕ0 ∈W 3,∞
per (I)

is monotone {
ϕ′0(x) > 0 for 0 < x < x0,
ϕ′0(x) < 0 for x0 < x < 1,

(1.8)

normalized by translation in the x direction (i.e. ϕ−0 = minx ϕ0 = ϕ0(0)),
strictly convex at the minimum (i.e. ϕ′′(0) > 0) and strictly concave at the
maximum (i.e. ϕ′′0(x0) < 0 and ϕ+

0 = maxx ϕ0 = ϕ0(x0)).

The fundamental assumption is the following.

Hypothesis 1.5 (Monotony of time of travel). The time needed for particles
to travel along characteristics is a monotone function of the characteristic
label. In this work we consider the sufficient condition (for justification refer
to section 3.1.4)

sup
x 6=0,x0,1

(
d2

dx2

√
ϕ+
0 − ϕ0(x)

)
< 0. (1.9)

A typical example is the HMF model [7, 3, 22] for which ϕ0(x) =
− cos(2πx). A reasonable conjecture is that (1.9) is not satisfied by unsta-
ble BGK waves [43] which have an electron hole, as described in [31]. Next
assumption is geometrically intuitive. Physically it rules out the stationary
states (1.6).

Hypothesis 1.6. The initial data g0 to (1.5) has zero mean value along the
characteristics curves of the transport operator v∂x − ε2E0∂v (precise state-
ment in Proposition 4.3).

Main result and ideas of the proof.

Theorem 1.7 (Linear Landau damping around Boltzmannian state). Assu-
me the initial data of the linearized Vlasov-Ampère system (1.5) has bounded
quadratic energy (2.1) and satisfies the Gauss relation. Make assumptions 1.3,
1.4, 1.5 and 1.6. There exists a constant ε∗ > 0 such that for all 0 < ε < ε∗,
then the electric field tends to zero in strong norm limt→∞ ‖F (t)‖L∞(I) = 0.
Moreover the ion density ρref (1.3) is positive.

To our knowledge, this is the first ever proof of linear Landau damping
for Vlasov-Poisson-Ampere equations around a non homogeneous profile. One
can strengthen the result with explicit rates of decay of the electric field, like
O(t−p) in usual norms. It can be obtained with p integration by parts in the
representation formula (1.10) below, provided one justifies the regularity and
summability of the integrands, see Remark 6.5.

The main idea of the proof is, with a new variable U ≈ (F, g), to obtain
a convenient representation of the solution as

U(t) =
∑

z∈{−,+,c}

∑
k 6=0

∫
Iεz

(
U0, U

ε
e,k,z

)
etλe,kV εe,0,zt

ε
ede (1.10)

where Uεe,k,z denotes generalized eigenvectors of an linear hermitian operator

Hε
0 which represents the equations (1.5) without the coupling between the
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articles and the electric field and V εe,k,z denotes generalized eigenvectors of

another linear hermitian operator Hε which represents the equations (1.5)
with the coupling between the articles and the electric field. The parameters
are: z ∈ {−,+, c} the zone as in Figure 1; k ∈ Z the discrete index of a
Fourier mode along the characteristic curve with continuous label e ∈ Iεz ;
and ε the small parameter already introduced. The exponentials etλe,k con-
tain pure imaginary terms since λe,k = 2iπp/tεe where tεe > 0 is the finite
travel time along the characteristic curve and p 6= 0 as a consequence of
the Hypothesis 1.6. Phase mixing is promoted for large time t > 0 by the
oscillatory exponentials in the formula (1.10) since tεe is strictly monotone
(increasing or decreasing) with respect to the label of the characteristics as
a consequence of the Hypothesis 1.5: the result of Theorem 1.7 is a direct
consequence of Formula (1.10).

The establishment of the formula (1.10) starts by understanding that
the generalized eigenvectors Uεe,k,z are easily constructed from the knowl-
edge of the characteristic curves depicted in Figure 1: this is the easy part.
The difficult part is the construction of the generalized eigenvectors V εe,k,z
of the full set of equations. Using the philosophy of abstract scattering,
they are constructed with a perturbative method which can be reduced to
a Lipmann-Schwinger type equation [49]. The variational formulation1 of
Lipmann-Schwinger equation is: find a ∈ L2

0(I) such that, for all b ∈ L2
0(I),

(a, b) +
∑
p 6=0

ε2

π2p2P.V.
∫
R
mεa,b,p(λ)dλ

λ−σ +
∑
p>0

ε2

π2p2P.V.
∫
R
nεa,b,p(λ)dλ

λ−σ = Lε(b),
(1.11)

where the function a is fundamentally an electric field (more precisely it
is the first component of V εe,0,z) and σ ∈ R∗. The terms mε

a,b,p and nεa,b,p
are bilinear forms with respect to a and b and the term Lε(b) is a linear
form with respect to b. The well-posedness of (1.11) is based on classical
analytical considerations for the integral Hilbert transform [51], the main
issue is a careful evaluation of the summability of the series (1.11). The most
intricate technical issue is for the nεa,b,p which correspond to the trapped
region of particules: a specific estimate in Hölder norm is developed for the
corresponding Abel integrals [31], see Appendix B.

The organization of this work is as follows. In Section 2 we write the
model problem in the context of abstract scattering theory. The spectral prop-
erties of the unperturbed operator is studied in Section 3 using a Koopman-
von-Neumann approach which makes the connection between the charac-
teristic lines of the transport operator and the generalized eigenvectors. The
property of the travel time seen as a label of the characteristics lines is studied
in Section 3.1.4. The next section 4 is devoted to the study of the generalized
eigenvectors of the perturbed operator by means of an original Lippmann-
Schwinger equation. The main result is that this equation is well-posed in

1Here (a, b) denotes the L2(I) hermitian product of two square integrable functions. The
space is L2

0(I) := L2(I) ∩
{∫

I a(x)dx = 0
}
.
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L2
0(I). Section 6 is devoted to a proof of linear Landau damping for the un-

perturbed operator, which finishes the proof of the main Theorem 1.7. Some
elementary analytical results are postponed to the appendices.

The pure imaginary number i satisfies i2 = −1. For the sake of simplic-
ity, some technicalities will be treated without further justification with the
Dirac comb formula ∑

k∈Z
exp (2iπkx) = δ(x) (1.12)

or with a similar formula
∑∞
n=0 ψn(x)ψn(y) = δ(x − y) where ψn is the

Hermite function [1]. The notation ε is reserved for the small parameter used

for rescaling. The notation α = (2π)
1
4 is reserved for the Gauss identity∫

R exp(−v2/2) =
√

2π = α2. We shall use the generic notation C := C(ϕ0)
for any real constant which has a dependance solely with respect to ϕ0.
Assumptions 1.3, 1.4, 1.5 and 1.6 are made without restrictions.

2. A scattering formulation

We reformulate the model problem as an abstract scattering equation. This
is made possible because the system (1.5) with the Boltzmanian assumption
1.3 is endowed with a weighted L2 conservation property which can be traced
back to the early works of Kruzkal-Obermann [36] and Antonov [2]

d

dt

(∫
I

∫
R

g2

ε2n0G
dvdx+

∫
I

F 2dx

)
= 0. (2.1)

2.1. Reformulation

Let us define M(x, v) =
√
f0(x, v) =

√
n0(x)G(v) = exp

(
−v

2

4 + ε2 ϕ0(x)
2

)
and the function u = g

εM . Using that
(
v∂x − ε2E0∂v

)
M = 0, the model

linear Vlasov-Ampère system (1.5) is rewritten as{
∂tu+ v∂xu− ε2E0∂vu = −εvMF, t > 0, (x, v) ∈ I × R,
∂tF = ε1∗

∫
R uvMdv, t > 0, x ∈ I,

(2.2)
with the energy identity d

dt

(∫
I

∫
R u

2dvdx+
∫
I
F 2dx

)
= 0. The Gauss law

rewrites

∂xF = −ε
∫
R
uMdv. (2.3)

Define the space L2
0(I) :=

{
F ∈ L2(I) |

∫
I
F (x)dx = 0

}
. Let us consider that

vM ∈ L
(
L2
0(I), L2(I × R)

)
is a multiplication operator. Take u ∈ L2(I × R)

and F ∈ L2
0(I): one has the identity∫

I

∫
R
u(vMF )dvdx =

∫
I

(∫
R
uvMdv

)
Fdx =

∫
I

(
1∗
∫
R
uvMdv

)
Fdx.

Denoting
(
1∗
∫
v
vM

)
u = 1∗

∫
R uvMdv, it shows that 1∗

∫
v
vM ∈ L

(
L2(I × R), L2

0(I)
)

is the adjoint operator of vM . We systematically introduce the pure imagi-
nary number i2 = −1 to obtain compatibility with more standard notations
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in scattering theory [33, 38, 29, 55, 25, 49]. Define the space of complex-valued
functions

X = L2(I × R)× L2
0(I). (2.4)

One can recast the linear Vlasov-Ampère equations (2.2) as ∂tU(t) = iHεU(t)

where the unknown is U =

(
u
F

)
∈ X and the anti-symmetric operator is

iHε =

(
−v∂x + ε2E0∂v −εvM
ε1∗

∫
v
vM 0

)
.

In order to keep a physical interpretation of the left hand side of the equation,
the imaginary number i is factor of the Hamiltonian operator and not of the
time derivative: it is only a matter of taste. One has the decomposition of
operators iHε = iHε

0 + εiK where

iHε
0 =

(
−v∂x + ε2E0∂v 0

0 0

)
and εiK =

(
0 −εvM

ε1∗
∫
v
vM 0

)
The unperturbed operator iHε

0 models the dynamics of the particles along
the characteristics without the strong interaction with the electric field, but
with some knowledge of the electric field through the term ε2E0∂v. The per-
turbation operator εiK models the strong interaction between the particles
and the electric field. Writing in Section 2.2 all quantities with moments
against Hermite functions, we will see that the operator K is in the velocity
direction realized as an infinite matrix with finite rank. So K can be seen
as a compact operator in v. Actually compactness of the perturbation K in
the space direction x can be obtained by averaging lemmas, as in [20] which
extends earlier results [27, 26]. The term ε2E0∂v is still part of the unper-
turbed operator iHε

0 because it is not a compact perturbation. The reason
there is a ε2 in front of E0∂v is because it is the only way that was found to
insure the physically sound ion positivity condition (1.4). This way of writing
the ”free operator” iHε

0 , original with respect to the literature due to the ε
dependance, is convenient for our purposes.

2.2. Hermite representation of the eigenstructure

We concentrate on the explicit construction of generalized eigenvectors Uελ
of the free Hamiltonian iHε

0U
ε
λ = λεUελ, and of generalized eigenvectors V ελ

of the full Hamiltonian iHεV ελ = λεV ελ . We decide to construct a convenient
basis of the space L2(I × R) with moments against Hermite functions as
proposed in the seminal works [14, 15], with recent extensions in [28, 18].
Moreover it appears that the equation which defines the generalized eigen-
vectors of iHε

0 can more easily be defined if one has in mind the structure
of the characteristic lines of the transport operator because the generalized
eigenvectors can be interpreted as some Dirac masses which move along the
characteristic lines. This approach, which makes an explicit connection be-
tween a transport/Liouville equation and the underlying Hilbert structure, is



10 Bruno Després

called the KvN approach, giving full credit to a formalization of quantum me-
chanics achieved by Koopman [35] and von Neuman [53, 54]. It is sometimes
referred to as Koopmanism.

The Hermite polynomials Hn(v) = (−1)nG(v)−1 dn

dvnG(v) are orthonor-
mal with respect to the Maxwellian weight G(v), see [1, 28]. The degree of Hn

is n. The parity of Hn is the parity of n. Hermite polynomials are orthogonal
with respect to the Maxwellian weight

∫
Hn(v)Hm(v)G(v)dv = (2π)

1
2n! δnm

for n,m ∈ N. One has the recursion formula Hn+1(v) = vHn(v) −Hn−1(v).
Hermite polynomials are a Hilbert basis of

{
f ∈ L2

loc(R) |
∫
R f

2(v)G(v)dv <∞
}

.

Define for convenience In(v) = (2π)−
1
4n!−

1
2Hn (v) and the Hermite functions

ψn(v) = In(v)G
1
2 (v) which constitute a Hilbert basis of L2(R). The family

(ψn)n∈N is by construction orthonormal:
∫
R ψp(v)ψq(v)dv = δpq. The first

terms of the series are

ψ0(v) =
G

1
2 (v)

α
, ψ1(v) =

vG
1
2 (v)

α
, ψ2(v) =

(v2 − 1)G
1
2 (v)

α
√

2
, α = (2π)

1
4 .

(2.5)
The recursion formula becomes after rescaling

vψn(v) =
√
n+ 1ψn+1(v) +

√
nψn−1(v), n ∈ N. (2.6)

Another fundamental relation [1, 28] writes

ψ′n(v) =
1

2

(
−
√
n+ 1ψn+1(v) +

√
nψn−1(v)

)
, n ∈ N. (2.7)

The system (2.2) is therefore rewritten as{
∂tu+ v∂xu− ε2E0∂vu = −αn0(x)ψ1(v)F, t > 0, (x, v) ∈ I × R,
∂tF = α(n0ψ1)∗u, t > 0, x ∈ I

(2.8)
where (n0ψ1)∗ is the adjoint of the multiplication operator by n0(x)ψ1, in
the spaces L2

0(I)× L2(I × R).
Assuming in view of the energy identity that u(t) ∈ L2(I × R), we

define the moments αn(t) ∈ L2(I) by u(t, x, v) =
∑
n un(t, x)ψn(v) and un =∫

R uψndv. By definition ‖u‖2L2(I×R) =
∑
n∈N ‖un‖2L2(I). One constructs the

vector U where F is the first component

U(t, ·) = (F (t, ·), u0(t, ·), u1(t, ·), u2(t, ·), . . . )t . (2.9)

The symmetric matrixAt = A = (aij)(i,j)∈N2 with aij = δ|i−j|,1
√

max(j − 2, 0)

corresponds to the multiplication by v and the antisymmetric matrix Bt =
−B with bij = 1

2 (−1)j−iaij corresponds to the operator ∂v. That is

A =



0 0 0 0 . . .
0 0 1 0 . . .

0 1 0 2
1
2 . . .

0 0 2
1
2 0 . . .

0 0 0 3
1
2 . . .

. . . . . . . . . . . . . . .

 and B =
1

2



0 0 0 0 . . .
0 0 1 0 . . .

0 −1 0 2
1
2 . . .

0 0 −2
1
2 0 . . .

0 0 0 −3
1
2 . . .

. . . . . . . . . . . . . . .

 .
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The rank-2 matrix D corresponds to the coupling terms in the right hand
side of (2.8)

D =


0 0 α1∗

√
n0(x) 0 0 . . .

0 0 0 0 0 . . .

−α
√
n0(x) 0 0 0 0 . . .

0 0 0 0 0 0
0 0 0 0 0 0
. . . . . . . . . . . . . . . . . .

 = −Dt. (2.10)

With these notations the system (2.8) is recast as ∂tU = iHεU where iHε =
i(Hε

0 + εK), iHε
0 = −A∂xU + ε2E0(x)BU and iKU = DU .

2.3. Spaces

The Hilbert space (2.4) is identified with

X =

{
U = (αn)n∈N ∈ L2(I)N with α0 ∈ L2

0(I),
∑
n∈N
‖αn‖2L2(I) <∞

}
.

(2.11)
The natural norm in X is ‖U‖2 =

∑
n ‖αn‖2L2(I). The sesquilinear product

is (U1, U2) =
∑
n

∫
I
α1
n(x)α2

n(x)dx for U1, U2 ∈ X. A space larger than X is

Xloc = L2
0(I)×L2(I)N. We shall also consider a smaller space X0 compactly

embedded in X, all its elements have compact support with respect to the
index n

X0 =
{
U ∈ X | αn ∈W 1,∞

per (I) for n ≤ N and αn = 0 for N < n
}
.

One has the embeddings X0 ⊂ X ⊂ Xloc.

2.4. Spectral reduction of A

The operator/matrix A can be viewed as an unbounded hermitian operator
over the space l2. We will use the notation that ep = (0, . . . , 0, 1, 0, . . . )t,
p = 0, 1, . . . , where the coefficient 1 is in the p-th position. We say that
W ∈ RN is a generalized eigenvector of A if it satisfies the eigenequation
AW = µW, µ ∈ R. If W ∈ l2, then W is a classical eigenvector and µ is in
the discrete spectrum.

Proposition 2.1. The matrix A admits one null eigenvector e0 (Ae0 = 0) in
the discrete spectrum. For all µ ∈ R, Uµ is in the continuous spectrum

Uµ = (0, ψ0(µ), ψ1(µ), ψ2(µ), . . . )t, AUµ = µUµ. (2.12)

Proof. Evident from the recurrence relation (2.6) for Hermite functions. �

Proposition 2.2. These eigenvectors are complete: for all U ∈ l2, one has the
spectral decomposition U = U · e0e0 +

∫
R U · UµUµdµ and |U |2 = U · U =

|U · e0|2 +
∫
R |U · Uµ|

2
dµ.

Proof. Hermite functions (ψn(µ))n∈N are a Hilbert basis of L2(R). �

Lemma 2.3 (Consequence of formula (2.7)). One has BUλ = −∂λUλ.
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3. Spectral reduction of iHε
0

The goal is to extended the previous results to the operator iHε
0 viewed as an

unbounded Hermitian operator over X. Since we desire to be specific in this
work, we consider the case of study described in Figure 1 with one region of

trapped particles. The separatrix is the curve v2

2 − ε
2ϕ0(x) = −ε2ϕ−0 .

3.1. Eigenstructure

The Koopman-von Neuman philosophy is exactly what is needed to obtain
an explicit representation of the generalized eigenstructure of iHε

0 = −A∂x+
ε2E0(x)B in relation with a convenient characteristic equation.
• One notices that the first line of the infinite matrices A and B vanishes. So
any function of the form

u0(·) = w(·)e0 ∈ V, w ∈ L2
0(I),

is an eigenvector with eigenvalue 0, therefore in the discrete spectrum.
• To construct generalized eigenvectors of iHε

0 , we start from the formula

U(x) = τ(x)Uµ(x) = τ(x)(0, ψ0(µ(x)), ψ1(µ(x)), ψ2(µ(x)), . . . )t

and try to find some functions x 7→ τ(x) and x 7→ µ(x) so that iH0εU = λU
for a given λ ∈ iR. It comes from the representation with moments of a Dirac
mass u(x, v) = τ(x)δ(v− µ(x)) at a varying vertical position (this method is
interpreted as Koopmanism). The algebra detailed in the next proposition is
a zoom in a small interval (x1, x2) ⊂ I. It will be extended to I in a second
stage.

Proposition 3.1. Take 0 < x1 < x2 < 1. Assume that

− (τ(x)µ(x))
′

= λτ(x), x1 < x < x2 (3.1)

with the characteristic equation

1

2
µ(x)2 − ε2ϕ0(x) = e ∈ R, x1 < x < x2. (3.2)

Then Uλ(x) := τ(x)Uµ(x) satisfies iHε
0Uλ(x) = λUλ(x) for x1 < x < x2.

Proof. By construction one has AU(x) = µ(x)U(x) from (2.12) and BU(x) =
−∂λU(x) from Lemma 2.3. So

iHε
0Uλ(x) = −∂x(AU(x)) + ε2E0(x)BU(x)

= −∂x
(
τ(x)µ(x)Uµ(x)

)
+ ε2E0(x)τ(x)BUµ(x)

= − (τ(x)µ(x))
′
Uµ(x) − τ(x)µ(x)µ′(x) (∂λUλ)λ=µ(x) + ε2E0(x)τ(x)BUµ(x)

= − (τ(x)µ(x))
′
Uµ(x) + τ(x)

[
µ(x)µ′(x) + ε2E0(x)

]
BUµ(x).

Using (3.1-3.2), one gets iHε
0Uλ(x) = λτ(x)Uµ(x) + 0 = λUλ(x) for x1 < x <

x2. The proof is ended. �

The next steps extend the construction in the entire interval I with the
periodic boundary condition. At inspection of the figure 1 one distinguishes
three zones in the construction.
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3.1.1. Zone +. In zone + the characteristics lines are mono-valued functions
of the x variable. It corresponds to e > −ε2ϕ−0 and positive velocities. Then
µ in (3.2) is function of x with parameters e and ε

µεe(x) =
√

2(e+ ε2ϕ0(x)) ≥
√

2(e+ ε2ϕ−0 ) > 0. (3.3)

This function is positive and periodic. The index e, also called a label in
plasma physics literature, is the value of the kinetic energy at the point x∗
such that the electric potential vanishes ϕ0(x∗) = 0, that is e = µe(x∗)

2/2 =
v2(x∗)

2/2.

It is convenient to define a new variable y(x) =
∫ x
0
µεe(s)

−1ds. Since µεe
is the dimension of a velocity, then y has the dimension of a time: it is the
time spent by a particle which travels along the characteristics. The total

time spent by the particle along the characteristic is tεe =
∫ 1

0
µεe(s)

−1ds > 0.
In the plasma physics literature [46, 8, 7] y(x)/te is called the angle variable
[3][page 5]. Equipped with these notations, one can now find the solutions of
equation (3.1-3.2) over the interval I.

Proposition 3.2. In zone +, the periodic solutions (µ, τ) of (3.1-3.2) are µ =
µεe given by (3.3) and τ = τεe,k

τεe,k(x) :=
1

tεeµ
ε
e(x)

exp

(
2iπk

∫ x
0
µεe(s)

−1ds

tεe

)
.

Remark 3.3. If ϕ0 ≡ 0, then
∫ x
0
µεe(s)

−1ds

tεe
= x. In this case τεe,k(x) = exp (2iπkx)

is the usual Fourier mode and is independent of e and ε.

Proof. Equation (3.2) is evident. Equation (3.1) recasts as −µ(τµ)′(x) =
λ(τµ) that is with the time variable − d

dy (τµ) = λ(τµ). The general solution is

an exponential. Since one looks for periodic functions, one obtains (τµe)(y) =
1
Lexp (2iπky/y(1)) with λ = −2iπk/y(1) where k ∈ Z and L is an arbitrary
factor. Taking L = tεe and going back to the original variable, the proof of
the claim is ended. �

One obtains a first family

Uεe,k,+(x) =
1

tεeµ
ε
e(x)

exp

(
2iπk

∫ x
0
µεe(s)

−1ds

tεe

)
Uµεe(x). (3.4)

Proposition 3.4. Let e ∈ (−ε2ϕ−0 ,∞) and k ∈ Z. The vectorial function
Uεe,k,+ ∈ Xloc is a generalized eigenvector of iHε

0

iHε
0U

ε
e,k,+ = λεe,kU

ε
e,k,+, λεe,k = −2iπk

tεe
∈ iR. (3.5)

The vectorial identity (3.5) is made of a countable number of differen-
tiable relations.
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3.1.2. Zone -. The construction is the same, but with the negative root of
the characteristic equation (3.2) and still with the restriction e > −ε2ϕ−0 .
One obtains

Uεe,k,−(x) =
1

tεeµ
ε
e(x)

exp

(
−2iπk

∫ x
0
µεe(s)

−1ds

tεe

)
U−µe(x). (3.6)

One obtains readily.

Proposition 3.5. Let e ∈ (−ε2ϕ−0 ,∞) and k ∈ Z. The vectorial function
Uεe,k,− ∈ Xloc is a generalized eigenvector of iHε

0 , that is one has iHε
0U

ε
e,k,− =

λεe,kU
ε
e,k,− with λεe,k = − 2iπk

tεe
.

3.1.3. Zone c. In view of the fact that the characteristic lines are closed (see
figure 1), a modification is needed to define correctly the generalized eigenvec-
tors in the central zone for trapped particles. The idea is to combine one ”+”
contribution (3.4) and on ”-” contribution (3.6), because the characteristics
make a loop in the central zone. One restricts the range

e ∈
(
−ε2ϕ−0 ,−ε2ϕ

+
0

)
, ϕ−0 = min

x∈I
ϕ0(x), ϕ+

0 = max
x∈I

ϕ0(x) (3.7)

and defines

µεe(x) =
√

2 max (e+ ε2ϕ0(x), 0) ≥ 0.

One tries to construct generalized eigenvectors under the form

U(x) = τ+(x)Uµεe(x) − τ
−(x)U−µεe(x) (3.8)

where τ± are unknown functions. Notice that µεe has a compact support:
µεe(x) = 0 for e + ε2ϕ0(x) ≤ 0. Considering (3.7) and Assumption 1.8, the
function µεe vanishes at two endpoints defined by µεe(a

ε
e) = µεe(b

ε
e) = 0 and

< aεe < bεe < 1. One has µεe(x) > 0 for aεe < x < bεe and µεe(x) = 0 for 0 ≤ x ≤
aεe and be ≤ x ≤ 1. By imposing the condition that τ+(x) = τ−(x) = 0 for
0 ≤ x < aεe and bεe < x ≤ 1, it insures that U (3.8) vanishes identically (in
x) outside the support (in x) of the characteristic line with level (or label) e.
This idea is the main difference with the construction in zones + and -. Let
us take

τ+(x) =
1

µεe(x)
exp

(
−λ
∫ x

aεe

µεe(s)
−1ds

)
, aεe < x < bεe.

Proposition 3.1 yields iH0τ
+(x)Uµe(x) = λτ+(x)Uµe(x) for ae < x < be.

Similarly take with a minus sign

τ−(x) =
−1

µεe(x)
exp

(
λ

∫ x

aεe

µεe(s)
−1ds

)
, aεe < x < bεe.

Proposition 3.1 yields iHε
0τ
−(x)Uε−µe(x) = λτ−(x)Uε−µe(x) for ae < x < be.

The linear combination (3.8) satisfies iHε
0U(x) = λUε(x) for x 6= aεe, b

ε
e. The
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infinite vector U exhibits by construction a divergence at x = aεe and x = bεe,
since µe(ae) = µe(be) = 0. More precisely for 0 < aεe < x < bεe < 1

µεe(x) = ε
√

2(ϕ0(x)− ϕ0(ae) ≈ ε
√

2ϕ′0(ae)
√
x− ae, for x ≈ (aεe)

+ (3.9)

and

µεe(x) = ε
√

2(ϕ0(x)− ϕ0(be) ≈ ε
√
−2ϕ′0(be)

√
be − x, for x ≈ (bεe)

−.

(3.10)
In particular U 6∈ Xloc because the inverse of the square root is not square
integrable. Let e be in the range (3.7) and define

λεe,k =
−2iπk

tεe
for k ∈ Z, tεe = 2

∫ bεe

aεe

µεe(s)
−1ds.

The factor 2 in front of the integral is because characteristics make a loop in
the central zone, see Figure 1. Define infinite vector almost everywhere in x
as follows. If x ∈ (aεe, b

ε
e) then

Uεe,k,c(x) =
1

tεeµ
ε
e(x)

exp

(
2iπk

∫ x
aεe
µεe(s)

−1ds

tεe

)
Uµεe(x) (3.11)

+
1

tεeµ
ε
e(x)

exp

(
−2iπk

∫ x
aεe
µεe(s)

−1ds

tεe

)
U−µεe(x)

and Uεe,k,c(x) = 0 for x ∈ [0, aεe) ∪ (bεe, 1].

Proposition 3.6. Let e ∈ (−ε2ϕ+
0 ,−ε2ϕ

−
0 ) and k ∈ Z. One has the regularity

Uεe,k,c ∈ Lp(I)N for 1 ≤ p < 2 and AUεe,k,c ∈ C0(I)N. Moreover
(
Uεe,k,c, λ

ε
k,e

)
is a generalized eigenpair of the operator iHε

0 = −A∂x + ε2E0B in a weak
sense(
AUεe,k,c,W

′)+ε2 (E0BU
ε
e,k,c,W

)
= λεe,k

(
Uεe,k,c,W

)
, ∀W ∈ X0. (3.12)

Remark 3.7. The identity (3.12) can be decomposed in a countable number
of differentiable (in a weak sense) relations between functions in Lp(I) with
1 ≤ p < 2. This is an important difference with (3.5) which is in strong form.

Proof. The proof proceeds in three steps.
• One has the decomposition Uεe,k,c = (0, α0, α1, . . . )n∈N with

αn(x) =
1

tεeµ
ε
e(x)

exp

(
2iπk

∫ x
aεe
µεe(s)

−1ds

tεe

)
ψn(µεe(x))

+
1

tεeµ
ε
e(x)

exp

(
−2iπk

∫ x
aεe
µεe(s)

−1ds

tεe

)
ψn(−µεe(x))

for aεe < x < bεe and αn(x) = 0 for x ∈ [0, aεe) ∪ (bεe, 1]. Since µεe has a square
root singularity at aεe and bεe, then αn ∈ Lp(I) for all n ∈ N and 1 ≤ p < 2.
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• Next, as a consequence of (2.12), one has that

AUεe,k,c(x) =
1

tεe
exp

(
2iπk

∫ x
aεe
µεe(s)

−1ds

tεe

)
Uµεe(x)

− 1

tεe
exp

(
−2iπk

∫ x
aεe
µεe(s)

−1ds

tεe

)
U−µεe(x), x ∈ (aεe, b

ε
e).

One obtains component per component limx→(aεe)
+ AUεe,k,c(x)

= 1
tεe

(
Uµεe(aεe) − U−µεe(aεe)

)
= 1

tεe
(Uε0 − Uε0 ) = 0. Similarly

lim
x→(bεe)

−
AUεe,k,c(x)

=
1

tεe

exp

2iπk

∫ bεe
aεe
µεe(s)

−1ds

tεe

Uµεe(bεe) − exp

−2iπk

∫ bεe
aεe
µεe(s)

−1ds

tεe

U−µεe(bεe)


=

1

tεe

(
(−1)kU0 − (−1)kU0

)
= 0.

Since Uεe,k,c(x) = 0 for x < aεe or bεe < x, one has the continuity of AUεe,k,c at
aεe and bεe. Therefore AUεe,k,c is a continuous function, component wise.
• Since AUεe,k,c is continuous, the derivative in the sense of distribution of

AUεe,k,c is almost everywhere equal to the point wise derivative, so (3.12)
holds for all test function W ∈ X0. The proof is ended. �

3.1.4. Fine properties of tεe. This section is devoted to the study of the func-
tion e 7→ tεe which is the time spent by a particle which moves freely along
the characteristic with label e. In the plasma physics literature [3][page 5],
1/tεe is called the frequency and enters in the definition of the action-angle
variables [46]. This study is fundamental in the context of this work because
the monotony of tεe allows to parametrize the different objects in function of
the spectral variable. Once again, we make assumptions 1.3, 1.4, 1.5 and 1.6
without restriction.

There is a natural rescaling with respect to ε

tεe =
1

ε
t̂e/ε2 , t̂e := t1e, (3.13)

with
t̂e =

∫ 1

0
dx√

2(e+ϕ0(x))
, e ∈ (−ϕ0−,∞) called the first branch,

t̂e = 2
∫ b̂e
âe

dx√
2(e+ϕ0(x))

, e ∈ (−ϕ+
0 ,−ϕ

−
0 ) called the second branch,

(3.14)

where âe < b̂e are the two roots of the equation e + ϕ0(x) = 0, that is

e + ϕ0(âe) = e + ϕ0(̂be) = 0. One has by continuity â−ϕ−0
= 0, â−ϕ+

0
=

b−ϕ+
0

= x0 and b−ϕ−0
= 1.

The map e 7→ t̂e (and the inverse maps) are depicted in Figure 2. The
monotony of the time of travel is by definition for the first branch. The
major non trivial property which establishes the monotony in the second
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branch (region of trapped particles) is proved in the sequel. The reason why
the time of travel is infinite for e = −ϕ−0 on both branches is because the
particles spend an infinite time in the region where v ≈ 0 at the limit: refer
also to Figure 1.

first branch

second branch

−ϕ−0 e

t̂e

−ϕ+
0

1/B

e

−ϕ−0

−ϕ+
0

s(λ)first branch

B

sc(λ)
second branch

λ

Figure 2. On the left: the total time of travel along char-
acteristics versus the label. On the right: the label versus the
frequency (i.e. the inverse of the total time of travel along
characteristics).

Proposition 3.8 (Parametrization of the first branch, proof is in appendix A).
The branch e ∈ (−ϕ−0 ,∞) can be parametrized as e = s(λ) for λ = 1

t̂e
where

the function s : (0,∞)→ (−ϕ−0 ,∞) has the properties
• The function is strictly increasing with the regularity s ∈ C1[0,∞).
• For large λ >> 1, one has s(λ) = O(λ2), s′(λ) = O(λ), s′′(λ) = O(1) and
s′′′(λ) = O(1/λ).

• For small 0 < λ, one has s(λ) = −ϕ−0 + αϕ0 exp

(
−
√
ϕ′′0 (0)

2λ

)
(1 + σ(λ))

where σ ∈ C0 with σ(0) = 0 and αϕ0
> 0 is a constant. The derivative is

s(n)(λ) = O

 exp

(
−
√
ϕ′′0 (0)

2λ

)
λ2n

 for n ≥ 1.

Proposition 3.9. Under assumption 1.4, the function e 7→ t̂e is strictly in-
creasing in (−ϕ+

0 ,−ϕ
−
0 ).

Proof. One has the decomposition
√

2t̂e =
∫ x0

âe
dx√

e+ϕ0(x)
+
∫ b̂e
x0

dx√
e+ϕ0(x)

. We

study the second term
∫ b̂e
x0

dx√
e+ϕ0(x)

and show it is monotone. Set for conve-

nience e = e+ϕ+
0 ∈ (0, ϕ+

0 −ϕ
−
0 ) and ψ(z) = ϕ+

0 −ϕ0(x) = ϕ0(x0)−ϕ0(x) ≥ 0.

With these notations one has
∫ b̂e
x0

dx√
e+ϕ0(x)

= H(e) :=
∫ b̂e
x0

dx√
e−ψ(x)

. Set the

change of variable ψ(x) = eu2 for x0 ≤ x ≤ b̂e and 0 ≤ u ≤ 1. Note that
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ψ > 0, ψ′ > 0 for x0 < x < b̂e and ψ′(x)dx = 2eudu. So

H(e) =

∫ 1

0

2u√
1− u2

gu(e)du (3.15)

with

gu(e) =

√
e

ψ′(ψ−1(eu2)
. (3.16)

The derivative of gu is (z = ψ−1(eu2))

d

de
gu(e) =

1

2
√
eψ′(z)

−
√
e
ψ′′(z)ψ′(z)−1(−u2)

ψ′(z)2
=

1

2
√
eψ′(z)

(
1− 2

ψ′′(z)ψ(z)

ψ′(z)2

)
.

One has (
√
ψ)′ = ψ′

2
√
ψ

and 2(
√
ψ)′′ = ψ′′√

ψ
− 1

2
(ψ′)2

(ψ)
3
2

= − 1
2
(ψ′)2

(ψ)
3
2

(
1− 2 ψ′′ψ

(ψ′)2

)
.

It yields the formula

d

de
gu(e) = −2

(ψ)
3
2

√
e(ψ′)3

(
√
ψ)′′ = −2e

u3

(ψ′)3
(
√
ψ)′′. (3.17)

Therefore the strict concavity of
√
ψ yields an strictly increasing e 7→ gu(e),

so
d

de
H(e) =

∫ 1

0

2u√
1− u2

d

de
gu(e)du > 0. (3.18)

The same result for the second integral
∫ x0

âe
dx√

e+ϕ0(x)
. The proof is ended. �

The monotony of e 7→ t̂e on the second branch e ∈ (−ϕ+
0 ,−ϕ

−
0 ) implies

that there is a limit at both ends of the interval. The limit is infinite at −ϕ−0 ,
and it is proved in Lemma A.5 that the limit at the lower bound is finite
t̂−ϕ+

0
= 1
B . More precisely it is proved that the inverse of the lower bound of

the time of travel in the region of trapped particles is

B =

√
ψ′′0 (x0)√

2π
.

Proposition 3.10 (Parametrization of the second branch, proof in Appendix
A). The branch e ∈ (−ϕ+

0 ,−ϕ
−
0 ) can be parametrized as e = sc(λ) for λ = 1

t̂e

where the function sc : (0,B)→ (−ϕ+
0 ,−ϕ

−
0 ) has the following properties

• The function is strictly decreasing with the regularity sc ∈ C1 [0,B].

• For λ < B, one has sc(λ) = −ϕ+
0 +

(
π
√
ψ′′(x0)

2
√
2(
√
ψ)′′(x0)

)2

(λ− B)
2

+O (λ− B)
3

and s′c(λ) = O (λ− B).

• for small λ > 0, one has sc(λ) = −ϕ−0 + αϕ0
exp

(
−
√
ϕ′′0 (0)

4λ

)
(1 + σ(λ))

where σ is a continuous function with σ(0) = 0. The derivative at order n ≥ 1

is s
(n)
c (λ) = O

 exp

(
−
√
ϕ′′0 (0)

2λ

)
λ2n

.
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3.1.5. Rescaled inverse fonctions. In view of (3.13) the rescaled inverse func-
tions are sε and sεc

sε(λ) = ε2s(λ/ε) and sεc(λ) = ε2sc(λ/ε). (3.19)

The rescaled inverse functions are defined over Iε+ = Iε− = (−ε2ϕ−0 ,∞) and

Iεc = (−ε2ϕ+
0 ,−ε2ϕ

−
0 ). Some inequalities uniform with respect to ε can be

proved.

Lemma 3.11. One has the uniform lower bound

cλ2 ≤ sε(λ) 0 ≤ λ and 0 < ε ≤ 1 (3.20)

and the uniform upper bounds

|(sε)′(λ)| ≤ Cλ 0 ≤ λ (3.21)

and

|(sεc)′(λ)| ≤ Cλ 0 ≤ λ ≤ εB. (3.22)

Proof. By Proposition 3.8, there exists c > 0 such that s(λ)
λ2 ≥ c for all λ.

It yields (3.20). By Propositions 3.8 and 3.10, there exists C > 0 such that
|s′(λ)| ≤ Cλ and |s′c(λ)| ≤ Cλ. It yields (3.21-3.22). The proof is ended. �

3.2. Completness

Theorem 3.12. Let U ∈ X. The spectral decomposition holds

U = U · e0e0 +
∑
z

∑
k∈Z

∫
e∈Iεz

(
U,Uεe,k,z

)
Uεe,k,zt

ε
ede (3.23)

with the Plancherel identity ‖U‖2 = (U, e0)
2
+
∑
z

∑
k∈Z

∫
e∈Iεz

∣∣∣(U,Uεe,k,z)∣∣∣2 tεede.
Proof. The proof is performed for U ∈ X0 by a direct computation. By
density of X0 in X, it will prove the result in X. Notice that U ∈ X0 has
only a finite number of non zero components which are all in H1(I): since
Uεe,k ∈ Lp(I)N for 1 ≤ p < 2, it is enough to get the integrability and

summability needed to give sense to
(
U,Uεe,k

)
. The formulas (3.23) and the

Plancherel identity are equivalent, that is why we will prove only the first one.
A last remark is that (3.23) can be checked for different lines independently
one to the other: indeed U,Uεe,k,+, . . . are infinite vectors. The method of
the proof is by successive changes of variables and the completeness of the
Hermite functions.

For U ∈ X0, we begin with the analysis of the integral in the zone
”z = +”

K1 =
∑
k∈Z

∫
Iε+

(
U,Uεe,k,+

)
Uεe,k,+(x)tεede

=

∫
Iε+

(∑
k∈Z

∫ 1

0

U(y) · Uµεe(y)e
2iπk

∫x
0

ds
µεe(s)

−
∫y
0

ds
µεe(s)

tεe
dy

tεeµ
ε
e(y)

)
Uµεe(x)

de

µεe(x)
.
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The notation ” · ” is understood as the scalar or hermitian product of a
complex valued vector U(y) which has only a finite number of non zero com-
ponents since U ∈ X0 and the infinite real valued vector Uµεe(y). We make

a change of variable ŷεe = 1
tεe

∫ y
0

ds
µεe(s)

such that dŷεe = dy
tεeµ

ε
e(y)

. We also set

x̂εe = 1
tεe

∫ x
0

ds
µεe(s)

. Using the Dirac comb formula (1.12), one has that

∑
k∈Z

∫ 1

0

U(y) · Uµεe(y) exp

(
2iπk

∫ x
0

ds
µεe(s)

−
∫ y
0

ds
µεe(s)

tεe

)
dy

tεeµ
ε
e(y)

=
∑
k∈Z

∫ 1

0

U(y) · Uµεe(y) exp (2iπk(x̂εe − ŷεe)) dŷεe = U(x) · Uµεe(x)

One obtains K1 =
∫
Iε+
U(x) ·Uµεe(x)

1
µεe(x)

Uµεe(x)de. The definition of µεe, that is

1
2µ

ε
e(x)2−ε2ϕ0(x) = e, yields dµεe(x) = de

µεe(x)
for every x. We write λ = µεe(x)

with the bounds λ ∈
(
ε
√

2(ϕ0(x)− ϕ−0 ),∞
)

in the first branch. Therefore

K1 =
∫∞
ε
√

2(ϕ0(x)−ϕ−0 )
U(x) · UλUλdλ where Uλ has been defined in (2.12).

Similarly the integral in the zone ”z = −”, one has

K2 =
∑
k∈Z

∫
Iε−

(
U,Uεe,k,−

)
Uεe,k,−(x) de

µεe(x)
=
∫
Iε−
U(x) · U−λU−λdλ rewritten

as K2 =
∫ −ε√2(ϕ0(x)−ϕ−0 )

−∞ U(x) · UλUλdλ. With a little more technicalities
detailed in the next proposition, the integral in the zone ”z = c” is

K3 =

∫ ε
√

2(ϕ0(x)−ϕ−0 )

−ε
√

2(ϕ0(x)−ϕ−0 )

U(x) · UλUλdλ. (3.24)

Using the orthonormality properties of the Hermite functions, one gets K1 +
K2 +K3 =

∫∞
−∞ U(x) ·UλUλdλ = U(x)−U(x) · e0e0 from which the claim is

proved. �

Proposition 3.13. The formula (3.24) holds.

Proof. We note 0 < aεe < bεe < 1 the boundaries of the interval (3.9-3.10).
Since Uµεe is now defined in (3.11) as the difference of two terms, full expansion
yields four contributions. So

K3 =

∫
Iεc


∑
k∈Z

∫ bεe

aεe

U(y) · Uµεe(y)e
2iπk

∫x
aεe

ds
µεe(s)

−
∫y
aεe

ds
µεe(s)

tεe
dy

tεeµe(y)︸ ︷︷ ︸
=D1

Uµe(x)
de

µe(x)

+

∫
Iεc


∑
k∈Z

∫ bεe

aεe

U(y) · U−µεe(y)e
−2iπk

∫x
aεe

ds
µεe(s)

−
∫y
aεe

ds
µεe(s)

tεe
dy

tεeµ
ε
e(y)︸ ︷︷ ︸

=D2

U−µεe(x)
de

µεe(x)
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+

∫
Iεc


∑
k∈Z

∫ bεe

aεe

U(y) · U−µεe(y)e
2iπk

∫x
aεe

ds
µεe(s)

+
∫y
aεe

ds
µεe(s)

tεe
dy

tεeµ
ε
e(y)︸ ︷︷ ︸

=D3

Uµεe(x)
de

µεe(x)

+

∫
Iεc


∑
k∈Z

∫ bεe

aεe

U(y) · Uµεe(y)e
−2iπk

∫x
aεe

ds
µεe(s)

+
∫y
aεe

ds
µe(s)

tεe
dy

tεeµ
ε
e(y)︸ ︷︷ ︸

=D4

U−µεe(x)
de

µεe(x)
.

We consider the change of variable ŷεe = 2
tεe

∫ y
aεe

ds
µεe(s)

, with dŷεe = 2dy
tεeµ

ε
e(y)

. No-

tice that ŷεe ∈ [0, 1]. The same notation is used for x̂εe ∈ [0, 1].

• It yields for the first termD1 = 1
2

∑
k∈Z

∫ 1

0
U(y)·Uµεe(y) exp (iπk(x̂εe − ŷεe)) dŷεe .

Splitting between even and odd k, one has

D1 =
1

2

∑
k∈Z

∫ 1

0

U(y) · Uµεe(y) exp (2iπk(x̂εe − ŷεe)) dŷεe

+
1

2
exp (−iπx̂εe)

∑
k∈Z

∫ 1

0

U(y) · Uµεe(y) exp (iπŷεe) exp (2iπk(x̂εe − ŷεe)) dŷεe .

Use the Dirac comb:D1 = 1
2U(x)·Uµεe(x)+

1
2 exp (−iπx̂)

(
U(x) · Uµεe(x) exp (iπx̂)

)
=

U(x) · Uµεe(x).
• One has for similar reasons D2 = U(x) · U−µεe(x).
• The same change of variable in the third term yields

D3 =
1

2

∑
k∈Z

∫ 1

0

U(y) · Uµεe(y) exp (iπk(x̂εe + ŷεe)) dŷ
ε
e

=
1

2

∑
k∈Z

∫ 1

0

U(y) · Uµεe(y) exp (2iπk(−(1− x̂εe) + ŷεe)) dŷ
ε
e

+
1

2
exp (iπx̂εe)

∑
k∈Z

∫ 1

0

U(y) · Uµεe(y) exp (iπŷεe) exp (2iπk(−(1− x̂εe) + ŷεe)) dŷ
ε
e .

The change of variable is such that there exists x ∈ (ae, be) (a priori x 6=
x) such that x̂εe = 2

tεe

∫ bεe
bεe+a

ε
e−x

ds
µεe(s)

. So 1 − x̂εe = 1 − 2
tεe

∫ bεe
bεe+a

ε
e−x

ds
µεe(s)

=

2
tεe

∫ bεe+aεe−x
aεe

ds
µεe(s)

= 2
tεe

∫ bεe
aεe

ds
µεe(s)

− 2
tεe

∫ bεe
bεe+a

ε
e−x

ds
µεe(s)

= 2
tεe

∫ bεe+aεe−x
aεe

ds
µεe(s)

. So

D3 = 1
2U(bεe + aεe − x) · Uµεe(bεe+aεe−x)

+ 1
2 exp (iπx̂)U(bεe+aεe−x) ·Uµεe(bεe+aεe−x) exp (iπ(1− x̂)) = 0. Similarly D4 =

0.
• Final proof of (3.24). One can write

K3 =

∫
Iεc

U(x) · Uµεe(x)Uµεe(x)
de

µεe(x)
+

∫
Iεc

U(x) · U−µεe(x)U−µεe(x)
de

µεe(x)
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=

∫ ε
√

2(ϕ0(x)−ϕ−0 )

0

U(x) · UλUλdλ+

∫ 0

−ε
√

2(ϕ0(x)−ϕ−0 )

U(x) · UλUλdλ

=

∫ ε
√

2(ϕ0(x)−ϕ−0 )

−ε
√

2(ϕ0(x)−ϕ−0 )

U(x) · UλUλdλ.

The results proceeds by summation of D1, D2, D3 and D4. So the proof. �

4. Spectral reduction of iHε

The next step is the construction of the generalized eigenvectors of iHε.
These new eigenvectors will be denoted as V εe,k,z with the same indices as for
the Uεe,k,z, and they will be constructed by perturbation of the Uεe,k,z. This

approach follows a classical approach in abstract scattering [49] and without
surprise a Lippmann-Schwinger type equation shows up. A dedicated study
will show the Lippmann-Schwinger equation is well posed in L2

0(I) for small
ε > 0. We will make use of elementary identities which are somehow pivotal
in this section.

Lemma 4.1 (Case k = 0). One has the identities where the right sides are
constant with respect to x

exp
(
ε2ϕ0/2

)
Uεs,0,± · e2 = ±exp(−s/2)

αtεs
, and Uεs,0,c · e2 = 0. (4.1)

Proof. Consequence of the definitions of the eigenvectors Ue,k,z for k = 0 s
(3.4), (3.6) and (3.11), and of the definition of the second component of these
eigenvectors which uses ψ2(v) (2.5). It yields exp

(
ε2ϕ0(x)/2

)
Uεs,0,+(x) · e2

= exp
(
ε2ϕ0(x)/2

)
1

tεsµ
ε
s(x)

µεs(x)
α exp(−µεs(x)2/4) = exp(−s/2)

αtεs
using (3.2) for

the last simplification. The two other relations are obtained similarly. The
proof is ended. �

In a first stage we will construct explicitly the eigenvectors and gener-
alized eigenvectors in the null space. In a second stage we will consider gen-
eralized eigenvectors associated with non zero eigenvalues. This construction
evidences the role of a specific Lippmann-Schwinger type equation. Once the
Lippmann-Schwinger equation is solved, the construction becomes essentially
explicit.

4.1. The null space

Vectors in the null space satisfy iHεV = 0. We distinguish two cases.

4.1.1. Vectors with finite norm. Let us construct a null finite eigenvector
V (x) = f(x)e0 + αεg(x)e1. One has

0 = iHεV =
(
−A∂x + ε2E0(x)B + εD

)
(f(x)e0 + αεg(x)e1)

= εDf(x)e0 + ε
(
−A∂x + ε2E0(x)B

)
αg(x)e1.
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In view of the definition of the matrices D, A and B, one gets the identity

0 = −α
√
n0(x)f(x)e2 − αg′(x)e2 −

1

2
ε2E0(x)αg(x)e2

= α

(
−
√
n0(x)f(x)− g′(x)− 1

2
ε2E0(x)g(x)

)
e2

rewritten as exp
(
ε2ϕ0(x)/2

)
f(x) = −g′(x) + 1

2ε
2ϕ′0(x)g(x). Since f, g and

ϕ0 are 1-periodic functions, one has f = −
(
exp

(
−ε2ϕ0/2

)
g
)′

. Notice that

f has necessarily a zero mean value. For f ∈ L2
0(I), g ∈ H1

per(I) is defined by
integration through the above condition. We set

V εf (x) = f(x)e0 + αεg(x)e1, x ∈ I. (4.2)

The previous construction can be summarized as follows.

Lemma 4.2. Assume f ∈ L2
0(I). Then V εf ∈ X and iHεVf = 0.

Proposition 4.3. Assume U ∈ X is orthogonal to null eigenvectors V εf ∈ X
for all f ∈ L2

0(I). Then U satisfies the Gauss law (2.3).

Proof. Using the decomposition (2.9), one has that for all f ∈ L2
0(I)

0 =
(
U, V εf

)
=

∫
I

(
−
(
exp

(
−ε2ϕ0(x)/2

)
g(x)

)′
F (x) + αεg(x)u0(x)

)
dx

=

∫
I

(
exp

(
−ε2ϕ0(x)/2

)
F ′(x) + αε

∫
R

1

α
exp

(
−v

2

4

)
u(x, v)dv

)
g(x)dx

It shows that F ′(x) = −ε exp
(
ε2ϕ0(x)/2

) ∫
R exp

(
−v

2

4

)
u(x, v)dv, which is

the Gauss law (2.3). The proof is ended. �

4.1.2. Generalized vectors. From (4.1) one gets

iKUεe,0,z = 1∗
(
ε2 exp(ϕ0/2)Uεe,0,z · e2

)
e0 = 0.

Since all infinite vectors Uεe,0,z are also in the null space of iHε
0 , then it is

natural to set

V εe,0,z = Uεe,0,z with the property iHεV εe,0,z = 0. (4.3)

Proposition 4.4. Assume g ∈ L2(I × R) satisfies assumption 1.6, that is it
has zero mean value along the characteristic curves of the transport operator
v∂x − ε2E0(x)∂v. Then the corresponding U ∈ X is such that (U,Uεe,0,z) = 0
for all z and almost all e.

Proof. The proof is performed in strong form. One has

(U,Uεe,0,z) =

∫
x∈Iεz

∑
n∈N

(∫
R
g(x, v)ψn(v)dv

)
1

tεeµ
ε
e(x)

ψn(µεe(x))dx

=
1

tεe

∫
x∈Iεz

∫
R
g(x, v)

(∑
n∈N

ψn(v)ψn(µεe(x))

)
dv

dx

µεe(x)
.
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The representation of the Dirac mass with Hermite functions yields

(U,Uεe,0,z) =
1

tεe

∫
x∈Iεz

∫
R
g(x, v)δ(v−µεe(x))dv

dx

µεe(x)
=

1

tεe

∫
x∈Iεz

g(x, µεe(x))
dx

µεe(x)
.

Along the characteristic curve Cεe with label e, the velocity is µεe(x). So one
can make the change of variables v = µεe(x) and dt = dx

µεe(x)
= dx

v . Therefore

one has the formula (U,Uεe,0,z) = 1
tεe

∫
(x,v)∈Cεe

g(x, v)dt where the integral is

proportional to the mean value of g along the characteristic curve. So the
claim is just a convenient reformulation of Assumption 1.6 and the proof is
ended. �

4.2. Non zero spectrum and Lippmann-Schwinger equation

We study a way to construct solutions of the generalized eigenequation iHεV =
λV for a non zero generalized eigenvalue λ ∈ iR∗, by means of a perturbation
technique starting from Uεe,k,z. Let us remind the exact representation for-

mula (3.23) for U ∈ X U = U · e0e0 +
∑
z′
∑
p∈Z

∫
s∈Iε

z′

(
U,Uεs,p,z′

)
Uεs,p,z′t

ε
sds

where z′ = +,−, c is the index of the zone. The main idea is to start from a
perturbation of Uεe,k,z under the form

V εe,k,z(x) = Uεe,k,z(x) + aεe,k,z(x)e0 +
∑
z′

∑
p∈Z

∫
s∈Iε

z′

bεs,p,z′
e,k,z

Uεs,p,z′(x)tεsds. (4.4)

where the function x 7→ aεe,k,z(x) and the functions s 7→ bε
s,p,z′

e,k,z

are the un-

knowns. The method consists to plug formally the representation (4.4) in the
eigenequation and to determine what constraints aεe,k,z and bε

s,p,z′

e,k,z

must sat-

isfy. It is possible to decompose these vectorial identities into many scalar
identities, all of them making sense under usual integrability conditions.
The whole construction will be justified in section 5 where the existence
of aεe,k,z ∈ L2(I) is established after studying summability of the series.

One gets by formal calculations

iHεV εe,k,z = iHε
0V

ε
e,k,z + iεKV εe,k,z =

= λεe,kU
ε
e,k,z +

∑
z′

∑
p∈Z

∫
s∈Iε

z′

bεs,p,z′
e,k,z

λεs,pU
ε
s,p,zt

ε
sds

+iεKaεe,k,ze0 + iεKUεe,k,z + iε
∑
z′

∑
p∈Z

∫
s∈Iε

z′

bεs,p,z′
e,k,z

KUs,p,zt
ε
sds.

By definition (2.10) iKep = exp(ε2ε2ϕ0/2)Dep = exp(ε2ϕ0/2)α(δp,2e0 −
δp,0e2). Using in the previous expression, it yields

iHεV εe,k,z = λεe,kU
ε
e,k,z+

∑
z′

∑
p∈Z

∫
s∈Iε

z′

bεs,p,z′
e,k,z

λεs,pU
ε
s,p,zt

ε
sds−εα exp

(
ε2ϕ0/2

)
aεe,k,ze2

+εα1∗

exp
(
ε2ϕ0/2

)
Uεe,k,z · e2 + exp

(
ε2ϕ0/2

)∑
z′

∑
p∈Z

∫
s∈Iε

z′

bεs,p,z′
e,k,z

Uzs,p · e2tεsds

 e0.
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On the other hand one has

λεe,kV
ε
e,k,z = λεe,kU

ε
e,k,z + λεe,ka

ε
e,k,ze0 +

∑
z′

∑
p∈Z

∫
s∈Iε

z′

bεs,p,z′
e,k,z

λe,kU
ε
s,p,z′t

ε
sds.

So the eigenequation iHεV εe,k,z = λεe,kV
ε
e,k,z recasts as∑

z′

∑
p∈Z

∫
s∈Iε

z′

bεs,p,z′
e,k,z

(
λεs,p − λεe,k

)
Uεs,p,z′t

ε
sds− αε exp

(
ε2ϕ0/2

)
aεe,k,ze2 =

+α

(
1

α
λεe,ka

ε
e,k,z(x)− ε1∗

(
exp(ε2ϕ0/2)Uεe,k,z · e2

)
−ε
∑
z′

∑
p∈Z

∫
s∈Iε

z′

bεs,p,z′
e,k,z

1∗
(
exp

(
ε2ϕ0/2

)
Uεs,p,z′ · e2

)
tεsds

 e0.

The right hand side is a finite linear combination of e0 and e2, so is a priori
a function in X. Therefore the above equality is identified as an equality
between functions in X for which the spectral representation (3.23) applies.
The equality of the coefficients writes

bεs,p,z′
e,k,z

(
λεs,p − λεe,k

)
= ε

(
α exp

(
ε2ϕ0/2

)
aεe,k,ze2, U

ε
s,p,z′

)
,

1

α
λεe,ka

ε
e,k,z − ε

∑
z′

∑
p 6=0

∫
s∈Iε

z′

bεs,p,z′
e,k,z

1∗
(
exp

(
ε2ϕ0/2

)
Uεs,p,z′ · e2

)
tεsds

= ε1∗
(

exp
(
ε2ϕ0/2

)
Uεe,k,z · e2

)
.

(4.5)
The double sum in the second equation is for p 6= 0 since all terms for p = 0
vanish in view of the identity (4.1). The solvability of this system is an issue.
For a given ε > 0, the unknowns are the functions x 7→ aεe,k,z and s 7→ bε

s,p,z′

e,k,z

for all admissible values of the parameters (e, k, z). To continue the discussion

one eliminates bε
s,p,z′

e,k,z

= ε
(αaεe,k,ze2,exp(ε2ϕ0/2)Uεs,p,z′)

λεs,p−λεe,k
. It is mandatory that

λεs,p − λεe,k 6= 0 for this formula to make sense. Let us plug in the second

equation of (4.5). It yields the formal integral relation

1

α
λεe,ka

ε
e,k,z − ε2

∑
z′

∑
p 6=0

∫
s∈Iε

z′

(
αaεe,k,ze2, exp

(
ε2ϕ0/2

)
Uεs,p,z′

)
λεs,p − λεe,k

×1∗
(
exp

(
ε2ϕ0/2

)
Uεs,p,z′ · e2

)
tεsds = ε1∗

(
exp

(
ε2ϕ0/2

)
Uεe,k,z · e2

)
.

This integral equation is only formal at this stage for many reasons. A first
reason is one must provide a treatment of vanishing denominators λεs,p −
λεe,k = 0. The second reason is that a sum with respect to p shows up so
one needs to prove the summability. This will justified a posteriori by the
completeness of the eigenvectors.
To answer the first question the integrals with respect to s will be defined
as principal values [51] or Hilbert transforms. The notation P.V. will denote
a principal value. Since it has been proved in Section 3.1.4 that λs,p is a
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monotone function of s, this makes sense.
The summability will be proved in a second stage: it is conditionally conver-
gent to a specific reordering of the various terms, cf. Remark 5.8.

In summary the construction of V εe,k,z amounts to solving the series of
problems:
For k 6= 0, z ∈ {+,−, c} and e ∈ Iεz , solve the integral equation for
a = aεe,k,z ∈ L2

0(I)

1
αλ

ε
e,ka −ε2

∑
z′

∑
p 6=0

P.V.

∫ (
αae2, exp

(
ε2ϕ0/2

)
Uεs,p,z′

)
λεs,p − λεe,k

×1∗
(
exp

(
ε2ϕ0/2

)
Uεs,p,z′ · e2

)
tεsds

= ε1∗
(

exp
(
ε2ϕ0/2

)
Uεe,k,z · e2

)
.

(4.6)

By comparison with the general theory of scattering [49] [page 98], we
refer to this integral equation as the Lippmann-Schwinger equation of the
problem.

5. The Lippmann-Schwinger equation

The well posedness for small ε of the Lippmann-Schwinger equation is es-
tablished for the equivalent weak form, using a combination of elementary
analytical techniques which are somehow independent of the method that
was used to derive the equation. The key is to obtain ”good” L∞ estimates
in Section 5.1. The completeness of the whole family of generalized eigenvec-
tors will be proved with ”good” L2 estimates in Section 5.3. So far, no clear
physical interpretation has been found for these estimates which are based
on hard analysis.

5.1. Variational formulation

Some symmetry hidden in the strong form of the Lipmann-Schwinger equa-
tion is revealed by the variational (or weak) formulation. To obtain more com-
pact notations where the kernels in (4.6) are decomposed between a ”space”
part which depends on x and a ”integral” part which does not depend on x,
we define

zones ± : vεs,p,±(x) = exp
(
±2iπp

∫ x
0
µεs(t)

−1dt

tεs

)
,

zone c : vεs,p,c(x) = 2i1I{aεs<x<bεs} sin

(
2πp

∫ x
aεe
µεs(t)

−1dt

tεs

)
.

If ϕ0 = 0 or ε = 0, then vεs,p,+(x) = vεs,−p,−(x) = exp(2iπpx) are both equal
to the same Fourier mode. In the general case which is our concern from now
on, one gets using the identity 1

2µ
2
s(x)− ε2ϕ0(x) = s

eε
2ϕ0(x)/2Uεs,p,z(x) · e2 = vεs,p,z(x)

exp(−s/2)

tεsα
. (5.1)
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The variational form of the different terms that arise in (4.6) writes after
integration against b ∈ L2

0(I) as

F εa,b,p(µ) = P.V.

∫
s∈Iε+

(
a, vεs,p,+

) (
vεs,p,+, b

)
λεs,p − µ

exp(−s)
tεs

ds

+P.V.

∫
s∈Iε−

(
a, vεs,−p,−

) (
vεs,−p,−, b

)
λεs,−p − µ

exp(−s)
tεs

ds

and similarly

Gεa,b,p(µ) = P.V.

∫
s∈Iεc

(
a, vεs,p,c

) (
vεs,p,c, b

)
λεs,p − µ

exp(−s)
tεs

ds

+P.V.

∫
s∈Iεc

(
a, vεs,−p,c

) (
vεs,−p,c, b

)
λεs,−p − µ

exp(−s)
tεs

ds.

F εa,b,p(µ) and Gεa,b,p(µ) are bilinear forms with respect to a, b ∈ L2
0(I). We

define also a linear form

lε(b) =
exp(−e/2)

tεe
(vεe,k,z, b) for b ∈ L2

0(I). (5.2)

A variational form of the Lippmann-Schwinger (4.6) is as follows:
Take k 6= 0, z ∈ {+,−, c} and e ∈ Iεz ; for µ = λεe,k 6= 0, find a ∈ L2

0(I)
solution of the variational Lippmann-Schwinger formulation

µ(a, b)− ε2
∑
p 6=0

F εa,b,p(µ)− ε2
∑
p>0

Gεa,b,p(µ) = εlε(b), ∀b ∈ L2
0(I). (5.3)

It is clear that the issue is to obtain good bounds on the series of
F εa,b,p(µ) and on the series of Gεa,b,p(µ), since then, the coefficient ε2 will
be enough to get the coercivity of the bilinear form.

5.1.1. Properties of F εa,b,p(µ). The F εa,b,p(µ) correspond to the two regions of
non trapped particles, and it appears that the estimates below are natural.

Lemma 5.1. Let µ ∈ iR∗ and p 6= 0. One has F εa,b,p(µ) = µ
(2πp)2 f

ε
a,b,p

(
µ

2πp

)
where

fεa,b,p(µ) = −P.V.
∫
s∈Iε+

(
a, vεs,p,+

) (
vεs,p,+, b

)
1/tεs − iµ

exp(−s)ds (5.4)

+P.V.

∫
s∈Iε−

(
a, vεs,−p,−

) (
vεs,−p,−, b

)
−1/tεs − iµ

exp(−s)ds.

Proof. With the notation cεs,p =
(
a, vεs,p,+

) (
vεs,p,+, b

)
=
(
a, vεs,−p,−

) (
vεs,−p,−, b

)
which takes the same value in zone z = + and z = − , one has the identity

P.V.

∫
s∈Iε+

cεs,p
λεs,p − µ

exp(−s)
tεs

ds+
µ

(2πp)2
P.V.

∫
s∈Iε+

cεs,p
1/tεs − iµ/2πp

exp(−s)ds

=
i

2πp
P.V.

∫
s∈Iε+

cεs,p
λεs,p − µ

exp(−s)(λεs,p − µ)ds =
i

2πp

∫
s∈Iε+

cεs,pexp(−s)ds.
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Similarly

P.V.

∫
s∈Iε−

cεs,p
λεs,−p − µ

exp(−s)
tεs

ds− µ

(2πp)2
P.V.

∫
s∈Iε−

cεs,p
−1/tεs − iµ/2πp

exp(−s)ds

=
−i
2πp

P.V.

∫
s∈Iε−

cεs,p
λεs,−p − µ

exp(−s)(λεs,−p−µ)ds =
−i
2πp

∫
s∈Iε−

cεs,pexp(−s)ds.

The sum of these two identities yields the results because Iε+ = Iε− and the
proof is ended. �

Lemma 5.2. Let µ ∈ iR∗ and p 6= 0. The function fεa,b,p is a Hilbert transform

fεa,b,p(µ) = −P.V.
∫
R

mε
a,b,p(λ)

λ− iµ
dλ

where the kernel is

mε
a,b,p(λ) =

(
a, vεsε(|λ|),p,sign(λ)

)(
vεsε(|λ|),p,sign(λ), b

)
exp(−sε(|λ|))(sε)′(|λ|).

(5.5)
Moreover the kernel is uniformly square integrable: there exists a constant

C > 0 (independent of p and ε ∈ (0, 1]) such that
∥∥∥mε

a,b,p

∥∥∥
L2(R)

≤ C‖a‖L2(I)‖b‖L2(I).

Proof. The kernel mε
a,b,p is just a convenient compact way to recast (5.4)

in combination with (3.13) the change of variable s = sε(λ) = ε2s(λ/ε).

One has
∥∥∥mε

a,b,p

∥∥∥2
L2(R)

≤
∫
R

(
‖a‖2L2(I) ‖b‖

2
L2(I) exp(−2sε(|λ|))(sε)′(|λ|)2

)
dλ

that is
∥∥∥mε

a,b,p

∥∥∥2
L2(R)

≤ 2 ‖a‖2L2(I) ‖b‖
2
L2(I) i(ε). One has that the integral

i(ε) =
∫
R+ e

−2ε2s(λ/ε)ε2s′(λ/ε)2dλ is continuously defined for ε ∈ (0, 1]. By
means of the Lebesgue dominated convergence theorem and Proposition 3.8,
one has limε→0+ i(ε) =

∫
R+ exp(−λ2/2)λ2dλ. So there exists a constant C

such that i(ε) ≤ C for all ε ∈ (0, 1]. It ends the proof. �

Proposition 5.3. There exists a constant C > 0 (independent of p 6= 0 and
0 < ε ≤ 1) such that∥∥(mε

a,b,p)
′∥∥
L2(R) ≤ C|p|‖a‖L2(I)‖b‖L2(I).

Proof. The calculations are given for λ > 0. By definition vεsε(λ),p,signε(λ)(x) =

exp
(
−2iπpλ

∫ x
0

dt
µε
s(λ)

(t)

)
so

d

dλ
vεsε(λ),p,sign(λ)(x) = −2iπp exp

(
−2iπpλ

∫ x

0

dt

µεsε(λ)(t)

)
(∫ x

0

µεsε(λ)(t)
−1dt+ λ(sε)′(λ)

d

ds

∫ x

0

µεsε(λ)(t)
−1dt

)
.
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Recall that 1/λ = tεs =
∫ 1

0
µεsε(λ)(t)

−1dt. So
∫ x
0
µεsε(λ)(t)

−1dt ≤ 1/λ. Moreover

−1/λ2 = (sε)′(λ)
d

ds

∫ 1

0

µεsε(t)
−1dt |s=sε(λ) .

Since d
dsµ

ε
sε(λ)(t) < 0 for all 0 < t < 1, one gets that

∣∣∣(sε)′(λ) dds
∫ x
0
µεsε(λ)(t)

−1dt
∣∣∣ ≤∣∣∣(sε)′(λ) dds

∫ 1

0
µεsε(λ)(t)

−1
∣∣∣ ≤ 1/λ2. Therefore

∣∣∣ ddλvεsε(λ),p,sign(λ)(x)
∣∣∣ ≤ 4π|p|

|λ| .

Since ma,b,p (5.5) is the product of 4 terms, the derivative can be expressed
as the sum of 4 contributions. In view of (5.5) one gets∥∥∥∥ ddλmε

a,b,p(λ)

∥∥∥∥
L2(R)

≤ 4π|p|‖a‖L2(I) × ‖b‖L2(I) ×
(∫

R

1

λ2
exp(−2sε(|λ|))(sε)′(|λ|)2dλ

) 1
2

+ ‖a‖L2(I) × 4π|p|‖b‖L2(I) ×
(∫

R

1

λ2
exp(−2sε(|λ|))(sε)′(|λ|)2dλ

) 1
2

+ ‖a‖L2(I) × ‖b‖L2(I) ×
(∫

R
exp(−2sε(|λ|))(sε)′(|λ|)4dλ

) 1
2

+ ‖a‖L2(I) × ‖b‖L2(I) ×
(∫

R
exp(−2sε(|λ|))(sε)′′(|λ|)2dλ

) 1
2

.

By a method similar to the one of Lemma 5.2, all integrals in parenthesis
are naturally bounded uniformly with respect to ε ∈ (0, 1]. The proof is
ended. �

5.1.2. Properties of Gεa,b,p(µ). The Gεa,b,p(µ) correspond to the region of
trapped particles. Some of their properties are easy to obtain, but the last one
Proposition 5.6 is much more technical because the differentiability of some
Abel integrals is delicate: in this work they are characterized in Hölderian
norm, see Appendix B.

Lemma 5.4. Let µ ∈ iR∗ and p 6= 0. One has Gεa,b,p(µ) = µ
(2πp)2 g

ε
a,b,p

(
µ

2πp

)
where

gεa,b,p(µ) = −P.V.
∫
s∈Iεc

(
a, vεs,p,c

) (
vεs,p,c, b

)
1/tεs − iµ

exp(−s)ds

+P.V.

∫
s∈Iεc

(
a, vεs,−p,c

) (
vεs,−p,c, b

)
−1/tεs − iµ

exp(−s)ds.

Proof. The proof is fundamentally the same as the one of Lemma 5.1. It uses
the identity

(
a, vεs,p,c

) (
vεs,p,c, b

)
=
(
a, vεs,−p,c

) (
vεs,−p,c, b

)
. �

Lemma 5.5. Let µ ∈ iR∗ and p 6= 0. The function gεa,b,p is a Hilbert transform

gεa,b,p(µ) = −P.V.
∫
R

nεa,b,p(λ)

λ− iµ
dλ
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where the kernel nεa,b,p(λ) is for λ ∈ [−εB, εB]

nεa,b,p(λ) =
(
a, vεsεc(|λ|),sign(λ)p,c

)(
vεsεc(|λ|),sign(λ)p,c, b

)
exp(−sεc(|λ|))(sεc)′(|λ|)

(5.6)
and nεa,b,p(λ) = 0 for λ 6∈ [−εB, εB]. Moreover the kernel is uniformly square

integrable: there exists C > 0 (independent of p and ε ∈ (0, 1]) such that∥∥∥nεa,b,p∥∥∥
L2(R)

≤ C
√
ε‖a‖L2(I)‖b‖L2(I).

Proof. The boundedness is as follows∥∥nεa,b,p∥∥2L2(R) ≤
∫
R

(
‖a‖2L2(I) ‖b‖

2
L2(I) exp(−2sεc(|λ|))(sεc)′(|λ|)2

)
dλ

≤ 2 ‖a‖2L2(I) ‖b‖
2
L2(I) j(ε)

where the integral j(ε) =
∫
R(sεc)

′(λ)2dλ = ε2
∫
R s
′
c(λ/ε)

2dλ = ε
∫
R s
′
c(λ)2dλ ≤

Cε. The proof is ended. �

The important technical result which gathers most of the difficulties of
this part is the following. Indeed for reasons explained in Appendix B, one
cannot calculate a full derivative of nεa,b,p.

Proposition 5.6. Let p 6= 0 and 0 < ε ≤ 1. One has the Hölder-continuity∥∥∥nεa,b,p∥∥∥
C0,1/2(R)

≤ C|p|
√
ε‖a‖L2(I)‖b‖L2(I).

Proof. Using the rescaled quantities (3.19), one can write nεa,b,p(λ) = εQ(λ/ε)
with

Q(λ) =
(
a, vεε2sc(|λ|),sign(λ)p,c

)
︸ ︷︷ ︸

=f̂(λ)

(
vεε2sc(|λ|),sign(λ)p,c, b

)
︸ ︷︷ ︸

=ĝ(λ)

exp(−ε2sc(|λ|))s′c(|λ|)︸ ︷︷ ︸
=h(λ)

for λ ∈ [−B,B]. The function f̂(λ) is studied in Appendix B, ĝ(λ) has similar
properties and h(λ) is known thanks to Proposition 3.10. For 0 < λ < µ < B,
one has the telescopic decomposition

Q(λ)−Q(µ) = (f(λ)−f(µ))g(λ)h(λ)+(g(λ)−g(µ))f(µ)h(λ)+f(µ)g(µ)(h(λ)−h(µ)).

Proposition B.1 yields

|Q(λ)−Q(µ)|

≤ C|p|‖a‖L2(I)

√
|λ−µ|√

min(ϕ′0(âsc(λ)),ϕ′0 (̂bsc(λ)))
× C‖b‖L2(I) × |s′c(λ)|

+ C|p|‖b‖L2(I)

√
|λ−µ|√

min(ϕ′0(âsc(λ)),ϕ′0 (̂bsc(λ)))
× C‖a‖L2(I) × |s′c(λ)|

+ C‖a‖L2(I) × C‖b‖L2(I) × |λ− µ|‖s′c‖W 1,∞ .

It appears that 1√
min(ϕ′0(âsc(λ)),ϕ′0 (̂bsc(λ)))

|s′c(λ)| ∈ L∞(0,B) is view of Propo-

sition 3.10 and the rough bounds (B.2-B.3). One gets that Q ∈ C0,1/2[0,B]
is Hölder, with a continuity constant C|p|‖a‖L2(I)‖p‖L2(I). Since Q is ex-

tended by continuity by 0 outside [B,∞), then Q ∈ C0,1/2(R+) is Hölder
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over R+ with the same norm. Additionally Q is continuous at λ = 0 and is
also Q ∈ C0,1/2(R−). So Q ∈ C0,1/2(R). Same property holds for nεa,b,p with

a rescaling parameter by
√
ε. The proof is ended. �

5.1.3. Well posedness of the variational Lippmann-Schwinger equation. Af-
ter elimination of F εa,b,p(µ) and Gεa,b,p(µ) in function of fεa,b,p(µ) and gεa,b,p(µ)
and division by µ which is non zero, the variational Lippmann-Schwinger
equation (5.3) admits another formulation.

Find a ∈ L2
0(I) such that for all b ∈ L2

0(I)

(a, b) +
∑
p 6=0

ε2

4p2π2 f
ε
a,b,p

(
µ

2πp

)
+
∑
p>0

ε2

4p2π2 g
ε
a,b,p

(
µ

2πp

)
= ε

µ l
ε(b).

(5.7)

It is clear that the terms 1
p2 are amenable for the convergence of the series. It

remains to estimate the other terms. It poses no real difficulty for the terms
fεa,b,p, but needs a little more technical efforts for the terms gεa,b,p which
correspond to the region of trapped particles.

The L2-continuity of the Hilbert transform yields∥∥fεa,b,p∥∥L2(R) = π
∥∥mε

a,b,p

∥∥
L2(R) ≤ C‖a‖L2(I)‖b‖L2(I)

and ∥∥(fεa,b,p)
′∥∥
L2(R) = π

∥∥(mε
a,b,p)

′∥∥
L2(R) ≤ C|p|‖a‖L2(I)‖b‖L2(I).

By Sobolev imbedding and interpolation∥∥fεa,b,p∥∥L∞(R) ≤ c
∥∥fεa,b,p∥∥H 3

4 (R)
≤ c

∥∥fεa,b,p∥∥ 1
4

L2(R)

∥∥(fεa,b,p)
′∥∥ 3

4

L2(R) ≤ ĉ|p|
3
4 ‖a‖L2(I)‖b‖L2(I).

Therefore

∑
p 6=0

1

p2
∥∥fεa,b,p∥∥L∞(R) ≤ C

∑
p≥1

1

p5/4

 cϕ‖a‖L2(I)‖b‖L2(I) ≤ d‖a‖L2(I)‖b‖L2(I).

The other terms are bounded as follows. The length of the support of nεa,b,p

is equal to εB. One has the bound
∥∥∥nεa,b,p∥∥∥

L∞(R)
≤ Cε‖a‖L2(I)‖b‖L2(I) ≤

C
√
ε‖a‖L2(I)‖b‖L2(I). One has the decomposition gεa,b,p(µ) =

∫ µ−h
−∞

nεa,b,p(λ)

λ−µ dλ+∫ µ+h
µ−h

nεa,b,p(λ)−n
ε
a,b,p(µ)

λ−µ dλ+
∫∞
µ+h

nεa,b,p(λ)

λ−µ dλ. So

|gεa,b,p(µ)| ≤ ‖nεa,b,p‖L∞(R)

∫ µ−h

µ−h−B

1

λ− µ
dλ

+‖nεa,b,p‖C0,1/2(R)

∫ µ+h

µ−h

1

|λ− µ| 12
dλ+ ‖nεa,b,p‖L∞(R)

∫ µ+h+B

µ+h

1

λ− µ
dλ

≤ 2‖nεa,b,p‖L∞(R) log(1 + B/h) + 4‖nεa,b,p‖C0,1/2(R)
√
h.
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Let us take h = B/p2 for p ≥ 1. One gets |gεa,b,p(µ)| ≤ C
√
ε(1+log |p|)‖a‖L2(I)‖b‖L2(I).

It holds for all µ ∈ R so ‖gεa,b,p(µ)‖L∞(R) ≤ C
√
ε(1 + log |p|)‖a‖L2(I)‖b‖L2(I).

The log |p| is now sufficient for the convergence of the series

∑
p 6=0

1

p2
∥∥gεa,b,p∥∥L∞(R) ≤ C

√
ε

∑
p≥1

1 + log p

p2

 cϕ‖a‖L2(I)‖b‖L2(I) (5.8)

≤ D
√
ε‖a‖L2(I)‖b‖L2(I).

With the above material, it is easy to formulate and prove the

Theorem 5.7. There exists ε∗ > 0 such that: for 0 < ε < ε∗, the variational
problem (5.7) is coercive for all values of z ∈ {+,−, c}, k 6= 0 and e ∈ Iεz .
The unique solution is denoted as aεe,k,z and there exists a constant C > 0

(which depends solely on ϕ0) such that

‖aεe,k,z‖L2(I) ≤ C
ε exp(−e/2)

|k|
, k 6= 0. (5.9)

Proof. The bilinear form (5.7) on the left and side of the variational problem
(5.3) is coercive provided ε is less that some positive threshold: this is uniform
with respect to µ. The rest of the proof is evident: let C be an upper bound
of the inverse of the bilinear form; the bound (5.9) comes from

‖aεe,k,z‖L2(I) ≤ Cε/µ‖lε(b)‖L2(I)∗ ≤ C
ε∣∣∣λεe,k∣∣∣

2 exp(−e/2)

tεe
≤ Cε exp(−e/2)

π|k|
.

�

The interpretation of the summability in (4.6) needs a comment. Indeed
the algebra of Lemma 5.1 shows that F εa,b,p is obtained from (4.6) as the sum
of two terms which are individually a convergent principal value proportional
to p−2 (which poses no problem) plus a simple integral proportional to p−1.
These simple integrals yield a series which is not studied in this work. Actually
a simple interpretation is possible in the case ϕ0 = 0 or ε = 0. In this case,
vεs,p,+(x) = vεs,−p,−(x) = exp(2iπpx) are both equal to the same Fourier
mode.

Remark 5.8 (Interpretation of the double sums). The above discussion shows
that double sums like

∑
z′∈+,−,c

∑
p 6=0 γp,z′ should be interpreted after re-

arrangement as
∑
p 6=0 (γp,+ + γ−p,−) +

∑
p>0 (γp,c + γ−p,c).

5.2. Definition the V εe,k,z

Now that aεe,k,z is defined for k 6= 0, one plugs in (4.4) which is now written

as V εe,k,z(x) = Uεe,k,z(x) + aεe,k,z(x)e0 +Rεe,k,z(x) where

Rεe,k,z(x) = ε
∑
z′

∑
p 6=0

P.V.

∫
s∈Iε

z′

Rεs,p,z′
e,k,z

(x)tεsds (5.10)



Scattering structure for linearized Vlasov equations 33

with Rε
s,p,z′

e,k,z

(x) =
(αaεe,k,ze2,exp(ε

2ϕ0/2)U
ε
s,p,z′)

λεs,p−λεe,k
Uεs,p,z′(x). The weak form

definition of V εe,k,z writes(
V εe,k,z, U

)
=
(
Uεe,k,z, U

)
+
(
aεe,k,z(x)e0, U

)
+ε
∑
z′

∑
p 6=0

P.V.

∫
s∈Iε

z′

(
αaεe,k,ze2, exp(ε2ϕ0/2)Uεs,p,z′

)
λεs,p − λεe,k

(
Uεs,p,z′ , U

)
tεsds.

(5.11)
Another notation is the following. For p 6= 0 define the integrals

F̂ εp
e,k,z

= P.V.

∫
s∈Iε+

(
Rεs,p,+
e,k,z

, U

)
tεsds+ P.V.

∫
s∈Iε−

(
Rεs,−p,−

e,k,z

, U

)
tεsds

and Ĝεp
e,k,z

= P.V.
∫
s∈Iεc

(
Rεs,p,c
e,k,z

, U

)
tεsds+P.V.

∫
s∈Iεc

(
Rεs,−p,c
e,k,z

, U

)
tεsds. Then

the formula (5.10-5.11) yield the identity(
V εe,k,z − Uεe,k,z, U

)
=
(
aεe,k,z(x)e0, U

)
+ ε

∑
p 6=0

F̂ εp
e,k,z

(λ) + ε
∑
p 6=0

Ĝεp
e,k,z

(λ)

(5.12)
with the notation e = sεz(λ). The terms in the right hand side of the expansion
(5.12) are studied in way which allows to study the norm (5.14).

The integrability is interpreted as a principal value with the same method
as in the previous section, using also that

(
Uεs,p,z′ , U

)
is well defined since

Uεs,p,z′ ∈ L1(I)N for all s, p, z′ and U has a finite number of non zero com-

ponents, all of them in L∞(I). The summability can be established with
the same methods as in the previous section (taking U ∈ X0 greatly simpli-
fies this issue). Looking carefully to the Lippmann-Schwinger equation (4.6),
an immediate result for the third component of the vector V εe,k,z is that

V εe,k,z · e2 = 1
εα exp(−ε2ϕ0/2)λεe,ka

ε
e,k,z ∈ L2(I).

5.3. Completness the V εe,k,z

We concentrate on proving that the whole family
(
V εe,k,z

)
k 6=0

completed by

the vectors in the null space defined in (4.2) an (4.3) is a Hilbert basis in X.
For a scalar function q defined for e ∈ Iεz , we denote the weighted L2 norm
as

|q|εz =

(∫
Iεz

|q(e)|2 tεede

) 1
2

. (5.13)

Let us define the norm

|||U |||ε =

∑
k 6=0

|(U, V εk )|2 +
∑
z

∑
k

(∣∣(U, V εe,k,z)∣∣εz)2
 1

2

(5.14)
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where one reintroduces the vectors in the null space which are: V εe,0,z for all
possible e and z defined in (4.3); and V εk = V εexp(2iπkx) defined in (4.2) for

k ∈ Z∗. Since the norm |||U |||ε is the square root of the sum of non negative
terms, there is no need to reorganize the sums as in Remark 5.8. We also
define the semi-norm

|U |ε =

(
‖U‖2 −

∑
z

∫
e∈Iεz

(∣∣(U,Uεe,0,z)∣∣εz)2 tεede)
1
2

. The completeness is a

consequence of the following result.

Theorem 5.9. There exists a constant C > 0 independent of ε such that
|||U |||ε ≤ (1 +Cε)‖U‖ for all U ∈ X. Moreover there exists ε∗ > 0 such that
‖U‖ ≤ (1 + Cε)|||U |||ε for all U ∈ X and 0 < ε ≤ ε∗.

Proof. The proof is established at the end of Section 5.3.4, after proving
various estimates in Sections 5.3.1 to 5.3.3. �

5.3.1. A preliminary manipulation. For convenience, a unification of nota-
tions is possible by taking sε+ = sε− = sε. We extend by continuity the
functions sε+ = sε− by 0 so that

(sε+)′(λ) = (sε−)′(λ) = 0 for λ ≤ 0. (5.15)

We also extend by continuity the function sεz by constants so that (sεc)
′(λ) = 0

for λ ≤ 0 or λ ≥ εB. Now sεz ∈ C1(R) for all z.

Lemma 5.10. One can write

F̂ εp
e,k,z

=

∫
x∈I

f(λ, x)

(
1

π
P.V.

∫
µ∈R

µg(µ, x)

2iπkλ− 2ipµ
dµ

)
dx (5.16)

where f and g are defined in the proof. A similar reformulation holds for

Ĝεp
e,k,z

after convenient redefinition of g.

Proof. Use (5.10) and (5.1), denote e = sεz(λ) and s = sε(µ) and notice the
identity tεsε(µ) = µ−1. One can write

(
Rεs,p,+
e,k,z

, U

)
tεs =

(
aεe,k,ze2, αt

ε
s exp(ε2ϕ0/2)Uεs,p,+

)
λεs,p − λεe,k

(
Uεs,p,+, U

)
=

∫
x∈I

aεe,k,z(x)

(
Uεs,p,+, U

)
vεs,p,+(x) exp(−s/2)

2iπpµ− 2iπkλ
dx

One obtains after integration with respect to s ∈ Iε+

P.V.

∫
s∈Iε+

(
Rεs,p,+
e,k,z

, U

)
tεsds

=

∫
x∈I

aεe,k,z(x)

(
P.V.

∫
s∈Iε+

(
Uεs,p,+, U

)
vεs,p,+(x)e−s/2

2iπpµ− 2iπkλ
ds

)
dx
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=

∫
x∈I

aεe,k,z(x)

P.V. ∫
µ>0

(
Uεsε(µ),p,+, U

)
vεsε(µ),p,+(x)e−s

ε(µ)/2(sε)′(µ)

2iπpµ− 2iπkλ
dµ

 dx.

Note the the principal value is correctly defined under mild conditions even
if λ = 0 since (sε)′(µ) vanishes at exponential rate near µ = 0. A similar
identity holds for the second term with s = sε(−µ)

P.V.

∫
s∈Iε−

(
Rεs,−p,−

e,k,z

, U

)
tεsds

=

∫
x∈I

aεe,k,z(x)

(
P.V.

∫
s∈Iε−

(
Uεs,−p,−, U

)
vεs,−p,−(x)e−s/2

2iπpµ− 2iπkλ
ds

)
dx

=

∫
x∈I

aεe,k,z(x) (P.V.

∫
µ<0

(
Uεsε(−µ),−p,−, U

)
vεsε(−µ),−p,−(x)e−s

ε(−µ))/2(sε)′(−µ)

2iπpµ− 2iπkλ
dµ

 dx.

One can now add the two terms. Denote e = sεz(|λ|) and s = sε(|µ|), and
define the functions f(λ, x) = aεe,k,z(x) and

g(µ, x) = −πvεsε(|µ|),p,sign(µ)(x) (5.17)

×
(
tεsε(|µ|)sign(µ)Uεsε(|µ|),p,sign(µ), U

)
exp(−sε(|µ|)/2)(sε)′(|µ|).

Note that µtεsε(µ)sign(µ) = 1 so that one can simplify the product µg(µ, x):

this notation is convenient for the next lemma 5.12. �

5.3.2. Bounds for large |k|. Due to the power |k|− 3
2 |p|− 1

2 , the following bounds
are good ones for large values of |k|.

Lemma 5.11. For all z, one has the bounds∣∣∣∣F̂ εp·,k,z
∣∣∣∣ε
z

≤ Cε

|k|
3
2 |p|

1
2

(∣∣(Uεsε,p,+, U)∣∣ε+ +
∣∣(Uεsε,−p,−, U)∣∣ε−)

and

∣∣∣∣Ĝεp·,k,z
∣∣∣∣ε
z

≤ Cε

|k|
3
2 |p|

1
2

(∣∣∣(Uεsεc,p,c, U)∣∣∣εc +
∣∣∣(Uεsεc,−p,c, U)∣∣∣εc).

Proof. For z = c, one can gain an extra ε
1
2 in the right hand sides. It is suffi-

cient to prove the first estimate. We will make use of the technical inequality
of Section C. One has(∣∣∣∣F̂ εp

e,k,z

∣∣∣∣ε
z

)2

=

∥∥∥∥∫x∈I√tεsεz(|λ|)(sεz)′(|λ|)f(λ, x)
(

1
πP.V.

∫
µ∈R

µg(µ,x)
2ikλ−2ipµdµ

)
dx

∥∥∥∥2
L2
λ(R)

where the integral over Iεz is extended over R using (5.15). Using a basic in-
equality (in Appendix C) and the fact that

∥∥vεs,p,z∥∥L∞(I)
≤ 2, one gets(∣∣∣∣F̂ εp

e,k,z

∣∣∣∣ε
z

)2

≤ C

|kp|

∫
I

∥∥∥√tεsεz(|λ|)(sεz)′(|λ|)aεe,k,z(x)
∥∥∥2
L2
λ(R)

dx
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×
∥∥∥(Uεsε(|λ|),p,sign(λ), U) exp(−sε(|λ|)/2)(sε)′(|λ|)

∥∥∥2
L2
λ(R)

. (5.18)

The terms on the right hand side are bounded as follows. On the one hand
using (5.9) ∫

I

∥∥∥√tεsεz(|λ|)(sεz)′(|λ|)aεe,k,z(x)
∥∥∥2
L2
λ(R)

dx

=

∫
R

∥∥∥aεsεz(|λ|),k,z(x)
∥∥∥2
L2(I)

tεsεz(|λ|)(s
ε
z)
′(|λ|)dλ ≤ 2

ε2Ĉ

|k|2

∫
R+

e−s
ε
z(λ)

1

λ
(sεz)

′(λ)dλ.

Using (3.20)-(3.21)-(3.22) one has the technical bound for all z and ε ∈ (0, 1]∫
R+

exp(−sεz(λ))
1

λ
(sεz)

′(λ)dλ ≤ C. (5.19)

For z = c, this bound can even be improved · · · ≤ εC. One gets∫
I

∥∥∥√tεsεz(|λ|)(sεz)′(|λ|)aεe,k,z(x)
∥∥∥2
L2
λ(R)

dx ≤ C ε
2

k2
. (5.20)

One the other hand (3.20)-(3.21)-(3.22) yield also that for some universal
constant C > 0 exp(−sε(λ))(sε)′(λ) ≤ C 1

λ . It can rewritten as

exp(−sε(λ)/2)(sε)′(λ) ≤ Ĉ
(

(sε)′(λ)tεsε(λ)

) 1
2

(5.21)

and it is used in the remaining term in the right hand side of (5.18). It yields∥∥∥(Uεsε(λ),p,sign(λ), U) exp(−sε(λ)/2)(sε)′(λ)
∥∥∥2
L2
λ(R)

(5.22)

≤ C
(∣∣(Uεsε,p,+, U)∣∣ε+)2 + C

(∣∣(Uεsε,−p,−, U)∣∣ε−)2 .
Plugging (5.20-5.22) in (5.18) yields the first inequality of the claim.
The second inequality of the claim is proved by the same method. It does
not change (5.20), only (5.21)-(5.22) which are written for z = c. The proof
is ended. �

5.3.3. Bounds for large |p|. Due to the power |k|− 1
2 |p|− 3

2 , the following bounds
are good ones for large values of |p|.

Lemma 5.12. One has the bounds∣∣∣∣F̂ εp·,k,z
∣∣∣∣ε
z

≤ Cε
(

1

|k|
1
2 |p|

3
2

+ 1
|kp|

)(∣∣(Uεsε,p,+, U)∣∣ε+ +
∣∣(Uεsε,−p,−, U)∣∣ε−)

and

∣∣∣∣Ĝεp·,k,z
∣∣∣∣ε
z

≤ Cε
(

1

|k|
1
2 |p|

3
2

+ 1
|kp|

)(∣∣∣(Uεsεc,p,c, U)∣∣∣εc +
∣∣∣(Uεsεc,−p,c, U)∣∣∣εc).

Proof. It is sufficient to prove the first estimate. The proof starts by showing
a particular decomposition of (5.16) (still with e = sεz(|λ|) and s = sε(|µ|))

F̂ εp
e,k,z

=
k

p

∫
x∈I

λf(λ, x)

(
1

π
P.V.

∫
µ∈R

g(µ, x)

2iπkλ− 2ipµ
dµ

)
dx

− 1

2iπp

∫
x∈I

f(λ, x)

(
1

π

∫
µ∈R

g(µ, x)dµ

)
dx



Scattering structure for linearized Vlasov equations 37

from which the claim is deduced by methods similar to the previous lemma.
The only technical difference is that f is replaced by λf and µg replaced by

g. So (5.19) is replaced by
∫
R+ e

−sεz(λ)λ(sεz)
′(λ)dλ ≤ C and (5.21) is replaced

by e−s
ε(λ)/2 1

λ (sε)′(λ) ≤ ̂̂C ((sε)′(λ)tεsε(λ)

) 1
2

. The proof is ended. �

5.3.4. Proof of the completness Theorem 5.9. The first estimate establishes
that V ε·,k,z − Uε·,k,z is small for small ε.

Proposition 5.13. There is C > 0 such that
∣∣∣(V ε·,k,z − Uε·,k,z) , U)

∣∣∣ε
z
≤ ε C|k| |U |

ε.

Proof. The proof is a combination of elementary steps with the use of the
bound (5.9) in combination with the inequalities of the previous Sections
5.3.2 and 5.3.3.

• By (5.9) one has
∣∣∣aεe,k,z(x)e0, U

∣∣∣
z
≤ ε

dϕ
|k| |U |

ε where dϕ > 0 is independent

of z and k 6= 0.
• Cutting the sums for 0 < |p| ≤ |k| and for |k| < |p|, one gets∑

p 6=0

∣∣∣∣F̂ εp
e,k,z

∣∣∣∣ε
z

≤
∑

0<|p|≤|k|

Cε

|k| 32 |p| 12

(∣∣(Uεsε,p,+, U)∣∣ε+ +
∣∣(Uεsε,−p,−, U)∣∣ε−)

+
∑
|k|<|p|

Cε

(
1

|k| 12 |p| 32
+

1

|kp|

)(∣∣(Uεsε,p,+, U)∣∣ε+ +
∣∣(Uεsε,−p,−, U)∣∣ε−)

≤
∑

0<|p|≤|k|

Cε

|k||p|

(∣∣(Uεsε,p,+, U)∣∣ε+ +
∣∣(Uεsε,−p,−, U)∣∣ε−)

+
∑
|k|<|p|

Cε

(
1

|k||p|
+

1

|kp|

)(∣∣(Uεsε,p,+, U)∣∣ε+ +
∣∣(Uεsε,−p,−, U)∣∣ε−)

≤ Cε

|k|
∑
p 6=0

(
1

|p|

(∣∣(Uεsε,p,+, U)∣∣ε+ +
∣∣(Uεsε,−p,−, U)∣∣ε−))

≤ Cε

|k|

√∑
p 6=0

1

p2

√∑
p 6=0

(∣∣(Uεsε,p,+, U)∣∣ε+)2 ≤ Cε

|k|
|U |ε.

• A similar inequality is proved for the other sum in (5.12) So the proof. �

The second estimate yields that V εk − exp(2iπkx)e0 is small for small ε.

Lemma 5.14. One has the inequality |(V εk − exp(2iπkx)e0, U)| ≤ Cε
|k| ||U ||.

Proof. By definition (4.2) for k ∈ Z∗, one has V εk (x) = exp(2iπkx)e0 +
αεg(x)e1 where − exp(−ϕ0(x)/2)g(x) = 1

2iπk exp(2iπkx). End of proof. �

The final proof of the completness Theorem is now an easy task.
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Proof of Theorem 5.9. The first inequality |||U |||ε ≤ (1 + Cε)||U || is proved
as follows. Proposition 5.13 yields (0 < ε ≤ 1)

∑
z

∑
k 6=0

(∣∣(V ε·,k,z, U)
∣∣ε
z

)2
≤
∑
z

∑
k 6=0

(∣∣(Uε·,k,z, U)
∣∣ε
z

+ ε
C

|p|
|U |ε

)2

≤ (1 + ε)
∑
z

∑
k 6=0

(∣∣(Uε·,k,z, U)
∣∣ε
z

)2
+

ε+ ε2C2
∑
k 6=0

1

|p|2

 (|U |ε)2

≤
∑
z

∑
k 6=0

(∣∣(Uε·,k,z, U)
∣∣ε
z

)2
+ Ĉε(|U |ε)2. (5.23)

From Lemma 5.14, one gets similarly∑
z

∑
k 6=0

(|(V εk , U)|εz)
2

≤ (1 + ε)
∑
z

∑
k 6=0

(|(exp(2iπkx)e0, U)|εz)
2

+ Cε||U ||2 ≤ ‖U · e0‖2 + C̃ε||U ||2.

(5.24)

By construction
∑
z

(∣∣(V ε·,0,z, U)
∣∣ε
z

)2
=
∑
z

(∣∣(Uε·,0,z, U)
∣∣ε
z

)2
. The addition is

this equality to the two inequalities (5.23-5.24) yields the first inequality of
the Theorem.
The second inequality can be proved as an inverse inequality. Take U ∈ X
and note

(
V εe,k,z, U

)
= αεe,k,z ∈ C and (V εk , U) = αεk ∈ C for k 6= 0. The

comparison estimates of Proposition 5.13 and Lemma 5.14 yield a way to
determine U directly from the αεe,k,z and the αεk. Indeed using the represen-
tation of the identity, one obtains the linear equation U = −T εU + bε where
T ε is the operator defined by

T εU =
∑
k 6=0

(U, V εk − exp(2iπkx)e0) exp(2iπkx)e0 (5.25)

+
∑
z

∑
k 6=0

∫
Iεz

(
U, V εe,k,z − Uεe,k,z

)
tεede

and the right hand side is bε =
∑
k 6=0 α

ε
k exp(2iπkx)e0+

∑
z

∑
k

∫
Iεz
αεe,k,zt

ε
ede.

The estimates of Proposition 5.13 and Lemma 5.14 and a Cauchy-Schwarz
inequality yields the boundedness ‖T ε‖ ≤ Cε. Therefore the operator I+T ε is
invertible with a continuous inverse under the non optimal sufficient condition
that Cε ≤ 1/2. That is U = (I + T ε)−1bε. Since ‖bε‖ = |||U |||ε, one gets
‖U‖ ≤ (1 − Cε)−1|||U |||ε. It yields the second inequality of the claim for
0 < ε ≤ ε∗ and the proof is ended. �
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6. Proof of the main Theorem 1.7

It is merely a consequence of a spectral representation with the V εe,k,z. A
last but necessary step is needed to make sure that the V εe,0,z = Uεe,0,z do not
show up in the final representation formula (6.2) or (1.10). Indeed if the index
k = 0 shows up in the series, then the exponential term would be constant
eλ

ε
e,0t = e0t = 1: in this case no phase mixing is possible.

Let us define

Xε
∗ =

{
U ∈ X : (U, V εf ) = 0 ∀f ∈ L2

0(I), (U, V εe,0,z) = 0 ∀z and e ∈ Iεz
}
.

The hermitian products (U, Vk) = 0 mean that the Gauss law is satisfied,
Proposition 4.3. In view of the equivalence of norms of Theorem 5.9, define
the bounded operator Lε : X → X

LεZ =
∑
z

∑
k 6=0

∫
Iεz

(
Z,Uεe,k,z

)
V εe,k,zt

ε
ede (6.1)

This operator is a kind of modified wave operator [55].

Lemma 6.1. Im(Lε) is closed for all 0 < ε < ε∗.

Proof. We provide the proof for the completness of this work. The adjoint

operator is (Lε)∗Z =
∑
z

∑
k 6=0

∫
Iεz

(
Z, V εe,k,z

)
Uεe,k,zt

ε
ede and we use the char-

acterization of Theorem 2.19 in [12]. Take a sequence Zn ∈ X and assume
Yn = (Lε)∗Zn → Y ∈ X as n → ∞. We need to show that there exists
Z ∈ X such that Y = (Lε)∗Z. In view of the representation of the iden-

tity (3.23), it is sufficient to find Z ∈ X such that
(
Z, V εe,k,z

)
:= αεe,k,z =(

Y,Uεe,k,z

)
for k 6= 0. Decide that

(
Z, V εe,0,z

)
:= αεe,0,z = 0 for k = 0 and that

(Z, exp(2iπkz)e0) := αεk = 0. Then U = (I + T ε)−1bε defined with (5.25) is
the solution that is seek for. It ends the proof. �

Proposition 6.2. Im(Lε) = Xε
∗ for 0 < ε < ε∗.

Proof. Since Im(Lε) is closed, then [12] Im(Lε) = Ker((Lε)∗)⊥ where (Lε)∗Z =∑
z

∑
k 6=0

(
Z, V εe,k,z

)
Uεe,k,z. The spectral representation (3.23) shows that

Ker((Lε)∗) =
{
Z ∈ X :

(
Z, V εe,k,z

)
= 0 ∀e, z and k 6= 0

}
. Take Z ∈ Ker((Lε)∗)

and define for technical reasons Ẑ = Z−V εZ·e0 . By construction Ẑ ·e0 = Z ·e0−
Z · e0 = 0 and

(
Ẑ, V εe,k,z

)
= −

(
V εZ·e0 , V

ε
e,k,z

)
= − 1

λεe,k

(
V εZ·e0 , iH

ε
0V

ε
e,k,z

)
=

1
λεe,k

(
iHε

0V
ε
Z·e0 , V

ε
e,k,z

)
= 0 for k 6= 0. By Proposition 5.13

∣∣∣(Ẑ, Uε·,k,z))
∣∣∣ε
z
≤

ε
cϕ
|k| |Ẑ|

ε. Since Ẑ · e0 = 0, one obtains by summation with respect to k and

another Cauchy-Schwarz inequality |Ẑ|ε ≤ Cε|Ẑ|ε. So Z ∈ Ker((Lε)∗) is

equivalent to |Ẑ|ε = 0 (for small enough ε). In view of the definition of the

semi-norm one gets Z ∈ Ker((Lε)∗) ⇐⇒ Ẑ =
∑
z

∫
Iεz
αz(e)U

ε
e,0,zt

ε
ede which

equivalent to Z = V εf +
∑
z

∫
Iεz
αz(e)V

ε
e,0,zt

ε
ede where f = Z · e0. One has
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U ∈ Ker((Lε)∗)⊥ ⇐⇒ (U,Z) = 0 for all Z ∈ Ker((Lε)∗) ⇐⇒ (U, V εf ) = 0 for

all f ∈ L2
0(I) and (U, V εe,0,z) = 0 for all z and e ∈ Iεz ⇐⇒ U ∈ Xε

∗ . This is the
claim. �

Let us consider now U0 ∈ Xε
∗ . Proposition 6.2 yields the existence of

Z0 ∈ X such that LεZ0 = U0.

Proposition 6.3. Assume 0 < ε < ε∗. The solution of U ′(t) = iHεU(t) with

the initial data U(0) = U0 ∈ Xε
∗ is U(t) =

∑
z

∑
k 6=0

∫
Iεz

(
Z0, U

ε
e,k,z

)
etλ

ε
e,kV εe,k,zt

ε
ede

(which is convergent in X).

Proof. The initial condition is satisfied (6.1). One has

U ′(t) =
∑
z

∑
k 6=0

∫
Iεz

(
Z0, U

ε
e,k,z

)
etλ

ε
e,kλεe,kV

ε
e,0,zt

ε
ede

=
∑
z

∑
k 6=0

∫
Iεz

(
Z0, U

ε
e,k,z

)
etλ

ε
e,k
(
iHεV εe,0,z

)
tεede = iHεU(t).

The relation iHεV εe,0,z = λεe,kV
ε
e,0,z is because it is equivalent to (4.5). A

separate proof in the weak sense is in Lemma D.1. This relation is fully
justified using arguments which are standard in scattering theory [33, 38, 29,
55, 25, 49]. �

Theorem 6.4 (Linear Landau damping for non constant Boltzmanian states.).
Assume 0 < ε < ε∗. Let V ∈ X. Then one has limt→∞ (U(t), V ) = 0.
Moreover the electric field E = U · e0 is such that limt→∞ ‖E(t)‖L∞(I) = 0.

Proof. One has

(U(t), V ) =
∑
z

∑
k 6=0

∫
Iεz

(
U0, U

ε
e,k,z

)
etλe,k(V εe,0,z, V )tεede (6.2)

where the sum is convergent in view of theorem 5.9. The terms etλ
ε
e,k are

complex numbers of modulus one, which oscillate more and more as t → ∞
since λεe,k = −2iπkλ ∈ iR∗. One can make the change of variable e 7→ λ in
the integrals, it reveals one more time the importance of the monotony of the
time of travel with respect to the label: using the Riemann-Lebesgue lemma,
one obtains the first claim.

Indeed the Gauss law yields control of the electric field E(t) in H1(I),
that is ‖∂xE(t)‖L2(I) ≤ C < ∞. By compactness of the unit ball in L2

0(I) ∩
H1(I) into L2

0(I), one gets that there exists a limit E∞ such that E(t) tends
to E∞ as t → ∞. The limit is by subsequences. Take V (x) = E∞(x)e0 in
the weak limit. One gets that at the limit that E∞ = 0 in L2

0(I). Since
the limit is the same for all subsequences, one gets limt→∞ ‖E(t)‖L2(I) = 0.

Interpolation between L2(I) and H1(I) yields convergence in the L∞(I) norm
and the proof is ended. �
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Remark 6.5. Estimates of the regularity with respect to e of all terms in the
representation formula (6.2) yield estimates of the rates on the decay of the
electric field. In theory, it is possible to justify the regularity and summability
of all terms, and p integration by parts yield terms like O(t−p) in usual norms.
The technical issue is near the separatrix.

Appendix A. Monotony of the the time of travel

A.1. First branch: e ∈ (−ϕ−0 ,∞)

We distinguish the behavior for large e >> 1 in Lemma A.1, near the lower
bound e = −ϕ−0 + s for small s > 0 in Lemma A.2 and the monotony in
between in Lemma A.3. It allows to define properly the inverse function in
Proposition 3.8.

Lemma A.1 (Evident). One has t̂e = 1√
2e

+O
(

1

e
3
2

)
for large e >> 1.

Lemma A.2. There exists a constant C ∈ R such that

t̂−ϕ−0 +s = − 1√
ϕ′′0(0)

log s+ C +O(s), s > 0. (A.1)

Proof. One has t̂−ϕ−0 +s =
∫ 1

0
dz√

2(s+ϕ0(z)−ϕ−0 )
. ConsiderA =

∫ 1
2

0
dz√

2(s+ϕ0(z)−ϕ−0 )

which is decomposed as A =

∫ 1
2

0

dz√
2
(
s+ 1

2ϕ
′′
0(0)z2

)︸ ︷︷ ︸
=A1

+

∫ 1
2

0

 1√
2(s+ ϕ0(z)− ϕ−0 )

− 1√
2(s+ 1

2ϕ
′′
0(0)z2

 dz

︸ ︷︷ ︸
=A2

. Make the change of

variable z =
√

2s
ϕ′′0 (0)

y and denote as = 1/(2
√

2s/ϕ′′0(0)), soA1 = 1√
ϕ′′0 (0)

∫ as
0

dy√
1+y2

=

1√
ϕ′′0 (0)

log
(
as +

√
1 + a2s

)
. So A1 = − 1

2
√
ϕ′′0 (0)

log s + dϕ0
+ O(s) for some

constant dϕ0
. So A = − 1

2
√
ϕ′′0 (0)

log s+eϕ0
+O(s) for some constant eϕ0

. The

integral B =
∫ 1

1
2

dz√
2(s+ϕ0(z)−ϕ−0 )

has the same asymptotic behavior. It yields

the claim after summation of A and B. �

Lemma A.3 (Evident). In interval (−ϕ−0 ,∞), e 7→ t̂e is monotone decreasing
from +∞ to 0.

Proof of Proposition 3.8. The first point is evident. Second point: let us shift
for convenience the functions s(λ) = s(λ) + ϕ−0 and ψ(t) = ϕ(t) − ϕ−0 . The
expansion of s(λ) is immediate from Lemma A.1. By successive derivations

of the first equation of (3.14) one obtains −
√
2

λ2 = − 1
2

(∫ 1

0
dt

(s(λ)+ψ(t))
3
2

)
s′(λ),
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2
√
2

λ3 = − 1
2

(∫ 1

0
dt

(s(λ)+ψ(t))
3
2

)
s′′(λ) + 3

4

(∫ 1

0
dt

(s(λ)+ψ(t))
5
2

)
s′(λ)2 and

− 6
√
2

λ4 = − 1
2

(∫ 1

0
dt

(s(λ)+ψ(t))
3
2

)
s′′′(λ)

+ 9
4

(∫ 1

0
dt

(s(λ)+ψ(t))
5
2

)
s′(λ)s′′(λ) − 15

8

(∫ 1

0
dt

(s(λ)+ψ(t))
7
2

)
s′(λ)3. For large λ,

the estimates s on s′ = s′, s′′ = s′′ and s′′′ = s′′′ are obtained one after
the other, and so on for increasing order of derivation. Third point: for small

0 < λ, the expansion s(λ) = αϕ0
e−
√
ϕ′′0 (0)

2λ (1 + σ(λ)) is obtained from (A.1).
Moreover we note that there exists α > 0 and β such that αt2 ≤ ψ(t) ≤ βt2

on the interval t ∈ [0, 1/2]. Therefore for small τ > 0 and p > 1

βp
τ (p−1)/2

≤ 2

∫ 1
2

0

dt

(τ + βt2)
p
2

≤
∫ 1

0

dt

(τ + ψ(t))
p
2

≤ 2

∫ 1
2

0

dt

(τ + αt2)
p
2

≤ αp
τ (p−1)/2

for some constants αp and βp > 0. It yields the first bound |s′(λ)| ≤ c1
s(λ)
λ2

and it is sufficient to insert this expression in the other identities to obtain
the results for the first derivatives. �

A.2. Second branch: e ∈ (−ϕ+
0 ,−ϕ

−
0 )

We note e = −ϕ−0 − s⇐⇒ s = −e− ϕ−0 for small s > 0.

Lemma A.4. There exists C ∈ R such that t̂−ϕ−0 −s
= − 1√

ϕ′′0 (0)
log s+C+ν(s)

for ϕ+
0 − ϕ

−
0 > s > 0, where lims→0+ ν(s) = 0.

Proof. The proof is similar to the one of Lemma A.2. in (3.14). One cuts the
second integral (3.14) in two pieces and study the first pieceA = 2

∫ x0

âe
dz√

2(ψ(z)−s)

where ψ(z) = ϕ0(z)− ϕ−0 and ψ′′(0) = ϕ′′0(0). One has

A = 2

√
2

ϕ′′0(0)

∫ x0

âe

ψ′(z)

2
√
ψ(z)√

2(ψ(z)− s)
dz︸ ︷︷ ︸

=A1

+2

√
2

ϕ′′0(0)

∫ x0

âe

√
ϕ′′0 (0)

2 − ψ′(z)

2
√
ψ(z)√

2(ψ(z)− s)
dz︸ ︷︷ ︸

=A2

.

Note that ψ(âe) = ϕ0(âe) − ϕ−0 = −e − ϕ−0 = s. A change of variable

ψ(z) = su2 (the differential is ψ′(z)

2
√
ψ(z)

dz =
√
sdu) in the first integral yields

A1 = 1√
2

∫ c
1

du√
u2−1 = 1√

2
log
(
c+
√
c2 − 1

)
with c =

√
ψ(x0)/s. So there

exists a constant kϕ0
such that A1 = − 1

2
√
2

log s + kϕ0
+ o(s). Concerning

A2, we notice that D(z) :=

√
ϕ′′0 (0)

2 − ψ′(z)
2
√
ψ(z)√

ψ(z)
=

√
2ψ′′(0)ψ(z)−ψ′(z)

2ψ(z) . But ψ(0) =

ψ′(0) = 0, ψ′′(0) > 0 and ψ is of classe W 3,∞. Therefore D ∈ L∞(I) and

A2 admits a limit as s → 0+: A2 =
∫ x0

âe
D(z)

√
ψ(z)√

2(ψ(z)−s)
dz = C̃ + o(s).

One obtains the asymptotic expansion of A = A1 + A2 = − 1
2
√
2

log s +
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Ĉ + o(s). Adding a similar contribution for the second part of the integral

B = 2

√
ϕ′′0 (0)

2

∫ b̂e
x0

dz√
2(ψ(z)−s)

ends the proof. �

Lemma A.5. Under assumption 1.4, one has

t̂−ϕ+
0 +e =

√
2π√

ψ′′0 (x0)
+

4
√

2π(−(ψ
1
2 )′′(x0))

(ψ′′)(x0)
3
2

√
e+o(e), where lime→0 o(e)/e = 0.

(A.2)

Proof. With the notations of Lemma 3.9, consider (3.15) and make a local
expansion of ugu(e) for small e. One has eu2 = ψ(z) = 1

2ψ
′′(x0)(z − x0)2 +

O(z − x0)3 and ψ′(z) = ψ′′(x0)(z − x0) + O(z − x0)2. So one has ψ′(z) =√
2eψ′′(x0)u+O(e). Plugging in (3.16), one gets

lim
e→0+

ugu(e) = lim
e→0+

u

√
e

ψ′(z)
=

1√
2ψ′′(x0)

. (A.3)

One has (3.17), so one obtains also

√
e
d

de
gu(e) =

2

(2ψ′′(x0))
3
2

(−ψ 1
2 (x0))′′ +O(

√
e). (A.4)

Use (A.3) and a primitive of (A.4), so ugu(e) = 1√
2ψ′′(x0)

+ 4u

(2ψ′′(x0))
3
2

(−ψ 1
2 (x0))′′

√
e+

O(e). Plug this Ansatz in (3.15) one gets

H(e) =
∫ 1

0
2√

1−u2

(
1√

2ψ′′(x0)
+ 4u

(2ψ′′(x0))
3
2

(−ψ 1
2 (x0))′′

√
e+O(e)

)
du= π√

2ψ′′(x0)
+

8

(2ψ′′(x0))
3
2

(−ψ 1
2 (x0))′′

√
e+O(e). Adding the contribution which corresponds

to
∫ x0

âe
... yields the claim. �

Proof of Proposition 3.10. The first point is just a rephrasing of the previous
results. The second point is the reciprocal expansion to the one of Lemma

A.5. Indeed 1
λ −

1
B = α

√
e + . . . yields e = (λ−B)2

α2λ2B2 + · · · = (λ−B)2
α2B4 + . . .

The coefficient in front of (λ− B)2 in the Proposition is precisely 1
α2B4 . The

estimate for the derivative can be obtain (as before) by differentiation − 1
λ2 =

s′c(λ) dde

(
2
∫ b̂e
âe

dx√
2(e+ϕ0(x))

)
e=sc(λ)

. The derivative is O(1/
√
sc(λ) + ϕ+

0 ) by

means of (3.18)-(A.4). Therefore with λ ≈ B, one gets s′c(λ) = O(
√
sc(λ) + ϕ+

0 ) =

O (λ− B). The proof of the last point is similar to Prop. 3.8. �

Appendix B. A technical result

The technical result below is an essential step to characterize, in Proposition
5.6, of the regularity of the nεa,b,p which are the bilinear forms in the region
of trapped particles. The proof is elementary, however it is reasonable to
think that it solves a fundamental issue. Indeed trapped particles, also called
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electrons hole, generate Abel type integrals [31][equations (5) and (6)] which
need specific treatment to control their singularity.

We use the notations of Section 3.1.4. For 0 < λ < B and âsc(λ) ≤

x ≤ b̂sc(λ), let us define f̂(λ) =
∫ b̂sc(λ)
âsc(λ)

sin (2πpλyλ(x)) a(x)dx and yλ(x) =∫ x
âsc(λ)

dt√
2(sc(λ)+ϕ0(t))

. Our goal is to investigate the regularity of f̂ , with the

constraint that the regularity constant must be expressed in terms of the
quadratic norm of a. The key issue is that it is not possible to have such a
bound for the full derivative. Indeed, dropping non essential terms, one has

the local expansion yλ(x) =
√
2

ϕ′0(âsc(λ))

√
x− âsc(λ) + . . . from which one gets

d
dλyλ(x) = C(λ)√

x−âsc(λ)
+ . . . . The problem is that 1√

x−âsc(λ)
6∈ L2(I) so is not

convenient to obtain good bounds with respect to ‖a‖L2(I). One is forced to
characterize in a weaker space, typically a Hölder space. In the following we
focus on 1/2-Hölder continuity with a weight which depends on λ.

Proposition B.1. There exists a constant C > 0 independent of p, λ, µ ∈ [0,B]
and a ∈ L2(I) such that

∣∣∣f̂(µ)− f̂(λ)
∣∣∣ ≤ C|p|‖a‖L2(I)

√√√√ |λ− µ|

min
(
ϕ′0(âsc(λ)), ϕ

′
0(̂bsc(λ))

) , λ < µ.

The proof is is a corollary of Proposition B.3 and Lemma B.4 below.
The starting point is the following simple inequality. By definition (3.14), one

has 1
2λ = yλ(̂bsc(λ)). For convenience we extend by continuity the fonction yλ

in the entire interval [0, 1] setting yλ(x) = 0 for 0 ≤ x ≤ âsc(λ) and yλ(x) =

1/(2λ) for b̂sc(λ) ≤ x ≤ 1. Using the inequality |sinα− sinβ| ≤ |α− β|, one

gets from the definition
∣∣∣f̂(µ)− f̂(λ)

∣∣∣ ≤ 2π|p|‖a‖L2(I)‖λyλ − µyµ‖L∞(I).

Lemma B.2. For 0 < λ < µ < B, one has

‖λyλ − µyµ‖L∞(I) = λmax
(
yλ(âsc(µ)),

1
2 − yλ(̂bsc(µ))

)
.

Proof. Split the interval [0, 1] = [0, âsc(λ)] ∪ [âsc(λ), âsc(µ)] ∪ |âsc(µ), b̂sc(µ)] ∪
[̂bsc(µ), b̂sc(λ)] ∪ [̂bsc(λ), 1] for 0 < λ < µ < 1. By construction, the derivative
of g = λyλ − µyµ is zero in (0, âsc(λ)), positive in (âsc(λ), âsc(µ)), positive in

(̂bsc(µ), b̂sc(λ)) and zero in (̂bsc(λ), 1). In the interval (âsc(µ), b̂sc(µ)) one gets

that g′(x) = λ√
2(sc(λ)+ϕ0(x))

− µ√
2(sc(µ)+ϕ0(x))

. Proposition 3.10 yields that

sc is decreasing function. Since λ < µ, then sc(λ) > sc(µ). So g′(x) < 0 in

this central interval. Therefore ‖g‖L∞(I) = max
(
g(âsc(µ)),−g(̂bsc(µ))

)
. So

the claim. �
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Proposition B.3. There exists a constant C > 0 independent of p, λ, µ ∈ [0,B]
and a ∈ L2(I) such that for λ < µ

∣∣∣f̂(µ)− f̂(λ)
∣∣∣ ≤ C|p|‖a‖L2(I) max

√ |âsc(λ) − âsc(µ)|
ϕ′0(âsc(λ))

,

√√√√ |̂bsc(λ) − b̂sc(µ)|
ϕ′0(̂bsc(λ))

 .

(B.1)

Proof. One studies yλ(âsc(µ)). By symmetry it will be sufficient to get similar

estimates for the other term 1
2−yλ(̂bsc(µ)). A first estimate is λyλ(âsc(µ)) ≤ 1

2 .

Next x ∈
[
âsc(λ), x0

]
, one can rewrite yλ(x) =

∫ x
âsc(λ)

dt√
2(ϕ0(t)−ϕ0(âsc(λ)))

.

Let âsc(λ) ≤ d ≤ t ≤ âsc(µ), one has the expansion ϕ0(t) − ϕ0(âsc(λ)) =
ϕ′0(d)(t− âsc(λ)). So one has for âsc(λ) ≤ t ≤ âsc(µ)

ϕ0(t) ≥
(
ϕ′0(âsc(λ))− C

(
âsc(µ) − âsc(λ)

))
(t− âsc(λ))

where we used the boundedness of the second derivative to lower bound
ϕ′0(d) ≥ ϕ′0(âsc(λ))−C

(
âsc(µ) − âsc(λ)

)
with C > 0. Assuming that µ is suf-

ficiently close to λ, one gets another estimate

yλ(x) ≤ 1√
ϕ′0(asc(λ))−C(âsc(λ)−âsc(µ))

∫ x
âsc(λ)

dt√
2(t−âsc(λ))

=

√
2(t−âsc(λ))√

ϕ′0(âsc(λ))−C(âsc(λ)−âsc(µ))
.

Combine the two estimates and use the notation g(u, v) = min
(

1,
√

2u
v−Cu

)
:

so yλ(âsc(µ)) ≤ g
(
âsc(µ) − âsc(λ), ϕ′0(âsc(λ))

)
. The function g is homogenous

of degree 0 and g(w, 1) ≤ C
√
w for some constant C. It yields λyλ(âsc(µ)) ≤

C
√

âsc(µ)−âsc(λ)
ϕ′0(âsc(λ))

. A similar bound bound for the other term ends the proof

of the claim of Proposition B.3. �

Lemma B.4. The functions λ 7→ âsc(λ) and λ 7→ b̂sc(λ) are uniformly differ-
entiable for λ ∈ [0,B].

Proof. The proof is provided for the first function. One has sc(λ)+ϕ0(âsc(λ)) =

0 so d
dλ âsc(λ) = − s′c(λ)

ϕ′0(âsc(λ))
for λ ∈ (0,B) where sc(λ) ∈ C1[0,B]. Assumption

1.4 yields that ϕ′0(λ) > 0 for 0 < λ < B. The issue is the limit of the above
expression for 0+ and B−.

• For small λ, Proposition 3.8 yields s′c(λ) = O

(
exp

(
−
√
ϕ′′0 (0)

2λ

)
/λ2
)

. For

small x ≈ 0, one has that ϕ′0(x) = O(ϕ0(x) + ϕ−0 )
1
2 so

ϕ′0(âsc(λ)) = O(ϕ0(âsc(λ)) + ϕ−0 )
1
2 = O

(
exp

(
−
√
ϕ′′0(0)

2λ

)) 1
2

(B.2)

and d
dλ âsc(λ) = O

 exp

(
−
√
ϕ′′0 (0)

4λ

)
λ2

 for small λ. So limλ→0+
d
dλ âsc(λ) = 0.

• For λ ≈ B, Proposition 3.8 yields s′c(λ) = O (λ− B). For x ≈ x0, one has
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that ϕ′0(x) = O(ϕ0(x) + ϕ+
0 )

1
2 so

ϕ′0(âsc(λ)) = O
(
ϕ0(âsc(λ)) + ϕ+

0

) 1
2 = O(λ− B). (B.3)

Therefore one has a limit limλ→B−
d
dλ âsc(λ) <∞.

• Since d
dλ âsc(λ) ∈ C

0(0,B), the proof is ended. �

Appendix C. A useful inequality

For p, q ∈ R∗, one has the estimate
∥∥∥∫x∈I f(λ, x)

(
1
πP.V.

∫
µ∈R

g(µ,x)
pλ−qµdµ

)
dx
∥∥∥2
L2
λ

≤ 1
|pq|
∫
x∈I ‖f‖

2
L2
λ
dx ×

∫
x∈I ‖g‖

2
L2
λ
dx where L2

λ = L2
λ(R) is the quadratic norm

is with respect to the variable λ ∈ R. The proof which uses the fact that the
Hilbert transform is an isometry in L2 is left to the reader.

Appendix D. Verification that V ε
e,k,z is a generalized

eigenvector

We provide a separate algebraic proof that V εe,k,z is a generalized eigenvector
of iHε. The proof is in the weak sense, assuming convergence of the sums and
integrals (refer to Remark 5.8). It yields a direct verification of the conditions
(4.5).

Lemma D.1. One has
(
V εe,k,z, AW

′
)

+
(
V εe,k,z, ε

2E0BW
)

+
(
V εe,k,z, DW

)
=

λεe,k

(
V εe,k,z,W

)
for all W ∈ X0.

Let us start from (5.11). One has for all W ∈ X0(
V εe,k,z, AW

′
)

=
(
Uεe,k,z, AW

′
)

+
(
aεe,k,z(x)e0, AW

′
)

+ε
∑
z′

∑
p 6=0

P.V.

∫
s∈Iε

z′

(
αaεe,k,ze2, exp(ε2ϕ0/2)Uεs,p,z′

)
λεs,p − λεe,k

(
Uεs,p,z′ , AW

′) tεsds
and(
V εe,k,z, ε

2E0BW
)

=
(
Uεe,k,z, ε

2E0BW
)

+
(
aεe,k,z(x)e0, ε

2E0BW
)

+ε
∑
z′

∑
p 6=0

P.V.

∫
s∈Iε

z′

(
αaεe,k,ze2, exp(ε2ϕ0/2)Uεs,p,z′

)
λεs,p − λεe,k

(
Uεs,p,z′ , ε

2E0BW
)
tεsds.

(D.1)
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Summation of (D.1-D.3) and the use of (3.12) which is satisfied for all e, k, z
yields(
V εe,k,z, AW

′
)

+
(
V εe,k,z, ε

2E0BW
)

=
(
Uεe,k,z, AW

′
)

+
(
Uεe,k,z, ε

2E0BW
)

+
(
aεe,k,z(x)e0, AW

′
)

+
(
aεe,k,z(x)e0, ε

2E0BW
)

+ε
∑
z′

∑
p 6=0

P.V.

∫
s∈Iε

z′

(
αaεe,k,ze2, exp(ε2ϕ0/2)Uεs,p,z′

)
λεs,p − λεe,k

λεs,p
(
Uεs,p,z′ ,W

)
tεsds.

So (
V εe,k,z, AW

′
)

+
(
V εe,k,z, ε

2E0BW
)
− λεe,k

(
V εe,k,z,W

)
=

(
Uεe,k,z, AW

′
)

+
(
Uεe,k,z, ε

2E0BW
)
− λεe,k

(
Uεe,k,z,W

)
+

(
aεe,k,z(x)e0, AW

′
)

+
(
aεe,k,z(x)e0, ε

2E0BW
)
− λεe,k

(
aεe,k,z(x)e0,W

)
+ ε

∑
z′

∑
p 6=0

∫
s∈Iε

z′

(
αaεe,k,ze2, exp(ε2ϕ0/2)Uεs,p,z′

) (
Uεs,p,z′ ,W

)
tεsds

= 0− λεe,k
(
aεe,k,ze0,W

)
+ ε

(
exp(ε2ϕ0/2)αaεe,k,ze2,W

)
(use the identity (3.23)).

Let a ∈ L2
0(I) and c ∈ L2(I) denote the first and third component of the

infinite vector W . One recasts this as(
V εe,k,z, AW

′)+
(
V εe,k,z, ε

2E0BW
)
− λεe,k

(
V εe,k,z,W

)
(D.2)

= −λεe,k
(
aεe,k,z, a

)
+ εα

(
exp(ε2ϕ0/2)aεe,k,z, c

)
.

On the other hand another use of (5.11) yields(
V εe,k,z, DW

)
=
(
Uεe,k,z, DW

)
+
(
aεe,k,ze0, DW

)
+ε
∑
z′

∑
p 6=0

P.V.

∫
s∈Iε

z′

(
αaεe,k,ze2, exp(ε2ϕ0/2)Uεs,p,z′

)
λεs,p − λεe,k

(
Uεs,p,z′ , DW

)
tεsds.

(D.3)
One can write DW = α exp(ϕ0/2)ae2 − α1∗(exp(ϕ0/2)c)e0. So(
V εe,k,z, DW

)
=
(
Uεe,k,z · e2, α exp(ε2ϕ0/2)a

)
−
(
aεe,k,ze0, α1∗(exp(ε2ϕ0/2)c)e0

)
+εα

∑
z′

∑
p 6=0

P.V.

∫
s∈Iε

z′

(
αaεe,k,ze2, exp(ε2ϕ0/2)Uεs,p,z′

)
λεs,p − λεe,k

(
Uεs,p,z′ · e2, exp(ε2ϕ0/2)a

)
tεsds.

Since aεe,k,z ∈ L2
0(I) is the unique solution to (4.6)-(5.3)-(5.7), one obtains(

V εe,k,z, DW
)

= α
(
Uεe,k,z · e2, exp(ε2ϕ0/2)a

)
− α

(
aεe,k,z, exp(ε2ϕ0/2)c

)
+

1

ε
λεe,k(aεe,k,z, a)− α

(
exp(ε2ϕ0/2)Uεe,k,z · e2, a

)
.
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One adds to (D.2). So
(
V εe,k,z, AW

′
)

+
(
V εe,k,z, ε

2E0BW
)
−λεe,k

(
V εe,k,z,W

)
+

ε
(
V εe,k,z, DW

)
= 0.
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[24] F. Filbet, E. Sonnendrücker and P. Bertrand, Conservative numerical schemes
for the Vlasov equation, JCP, 172, 166-187, 2001.

[25] C. Gérard and F. Nier, Scattering theory for the perturbations of periodic
Schrödinger operators, J. Math. Kyoto Univ. Vol. 38, 4 (1998), 595-634.

[26] F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les
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