J. F. Haw, W. Song, D. M. Marcus, and J. B. Nicholas, The mechanism of methanol to hydrocarbon catalysis, Acc. Chem. Res, vol.36, pp.317-326, 2003.

Y. Shen, Manganese oxide octahedral molecular sieves: preparation, characterization, and applications, Science, vol.260, pp.511-515, 1993.

S. L. Suib, Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials, J. Mater. Chem, vol.18, pp.1623-1631, 2008.

Q. Feng, H. Kanoh, and K. Ooi, Manganese oxide porous crystals, J. Mater. Chem, vol.9, pp.319-333, 1999.

Y. Kanke, E. Takayama-muromachi, K. Kato, and K. Kosuda, Synthesis and crystal structure of Priderite-type barium vanadium oxide Ba x V 8 O 16 (x = 1.09 (1)), J. Solid State Chem, vol.115, pp.88-91, 1995.

I. Djerdj, Oxygen self-doping in hollandite-type vanadium oxyhydroxide nanorods, J. Am. Chem. Soc, vol.130, pp.11364-11375, 2008.

B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, J. Solid State Chem, vol.29, pp.429-434, 1979.

A. Coucou and M. Figlarz, A new tungsten oxide with 3D tunnels: WO 3 with the pyrochlore-type structure. Solid State Ion, vol.30, pp.1762-1765, 1988.

M. W. Anderson and J. Klinowski, Layered titanate pillared with alumina, Inorg. Chem, vol.17, pp.3260-3263, 1990.

J. D. Pless, Tunable conductivity of collapsed sandia octahedral molecular sieves, Chem. Mater, vol.19, pp.4855-4863, 2007.

X. Shen, A. Morey, J. Liu, and Y. Ding, Characterization of the Fe-doped mixed-valent tunnel structure manganese oxide KOMS-2, J. Phys. Chem. C, vol.115, pp.21610-21619, 2011.

C. Chen, Structural distortion of molybdenum-doped manganese oxide octahedral molecular sieves for enhanced catalytic performance, Inorg. Chem, vol.54, pp.10163-10171, 2015.

C. M. Vasconcellos, M. L. Gonçalves, M. M. Pereira, and N. M. Carvalho, Iron doped manganese oxide octahedral molecular sieve as potential catalyst for SO x removal at FCC, Appl. Catal. A Gen, vol.498, pp.69-75, 2015.

L. Jin, Titanium containing ?-MnO 2 (TM) hollow spheres: one-step synthesis and catalytic activities in Li/Air batteries and oxidative chemical reactions, Adv. Funct. Mater, vol.20, pp.3373-3382, 2010.

S. L. Suib, Porous manganese sieves and octahedral layered materials, Acc. Chem. Res, vol.41, pp.479-487, 2008.

B. Xue, High-contrast electrochromic multilayer films of molybdenumdoped hexagonal tungsten bronze (Mo 0.05-HTB), J. Mater. Chem, vol.15, pp.4793-4798, 2005.

H. Zheng, Nanostructured tungsten oxide-properties, synthesis, and applications, Adv. Funct. Mater, vol.21, pp.2175-2196, 2011.

J. Polleux, A. Gurlo, and N. Barsan, Template free synthesis and assembly of single crystalline tungsten oxide nanowires and their gas sensing properties, Angew. Chem. Int. Ed, vol.118, pp.267-271, 2006.

S. K. Deb, Opportunities and challenges in science and technology of WO 3 for electrochromic and related applications, Sol. Energy Mater. Sol. Cells, vol.92, pp.245-258, 2008.

C. Granqvist, Transparent conductive electrodes for electrochromic devices: a review, Appl. Phys. A Mater. Sci. Process. A, vol.57, pp.19-24, 1993.

J. Livage and D. Ganguli, Sol-gel electrochromic coatings and devices: a review, Sol. Energy Mater. Sol. Cells, vol.68, pp.365-381, 2001.

S. Yoon, E. Kang, J. K. Kim, C. W. Lee, and J. Lee, Development of highperformance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity, Chem. Commun, vol.47, pp.1021-1023, 2011.

N. Kumagai, N. Kumagai, Y. Umetzu, K. Tanno, and J. P. Pereira-ramos, Synthesis of hexagonal form of tungsten trioxide and electrochemical lithium insertion into the trioxide. Solid State Ion, pp.1443-1449, 1996.

K. Huang, Controllable synthesis of hexagonal WO 3 nanostructures and their application in lithium batteries, J. Phys. D. Appl. Phys, vol.41, p.155417, 2008.

A. S. Aricò, P. Bruce, B. Scrosati, J. Tarascon, and W. Van-schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater, vol.4, pp.366-377, 2005.

R. Slade, B. West, and G. Hall, Chemical and electrochemical mixed alkali metal insertion chemistry of the hexagonal tungsten trioxide framework. Solid State Ion, vol.33, pp.154-161, 1989.

K. Cheng and M. S. Whittingham, Lithium incorporation in tungsten oxides, Solid State Ion, vol.1, pp.151-161, 1980.

M. Zheng, Tungsten-based materials for lithium-ion batteries, Adv. Funct. Mater, vol.28, p.1707500, 2018.

I. M. Szilágyi, WO 3 photocatalysts: influence of structure and composition, J. Catal, vol.294, pp.119-127, 2012.

T. Zheng, Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution, Nano. Lett, vol.17, pp.7968-7973, 2017.

M. Grätzel, Photoelectrochemical cells, Nature, vol.414, pp.338-344, 2001.

M. Kosmulski, Isoelectric points and points of zero charge of metal (hydr) oxides: 50 years after Parks' review, Adv. Colloid Interface Sci, vol.238, pp.1-61, 2016.

G. A. Parks, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems, Chem. Rev, vol.65, pp.177-198, 1965.

J. Rodriguez-carvajal and . Fullprof, 2k: Rietveld, Profile Matching and Integrated Intensity Refinement of X-Ray and Neutron Data, Laboratoire Léon Brillouin, 2001.

R. Ishikawa, Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy, Nat. Mater, vol.10, pp.278-281, 2011.

K. Manthiram and A. P. Alivisatos, Tunable localized surface plasmon resonances in tungsten oxide nanocrystals, J. Am. Chem. Soc, vol.134, pp.3995-3998, 2012.

T. M. Mattox, A. Bergerud, A. Agrawal, and D. J. Milliron, Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals, Chem. Mater, vol.26, pp.1779-1784, 2014.

J. Yan, Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting, Adv. Mater, vol.27, pp.1580-1586, 2015.

B. Ingham, S. C. Hendy, S. V. Chong, and J. L. Tallon, Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems, Phys. Rev. B-Condens. Matter Mater. Phys, vol.72, pp.3-6, 2005.

H. Song, Synthesis of Fe-doped WO 3 nanostructures with high visiblelight-driven photocatalytic activities, Appl. Catal. B Environ, pp.112-120, 2015.

M. Gerosa, Electronic structure and phase stability of oxide semiconductors: performance of dielectric-dependent hybrid functional DFT, benchmarked against G W band structure calculations and experiments, Phys. Rev. B, vol.91, p.155201, 2015.

L. Liang, High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO 3 ·2H 2 O ultrathin nanosheets, Sci. Rep, vol.3, p.1936, 2013.

S. Balaji, Y. Djaoued, and A. Albert, Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows, Chem. Mater, vol.21, pp.1381-1389, 2009.

B. Ingham, S. C. Hendy, S. V. Chong, and J. L. Tallon, Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems, Phys. Rev. B, vol.72, p.75109, 2005.

N. Bondarenko, O. Eriksson, and N. V. Skorodumova, Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide, Phys. Rev. B, vol.92, p.165119, 2015.

D. Portehault, S. Cassaignon, E. Baudrin, and J. Jolivet, Morphology control of cryptomelane type MnO 2 nanowires by soft chemistry. Growth mechanisms in aqueous medium, Chem. Mater, vol.19, pp.5410-5417, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181057

W. Xiao, W. Liu, X. Mao, H. Zhu, and D. Wang, Na 2 SO 4-assisted synthesis of hexagonal-phase WO 3 nanosheet assemblies with applicable electrochromic and adsorption properties, J. Mater. Chem. A, vol.1, pp.1261-1269, 2013.

Y. Oaki and H. Imai, Room-temperature aqueous synthesis of highly luminescent BaWO 4-polymer nanohybrids and their spontaneous conversion to hexagonal WO 3 nanosheets, Adv. Mater, vol.18, pp.1807-1811, 2006.

J. Zhang, X. L. Wang, X. H. Xia, C. D. Gu, and J. P. Tu, Electrochromic behavior of WO 3 nanotree films prepared by hydrothermal oxidation, Sol. Energy Mater. Sol. Cells, vol.95, pp.2107-2112, 2011.

C. G. Granqvist, Electrochromic tungsten oxide: review of progress, 1993.

, Sol. Energy Mater. Sol. Cells, vol.60, pp.201-262, 2000.

G. A. Niklasson and C. G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, J. Mater. Chem, vol.17, pp.127-156, 2007.

S. Joo, I. Raistrick, and R. Huggins, Rapid anisotropic diffusion of lithium in electrochromic thin films based on the hexagonal tungsten bronze structure. Solid State Ion, vol.17, pp.313-318, 1985.

M. Green, W. Smith, and J. Weiner, A thin film electrochromic display based on the tungsten bronzes, Thin. Solid. Films, vol.38, pp.89-100, 1976.

P. Judeinstein and J. Livage, Electrochemical mechanisms of tungsten trioxide thin films, J. Chim. Phys. Phys.-Chim. Biol, vol.90, pp.137-147, 1993.

H. Kamal, A. A. Akl, and K. Abdel-hady, Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO 3 films, Phys. B Condens. Matter, vol.349, pp.192-205, 2004.

G. Kresse and J. Furthmüller, Vienna Ab-initio Simulation Package (VASP), 2012.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.