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Whistler envelope solitons. I. Dynamics in inhomogeneous plasmas

C. Krafft and A. Volokitin

A self-consistent Hamiltonian model based on equations describing the coupled dy-

namics of whistler and lower frequency waves in inhomogeneous plasmas is built. On

this basis, different aspects of whistler turbulence are studied, concerning mainly the

development of modulational instabilities and the dynamics of envelope solitons in

irregular plasmas. Numerical simulations based on the model show that modula-

tional instability can lead to the generation of a beating of stable nonlinear whistlers

propagating with a speed near the group velocity. The whistler envelope soliton is

determined analytically and its propagation in plasmas presenting random density

fluctuations and weakly irregular density structures of different scales and amplitudes

is studied, showing that the envelope is very weakly affected by these inhomogeneities,

whereas the wavelengths and the amplitudes of the phase oscillations strongly vary.

Moreover, simulations show for the first time that two whistler solitons moving with

different but close velocities and colliding one with the other remain unchanged af-

ter this collision, independently of their initial amplitudes and velocities. Finally we

study the dynamics of sonic whistler envelope solitons and show that the propagation

of their lower frequency perturbation is governed by a KdV-type equation.
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I. INTRODUCTION

The emission of whistlers excited by electron beams in the presence of very low fre-

quency acoustic-type waves and plasma inhomogeneities has been observed in several space

experiments. For example, low frequency electromagnetic waves identified as whistlers were

detected in the inhomogeneous solar wind plasma in association with Langmuir and ion

acoustic waves1,2. The Wind spacecraft observed parallel propagating whistlers and Lang-

muir waves within a coronal mass ejection3, which were very good time-correlated with a

loss-cone electron distribution within a magnetic cloud. Whistler waves propagating along

magnetic loops during solar flares and generated by loss-cone distributions of relativistic

electrons have been shown to be responsible for the generation of fiber bursts in the solar

radio radiation4. Normal cyclotron mechanisms driven by temperature anisotropy have been

identified5 to be the cause of lion roars, which are intense and narrowband whistlers of low

frequency, that are one of the characteristic features of the magnetosheath. Moreover, this

mechanism is responsible for whistler emission upstream of the Earth’s bowshock and at

interplanetary shocks6.

Bursts of narrowband and short-living whistlers have been frequently observed by

spacecraft7; most of these waves propagate in the electron foreshock quasi-parallel to the

ambient magnetic field, and are likely produced by electron fluxes through cyclotron reso-

nances and temperature anisotropy; they are more rarely observed in the solar wind, where

they are believed to propagate along the field lines and originate from distant sources (such

as interplanetary shocks8) or halo electrons presenting temperature anisotropy and carrying

heat flux9. The spacecraft Cluster observed in the solar wind narrow band coherent fluctu-

ations propagating quasi-parallel to the magnetic field, interpreted as whistler waves10. The

specific problem of interaction between narrow whistler waves packets and warm electron

beams (i.e. with finite perpendicular and parallel temperatures) is particularly interesting.

Indeed, as whistlers excited by such beams present in many cases positive linear growth

rates only in narrow spectral bands11(see also below), one can suppose that, even in the

quasilinear and nonlinear stages of the evolution, the waves with resonant velocities in the

corresponding narrow velocity domain should play the most significant role. In this case a

broadband packet is not necessary for producing an efficient interaction with electron fluxes

and a subsequent significant radiation. Such whistler waves, for example, can be generated

due to some natural physical processes, as evidenced by the space observations mentioned

just above, or be emitted in the magnetosphere by ground transmitters12.

The coupling of large amplitude whistlers as those observed in space plasmas13 with lower

frequency waves as ion or electron acoustic waves can lead to various phenomena developing

in the nonlinear stage of the evolution, in presence or absence of resonant particles, as pon-

deromotive effects, modulational instabilities, formation of stable structures as solitons or

localized wave packets, etc. The satellite Ogo 5 observed isolated discrete whistler packets

in the solar wind14. Observations by spacecraft revealed the existence of localized electric
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fields and density structures in the high and low frequency ranges. Indeed, the satellite Freja

observed right-polarized wave packets accompanied by density cavities with depths of the

order of 1% of the background plasma, identified by the authors as envelope whistler soli-

tary waves15. The space mission Cluster detected whistler emissions near the plasmapause,

correlated with density fluctuations aligned along the ambient magnetic field16, which are

modulated structures associated with the density perturbations. Moreover, the satellite Fast

observed envelope solitary electron-acoustic waves propagating along the magnetic field lines

in auroral density cavities, in regions where two electrons populations, hot and cold, exist17.

Finally, some authors report the observations of envelope soliton fine structures observed in

solar radio metric-wave emissions occurring during solar radio bursts18.

In order to explain such observations, we present hereafter a self-consistent Hamiltonian

model based on equations describing the coupled dynamics of electromagnetic whistlers and

lower frequency waves19,20 in randomly inhomogeneous plasmas. This model is used, owing

to an associated numerical code, to study the characteristic features of nonlinear structures

as solitons and physical effects as modulational instabilities, which can rise in space plasmas,

as mentioned above. The present paper extends and generalizes the existing studies21–23, by

enlarging the domain of parameters’ validity (e.g. by considering the full range of whistler

frequencies, and not only the limiting case of very low frequencies) and by providing detailed

numerical simulations’ results on different aspects of whistler turbulence in inhomogeneous

plasmas. In particular and to our knowledge, the dynamics of the collision between whistler

envelope solitons is presented for the first time. Concerning modulational instabilities, we

also show how they can generate beatings between stable nonlinear structures. Moreover

the whistler soliton propagation is studied in plasmas presenting external preexisting ir-

regularities in the form of random fluctuations, which are particularly important as they

can strongly influence on the nonlinear effects at work, as it was evidenced recently for the

case of Langmuir turbulence in the solar wind24–27. Note that the model provides useful

invariants which allow to control the numerical simulations; moreover it can be completed

by adding populations of resonant particles interacting with the solitons, as discussed in the

companion paper32.

II. INTERACTION OF WHISTLERS WITH LOWER FREQUENCY

WAVES : THEORETICAL MODEL

In a magnetized plasma, whistlers can couple nonlinearly to lower frequency waves, due

to the ponderomotive force and the interactions between their fields and the plasma fluid

density’s, velocity’s and magnetic field’s perturbations. In this frame, specific physical effects

can rise and influence strongly on the dynamics of the whistlers.

Let us consider the case of whistler wave packets propagating parallel to the ambient
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magnetic field B0; their magnetic field is assumed to be of the form

B = Re
(
B (z, t) e−iω0t+ik0z (x+iy)

)
, (1)

where B = Bx − iBy is the slowly varying (with space and time) envelope of the right

circularly polarized wave; x and y are the unitary vectors along the axes perpendicular to

the direction z of the wave propagation and the ambient magnetic field B0; Bx and By are

the coordinates of B along x and y; ω0 and k0 are the central frequency and wavenumber

of the whistler packet. The dispersion relation is given by

D (ω0, k0) = k2
0c

2 − ω2
0 (ε⊥ − q) = k2

0c
2 − ω2

0 +
ω2
pω0

ω0 − ωc
= 0 (2)

with the elements of the cold dielectric tensor

ε⊥ = 1−
ω2
p

ω2
0 − ω2

c

, q =
ωcω

2
p

ω0 (ω2
0 − ω2

c)
, (3)

where ωp and ωc are the electron plasma and cyclotron frequencies, respectively. Note that,

contrary to previous studies22 which considered only waves with ω0 � ωc, our model takes

into account the full range of whistler frequencies, i.e. ωlh < ω0 < ωc, where ωlh is the lower

hybrid frequency. Combining the Maxwell equations we obtain that

1

c2

∂2B

∂t2
−∇2B =

4π

c
∇× j, (4)

where j is the current density involving the external currents jext (which can be carried by

an electron beam injected in the plasma, for example). Using the Ohm’s law for the linear

current density, and taking into account the slow space and time variations of the magnetic

field envelope B, we obtain that D(ω, k)B ' 0 when jext = 0 (for more details see the

Appendix A). Performing a Taylor development of D(ω, k) around (ω0, k0) up to order two

(parabolic approximation) and keeping only the main terms, we can write

D(ω, k) ' i

(
∂D
∂ω

)
0

∂

∂t
−i
(
∂D
∂k

)
0

∂

∂z
−1

2

((
∂2D
∂ω2

)
0

∂2

∂t2
− 2

(
∂2D
∂k∂ω

)
0

∂2

∂z∂t
+

(
∂2D
∂k2

)
0

∂2

∂z2

)

+ρ

(
∂D
∂ρ

)
0

+ δve

(
∂D
∂δve

)
0

+
δBz

B0

(
∂D

∂ (δBz/B0)

)
0

, (5)

where ρ = δne/n0 and δve are the perturbations of the slowly varying electron fluid density

and velocity; δBz is the slowly varying magnetic field perturbation along z; n0 is the unper-

turbed plasma density at equilibrium. Then the equation of evolution of the wave magnetic

field envelope is obtained in the following form (see also the Appendix A)

i
∂B

∂t
+ ivg0

∂B

∂z
+
v′g0
2

∂2B

∂z2
= −

ω0ω
2
p

D′0 (ω0 − ωc)

(
ρ+

ωc
ω0 − ωc

(
k0

ω0

δve +
δBz

B0

))
B, (6)
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with

D′0 =

(
∂D
∂ω

)
0

= −
(

2ω0 +
ω2
pωc

(ωc − ω0)2

)
. (7)

The right hand side of (6) consists of three nonlinear terms representing the coupling be-

tween the whistler field and the lower frequency perturbations of density, velocity and am-

bient magnetic field. Note that D′0 = −ω2
0ε
′
0, where ε′0 is the derivative of the dielectric

constant at (ω0, k0). The group velocity and its derivative are given by vg0 = (dω/dk)0 =

− (∂D/∂k)0 / (∂D/∂ω)0 = −2c2k0/D′0 and

v′g0 =

(
d2ω

dk2

)
0

=
vg0
k0

(
1−

v2
g0

c2

(
1 +

ω2
pωc

(ωc − ω0)3

))
. (8)

Below the term with δBz in (6) will be omitted as the magnetic field B0 is considered here

to be constant. The evolution of the lower frequency oscillations of the electron density

δne and velocity δve can be obtained by using the momentum conservation equation in the

steady state
∂

∂t
δve + δve

∂

∂z
δve =

e

me

∂

∂z
δϕ− Te

neme

∂

∂z
δne +

Fpz
me

' 0,

where δϕ is the low frequency potential; Te, me and −e < 0 are the electron plasma tem-

perature, mass and charge, respectively. The ponderomotive force Fpz of whistlers acting

on the particles is (see also the calculations of the non stationary part of the force in the

Appendix B)

Fpz = −
ω2
p

ω0 (ω0 − ωc)

(
∂

∂z
− ωc

(ω0 − ωc)
k0

ω0

∂

∂t

)
|E|2

16πn0

, (9)

where E = (ω0/ck0)B; the expression (9) is similar to that obtained in another way28,29.

The ion dynamics is described by

∂

∂t
δni +

∂

∂z
(niδvi) = 0, (10)

∂

∂t
δvi + δvi

∂

∂z
δvi = − e

mi

∂

∂z
δϕ− Ti

nimi

∂

∂z
δni, (11)

where δni (ni = n0 + δni) and δvi are the proton density and velocity perturbations; Ti and

mi are the ion plasma temperature and mass. In the case of quasineutral low frequency

oscillations (ρ = δne/n0 ' δni/n0 and consequently, due to charge conservation, V = δve '
δvi), one can get the low frequency equations in the form

∂

∂t

(
V −

ω2
p

(ω0 − ωc)2

ωc
k0

|B|2

16πn0mic2

)
+

∂

∂z

(
c2
sρ+

ω2
pω0

k2
0 (ω0 − ωc)

|B|2

16πn0mic2

)
' 0, (12)

∂ρ

∂t
+
∂V

∂z
' 0, (13)

where the hydrodynamic nonlinear terms have been neglected and the ponderomotive terms

have been expressed as a function of the magnetic field enevelope B; cs is the ion sound
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velocity. Defining |B|2 = |B|2 /16πn0mic
2 and introducing the hydrodynamic flux Ψ in the

form
∂Ψ

∂z
= V −

ωcω
2
p

k0(ωc − ω0)2
|B|2 , (14)

the equations (12)-(13) can be written as

∂Ψ

∂t
+ c2

sρ+
ω2
pω0

k2
0 (ω0 − ωc)

|B|2 = 0, (15)

and
∂2Ψ

∂z2
+
∂ρ

∂t
+

ω2
pωc

k0(ω0 − ωc)2

∂ |B|2

∂z
= 0. (16)

Adding the equation for the whistler envelope in the following form (δBz = 0)

i
∂B
∂t

+ ivg0
∂B
∂z

+
v′g0
2

∂2B
∂z2

= −
ω2
p

(ω0 − ωc)D′0

(
ω0ρB +

k0ωc
(ω0 − ωc)

∂Ψ

∂z
B +

ω2
cω

2
p |B|

2 B
(ω0 − ωc)3

)
, (17)

we get a system of three differential equations whose Hamiltonian can be expressed as (see

also the Appendix A)

H =

∫
dz

L
H =

∫
dz

L
×[

ivg0
2

(
B∂B

∗

∂z
− B∗∂B

∂z

)
+
v′g0
2

∣∣∣∣∂B∂z
∣∣∣∣2 +

ω2
pω0ρ |B|2

D′0 (ωc − ω0)
− k2

0

2D′0

(
V 2 + c2

sρ
2
)]
, (18)

where L is the size of the system and V has been expressed using (14). The three first terms

of (18) represent the energy of the whistler waves, the fourth one the energy of interaction

between the whistlers and the lower frequency waves, and the two last the energy of the

lower frequency waves. Another invariant, i.e. the momentum P of the system, can be

deduced from (12)-(13)-(17)

P = i

∫ (
B∂B

∗

∂z
− B∗∂B

∂z

)
dz

L
+

2k2
0

D′0

∫
ρV

dz

L
−

2ω2
p

D′0
k0ωc

(ωc − ω0)2

∫
ρ |B|2 dz

L
. (19)

The last invariant is the number of quanta

H0 =

∫
ω0 |B|2

dz

L
, (20)

which can also be added to (18). The two couples of canonical variables are (B,B∗) =

(B,B∗)/
√

16πn0mic2 and (Ψ,Π) = (Ψ,−k2
0ρ/D′0). One can check that the corresponding

Hamilton equations are given by

∂Π

∂t
=
δH

δΨ
,

∂Ψ

∂t
= −δH

δΠ
,

∂B
∂t

= −i δH
δB∗

, (21)
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where δ is the functional derivative. This Hamiltonian system can used to study the inter-

actions of whistlers with ion sound waves, for example. Note that, due to (5), the model

is valid for the case of narrowband coherent whistlers propagating quasi-parallel to the

magnetic field lines. Such whistlers can be generated naturally in space or artificially in lab-

oratory experiments, using pump waves or particles’ fluxes, as discussed in the companion

paper of this article32.

Our purpose is now to solve the system formed by (18) and (21) (or (6), (12) and (13))

in order to understand the dynamics of a whistler packet interacting with ion sound waves.

A numerical code has been built which is based on the normalized model’s equations, which

are solved using pseudo-spectral methods, discretization schemes and Fast Fourier Trans-

forms (see the Appendix C for more details). Packets of 1024−4096 waves of wavenumbers

k0 ± k (0 < k � k0) and frequencies ωk0±k are used, which present initially narrowband

spectra peaked at the central wavenumber k0 at frequency ω0. The one-dimensional simula-

tion box extends typically over a normalized distance Lωc/c ' 103 − 105. External plasma

inhomogeneities can be introduced as initial perturbations. The accuracy of the calculations

is controlled owing to the model’s invariants, i.e. the number of quanta (20), the system’s

energy (18) and momentum (19).

III. MODULATIONAL INSTABILITY

As shown in previous studies21, whistler waves propagating along magnetic field lines can

be modulationally unstable with respect to perturbations of the lower frequency range. On

the basis of the above presented Hamiltonian model we will first determine the growth rate

of such instabilities and then perform numerical simulations.

Let us express the magnetic field envelope as B = Bk0 + Bk0+κe
iκz−iΩt + Bk0−κe

−iκz+iΩt,

where the amplitude of the Fourier component Bk0 corresponding to the central wavenumber

k0 is large compared to the amplitudes of the other components Bk0∓κ. So the density and

velocity perturbations satisfy ρ = ρκe
iκz−iΩt+ρ−κe

−iκz+iΩt and V = Vκe
iκz−iΩt+V−κe

−iκz+iΩt.

From (13) one can deduce that Ωρκ = κVκ. Moreover, in the Fourier space the equations (6)

and (12) lead respectively to the relations(
±Ω∓ κvg0 −

κ2v′g0
2

)
Bk0±κ = −

ω0ω
2
p

D′0 (ω0 − ωc)

(
κ

Ω
+

ωc
ω0 − ωc

k0

ω0

)
V±κBk0 , (22)

and

Ω

(
Vκ −

ω2
p

(ω0 − ωc)2

ωc
k0

B∗k0Bk0+κ +Bk0B
∗
k0−κ

16πn0mic2

)
= κ

(
c2
sρκ +

ω2
pω0

k2
0 (ω0 − ωc)

B∗k0Bk0+κ +Bk0B
∗
k0−κ

16πn0mic2

)
,

(23)

where the asterisk indicates the complex conjugate. Combining the equations (22) and (23)

we get (
Ω2 − κ2c2

s

)(
Ω− κvg0 −

κ2v′g0
2

)(
Ω− κvg0 +

κ2v′g0
2

)
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= −
ω2

0ω
4
pv
′
g0κ

2

D′0 (ω0 − ωc)2

(
κ

k0

+
ωc

(ω0 − ωc)
Ω

ω0

)2 |Bk0 |
2

16πn0mic2
(24)

or also

Ω2 − κ2c2
s = Γ3

κ2v′g0

(
κ
k0

+ ωc

(ω0−ωc)
Ω
ω0

)2

(Ω− κvg0)2 −
(
κ2v′g0/2

)2 , (25)

where

Γ3 =
ω2

0ω
2
p

ck0

ω2
c

(ω0 − ωc)2

vg0
8c

ω2
p

ω2
c

(vA
c

)2 |Bk0|
2

B2
0

> 0, (26)

vA being the Alfven velocity; note that vg0 has the same sign as k0. Then, searching solutions

of (25) for small κ that satisfy Ω ' κvg0 + iγ with
∣∣κ2v′g0/2

∣∣� |κvg0| , we get

γ2 ' Γ3

(
v′g0

c2
s − v2

g0

)(
κ

k0

)2(
1− ωc

(ωc − ω0)

k0vg0
ω0

)2

, (27)

which shows that modulational instability can exist for supersonic (vg0 > cs) or subsonic

(vg0 < cs) whistlers only if v′g0 < 0 or v′g0 > 0, respectively. Note that γ is proportional to

|Bk0/B0| through Γ3. For the strongly supersonic case when Ω2 � c2
sκ

2 (i.e. vg0 � cs) we

get the growth rate

γ = Γ3/2

∣∣v′g0∣∣1/2
vg0

κ

k0

∣∣∣∣1− ωc
(ωc − ω0)

k0vg0
ω0

∣∣∣∣ . (28)

If vg0 ' cs (sonic case), the growth rate given by (27) presents a singularity. However the

relations (??) allow to write in this case that κ (cs − vg0) ' iγ so that we get from (27) that

γ ' i1/3κΓ

(
v′g0

2k2
0vg0

)1/3(
1− ωc

(ωc − ω0)

k0vg0
ω0

)2/3

, (29)

with i1/3 = 0.866 − 0.5i. Let us solve numerically the equation (25) and show in Fig. 1

the variations of the growth rates Im(Ω/ω0) as a function of the normalized wavenumbers

κ/k0 for three examples of space plasma parameters, i.e. for a very low frequency subsonic

whistler in the solar wind (Fig. 1, upper panel), a supersonic whistler and a sonic whistler of

high frequency (ω0 ' ωc) in the Earth magnetosphere (Fig. 1, lower panels). As expected by

the nature of the modulational instability, the calculated growth rates are rather weak, even

if at large B/B0 ∼ 0.3 they can reach a significative value around 10−3 (see Fig. 1, upper

panel) and can thus a priori compete with other nonlinear phenomena, as the three-wave

resonant interaction process where a whistler decays into a backscattered whistler and an

ion sound wave, for example. However, according to Ref. 28 where the authors considered

the different classes of parametric instabilities for whistlers propagating along magnetic field

lines in a dense plasma, these instabilities develop in different ranges of k. Moreover, in

the case of narrowband whistlers, different effects should not compete one with another in

narrow k ranges, for the same physical parameters.

8



FIG. 1. Growth rate Im(Ω/ω0) of the modulational instability as a function of the normalized

wavenumber κ/k0. (Upper panel) : Subsonic case (vg0 < cs), for parameters typical of the solar

wind : ωp/ωc = 110, ω0/ωc = 0.0013, ck0/ωc = 4, cs = 0.0008, B/B0 = 0.28, vg0 = 0.00065,

v′g0 > 0. (Middle panel) : Supersonic case (vg0 > cs), for parameters typical of the magnetosphere

: ωp/ωc = 3, ω0/ωc = 0.59, ck0/ωc = 3.7, B/B0 = 0.017, cs = 0.002, vg0 = 0.13, v′g0 < 0.

(Lower panel): Sonic case (vg0 ' cs), for parameters typical of the magnetosphere : ωp/ωc = 2,

ω0/ωc = 0.96, ck0/ωc = 10, B/B0 = 0.01, cs = vg0 = 0.0073.

In Fig. 2 we present results of numerical simulations performed for the parameters of

Fig. 1 (middle panel). It shows that not only large amplitude whistlers but also smaller

ones (B/B0 ∼ 0.01) may be subject to modulational instabilities; however, in the latter

cases, the actual observation of such instabilities in space plasmas could be difficult if not

impossible, due to the small value of Im(Ω/ω0). In the left column of Fig. 2 one can

see the profiles of the magnetic field envelope B/B0 (together with its real and imaginary

parts) for four moments of time, i.e. ωct = 1.7 108, 1.9 108, 2.5 108, and 3 108. A modulation

instability develops near ωct ' 108, as expected from the growth rate values of Fig. 1 (middle

panel). Correspondingly, the right column of Fig. 2 shows for the same time moments the

profiles of the lower frequency perturbations, i.e. the normalized plasma fluid velocity V/cs.

The modulation instability manifests itself by the occurrence of nonlinear wave structures

forming a set of several soliton-like peaks, which are shown in the frame moving with a

velocity close to the group velocity vg0 where they are quasi-immobile. The distance between
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FIG. 2. (Color online) (Left column) Profiles of the magnetic field envelope B/B0 (thick black

curve), its real and imaginary parts (thin black and gray lines - blue and gray lines online -

respectively), for four moments of time, i.e. ωct = 1.7 108, 1.9 108, 2.5 108, and 3 108. (Right

column) Corresponding profiles of the lower frequency fluid velocity perturbation V/cs, at the

same times. Parameters are those of Fig. 1, middle panel.

them (Λ ' 3500c/ωc) corresponds to the wavelength of the most unstable perturbation in

Fig. 1 (middle panel), i.e. to the wavenumber value κm/k0 = 0.00045 where the growth

rate is maximum; indeed one easily verifies that 2π/κm ' 3700c/ωc. This distance Λ is not

very large in comparison with the normalized width of a soliton-like structure, which is of

the order of 1000c/ωc. As a consequence, it is more reasonable to interpret the nonlinear

structures as a periodic nonlinear wave, and not as a soliton or a train of solitons. Moreover

the simulation demonstrates a more complicated picture: the growth of the modulational

instability leads to the generation of a superposition (or beating) of nonlinear waves which

are responsible for the large quasiperiodic oscillations of the ion sound energy density WIS

during its saturation stage, which starts near ωct ' 1.5 108, as shown in Fig. 3. Note that
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FIG. 3. Time variation of the normalized ion sound energy density WIS (in logarithmic scale).

Parameters are those of Fig. 2.

during these oscillations the whistler wave modulation tends to disappear (see e.g. the third

left panel of Fig. 2 representing B/B0 at ωct = 2.5 108) as it is roughly 10 times smaller than

its maximum value at ωct ' 3 108. An attempt to describe theoretically such interactions

between nonlinear waves was presented in Ref. 29.

IV. WHISTLER ENVELOPE SOLITON

This Section is devoted to determine the analytical form of a whistler envelope soliton and

then to study, owing to numerical simulations, its characteristics of propagation, i.e. mainly

its dynamics in a inhomogeneous plasma and its collision with another soliton. Therefore

let us find a stationary solution of the equations (6), (12) and (13). We suppose that the

whistler envelope soliton is moving with the velocity U and define the variable ξ = z − Ut,
so that for a function f(z, t) we can write that ∂f/∂t = −U∂f/∂z. Then (12) and (13)

provide that ρ = V/U and

ρ(B) =
ω0

(ω0 − ωc)
ω2
p

k2
0 (U2 − c2

s)

(
1 +

ωc
(ω0 − ωc)

k0U

ω0

)
|B|2

16πn0mic2
. (30)

Moreover, searching stationary solutions of (6) in the form B = Φ (ξ) e−iλt+iµz, we get that

Φ′′ +
2

v′g0

(
λ− µvg0 − µ2

v′g0
2

)
Φ + bΦ3 = 0, (31)

where Φ′′ = ∂2Φ/∂2ξ and

b = −
2ω4

p

v′g0D′0 (ω0 − ωc)2

ω2
0

k2
0 (c2

s − U2)

(
1 +

ωc
ω0 − ωc

k0U

ω0

)2
1

16πn0mic2
. (32)

One can find a family of solutions of (31) in the form Φ (ξ) = Bs sec (ξ/ls) with

µ =
U − vg0
v′g0

, λ = −
v′g0
2l2s

+ µvg0 + µ2
v′g0
2
, (33)
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FIG. 4. Whistler envelope soliton (in thick lines) at three time moments ωct = 20, 45000 and

90000 during its motion through a density depletion reaching δn/n0 ' −0.02 (dashed lines); phase

oscillations inside the envelope are presented in thin lines. Main parameters are : ωp/ωc = 17,

ω0/ωc = 0.41, ck0/ωc = 14.3, B/B0 = 0.015, cs = 0.00014, vg0 = 0.0034.

and

l2s =
16πn0mic

2

B2
s

(ω0 − ωc)2

ω4
p

2k0v
′
g0

vg0

c2k2
0

ω2
0

(
c2
s − U2

)(
1 +

ωc
ω0 − ωc

k0U

ω0

)−2

. (34)

Then the lower frequency perturbations are given by ρ = ρ0 sec2 (ξ/ls) and V = V0 sec2 (ξ/ls) =

Uρ0 sec2 (ξ/ls) , where ρ0 = ρ(Bs) (30).

Equation (34) shows that the whistler soliton exists only if v′g0 (c2
s − U2) > 0. So the

condition v′g0 < 0 (resp. v′g0 > 0) has to be fulfilled for a supersonic whistler soliton with

U > cs (resp. a subsonic soliton with U < cs). One can see that the width ls of the soliton

is inversely proportional to its amplitude Bs. For a supersonic soliton, ρ and V propagate

in the form of density and velocity humps if

ω0

ck0

(ωc − ω0)

ωc
<
U

c
, (35)

and in the form of cavities for the opposite case. When the soliton velocity is equal

to the group velocity, i.e. U = vg0, one can show using (2) and (7) that the term

1 + ωck0U/ω0/ (ω0 − ωc) is always negative, so that the supersonic solitary whistler wave

presents in this case always density and velocity humps and the subsonic one always density

and velocity cavities. Note that the difference between U and the group velocity vg0 is

formal, as it becomes clear if one notes that a soliton moving with velocity U 6= vg0 gets a

correction µ to its wavenumber (33); thus the soliton always moves with the group velocity

corresponding to its full wavenumber µ + k0. But it is suitable to distinguish U and vg0
when we consider the collision of two solitons (see below).

The questions arise whether a inhomogeneous plasma can support the propagation of sta-

ble whistler solitons and whether they can be accelerated or decelerated in such a medium,

as a linear whistler wave does, and if they can keep their identities when passing through

density gradients or randomly fluctuating plasma irregularities. So let us study the propaga-

tion of a whistler soliton in a depleted plasma with a density well of depth reaching 2% of the

ambient plasma density and a scale significantly larger than the soliton width. Numerical

simulations show that the solitary whistler propagating in this structure keeps its stability.

12
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FIG. 5. (Upper row) Whistler envelope soliton (thick black lines) at four time moments ωct = 500,

2.65 104, 5.25 104, 1.05 105 during its motion through a density hump with maximum δn/n0 ' 0.001

(bottom row, thick black lines); the phase oscillations inside the envelope are presented in thin black

lines. (Bottom row) : Corresponding profiles of the external density (black lines) and velocity (gray

lines) perturbations. In all places where black and gray lines do not appear separately, they are

actually superposed. Main parameters are : ωp/ωc = 3, ω0/ωc = 0.73, ck0/ωc = 5.0, B/B0 = 0.03,

cs = 0.02, vg0 = 0.079.

Figure 4 presents the profiles of the whistler envelope soliton B/B0 at three different times

and positions when propagating through a small density depletion. The envelope is not de-

formed during its travel but its phase exhibits oscillations with varying wavelengths; those

decrease more and more as the soliton approaches the bottom of the density well. The soli-

ton moves with a quasi-constant velocity, it decelerates (resp. accelerates) when it crosses

the negative (resp. positive) density gradient, in agreement with the behavior expected for

a linear wave. When it reaches the simulation box at ωct ∼ 105, its velocity has eventu-

ally increased by less than 1%. These variations are tiny due to the small corresponding

variations of the whistler frequency.

The dynamics of an envelope soliton crossing a density hump of comparable width is

shown in Fig. 5 at four time moments, together with the corresponding evolutions of the

density and the velocity external perturbations (the soliton’s lower frequency perturbations

are too small to be visible). When the soliton passes through the hump (see the second

column), the external density hump splits in two parts of identical size but of half amplitude

that are propagating further in opposite directions; moreover the corresponding velocity

13
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FIG. 6. (Upper panel) : Whistler envelope soliton B/B0 (thick lines) at five time moments ωct =

800, 300800, 600800, 1000800, and 1400800 during its motion through an inhomogeneous plasma

with random density fluctuations; phase oscillations inside the envelope are presented in thin

lines. (Lower panel) : Profile of the external density fluctuations δn/n0. Main parameters are :

ωp/ωc = 10, ω0/ωc = 0.28, ck0/ωc = 6.3, B/B0 = 0.001, cs = 0.00015, vg0 = 0.065.

perturbation is amplified and appears as a hump accompanied by a depletion of similar

scale and amplitude. Meanwhile the soliton envelope keeps its stability, even if its phase

strongly varies.

Moreover, the propagation of a whistler envelope soliton in a plasma with random density

fluctuations of comparable amplitudes and wavelengths has been studied, showing that the

soliton is very weakly affected by these irregularities. Fig. 6 shows the soliton profile at

five different time moments together with the density fluctuations’ profile δn/n0. Note that

such kind of plasma with random density inhomogeneities is typical of the solar wind. As

discussed above, only the phase of the soliton is strongly varying when it crosses successive

irregularities with negative or positive gradients, its envelope remaining very stable. The

soliton is not accelerated nor decelerated during its travel through the whole box, i.e. during

a time exceeding 1.5 106ω−1
c .

Finally, simulations show for the first time that two whistler solitons moving with different

but close velocities and colliding one with the other are not destroyed during this process

but propagate away with no changes after the collision is fulfilled, independently of their

amplitudes and velocities. Figure 7 presents the magnetic field amplitudes B/B0 of two

envelope solitons moving along the simulation box with different velocities (both very close

to the group velocity), at six different times during the collision. When the two solitons begin

to overlap, their envelopes as well as the oscillations of their phases are strongly modified,
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FIG. 7. (Color online) Time evolution of the collision between two whistler envelope solitons. Six

moments of time are shown, as indicated on each panel : ωct = 6 106, 8.4 106, 1.08 107, 1.32 107,

1.57 107, and 1.8 107. The first soliton, the fastest one, has the amplitude B/B0 = 0.03 (upper

left panel); the second soliton, the slowest one, has the amplitude B/B0 = 0.05. The envelopes

are shown in thick black lines, whereas the real and imaginary parts are presented in thin and

dotted (red online) lines. Main parameters are : ωp/ωc = 3, ω0/ωc = 0.49, ck0/ωc = 3, cs = 0.001,

vg0 = 0.17.

interfering one with the other in a complex way. Note however that the wavelength of

the real and imaginary parts of the fields are not changed; the phase oscillations with the

smallest wavelength (belonging to the slowest soliton) modulate the phase oscillations with

the longest wavelength (the fastest envelope). At the time ωct ' 1.08 107 when the solitons

coalesce, they exhibit a single structure with several peaks of wavelengths close to those of

the slowest soliton. After the collision, when the fastest soliton (i.e. that with the smallest

amplitude) has overtaken the slowest one (with the highest amplitude), both recover their

initial shapes and continue their motion without noticeable variations of their amplitudes,

forms and phases. The density and the velocity perturbations (not shown here) propagate in

the form of sec2 (ξ/ls) functions as determined analytically, following the whistler soliton with

the same speeds. However, similarly to the case of Langmuir solitons’ collisions, emission of

linear ion sound waves is detected after the collision is finished.

In a second example (see Fig. 8), the fastest soliton in its turn has the largest amplitude,

but the conclusions are the same as mentioned previously. Moreover we present in Fig. 9 the

time variations of the square maximum amplitude (Bmax/B0)2 of the overlapped structure

formed by the two solitons and of its position ξ = zmax − vg0t in the frame moving with the

group velocity, where z = zmax for B = Bmax. This shows that the structure moves with a

constant velocity and that its maximum amplitude oscillates weakly with time.
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FIG. 8. (Color online) Time evolution of the collision between two whistler envelope solitons. Six

moments of time are shown, as indicated on each panel : ωct = 4 107, 5.12 107, 6.24 107, 7.36 107,

8.48 107, and 9.6 107. The first soliton, the fastest one, has the amplitude B/B0 = 0.03 (upper left

panel); the second soliton, the slowest one, has the amplitude B/B0 = 0.01. The envelopes are

shown in thick black lines, whereas the real and imaginary parts are presented in thin and dotted

(red online) lines. Main parameters are : ωp/ωc = 3, , ω0/ωc = 0.63, ck0/ωc = 4, cs = 0.001, vg0 =

0.117.

V. SONIC WHISTLER SOLITON

When the whistler group velocity vg0 is very close to the ion sound velocity cs, the width

ls of the soliton (34) becomes infinitely small and its amplitude Es infinitely large. In order

to suppress this singularity, we have to take into account small additional corrections in the

low frequency equations (hydrodynamic nonlinearities and weak non quasineutrality). Let

us consider that vg0 ' cs and combine the low frequency equations (10)-(11) as follows

∂2ρ

∂t2
− Ti
mi

∂2

∂z2

(
ρ+

eϕ

Ti

)
=

∂

∂z

(
V
∂V

∂z
− ∂

∂t
(ρV )

)
, (36)

where we used the same notations V and ρ = δni/n0 = (ni − n0) /n0 as in the previous

Section; ϕ is the low frequency potential. The density nh of the electrons, which are a hot

population compared to the ions, is

nh =

∫ ∞
−∞

(
f (0) + f (1)

)
dvz = n

(0)
h + n

(1)
h , (37)

where n
(0)
h and n

(1)
h are the zero and first order electron densities, corresponding to the

parallel velocity distributions f (0) and f (1); n
(0)
h is obtained by writing that the resulting

force acting on the hot electrons (Coulomb, thermal and stationary ponderomotive forces)

is vanishing, which leads to

n
(0)
h ' nh0 exp

(
eϕ

Th
−

ω2
p

ω0 (ω0 − ωc)
|E|2

16πn0Th

)
, (38)
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FIG. 9. (Upper panel) : Time variation, during the collision, of the square maximum amplitude

(Bmax/B0)2 of the structure formed by the two overlapped solitons in Fig. 8. (Lower panel) :

Corresponding time variation of the position ξ = zmax − vg0t in the frame moving with the group

velocity, where z = zmax for B = Bmax. Parameters are those of Fig. 8.

where Th is the temperature of the electron population and nh0 is the electron density at

equilibrium. Considering the higher order terms provided by the thermal force and the non

stationary part of the ponderomotive force, we get similarly the derivative of the first order

electron density

∂n
(1)
h

∂z
' nh0

ω2
pωc

ω0 (ω0 − ωc)2

k0

ω0

∂

∂t

|E|2

16πn0Th
. (39)

The Poisson equation can be written as

∂2ϕ

∂z2
= −4πe (ni − nh) = −4πe

(
ρn0 −

(
n

(0)
h + n

(1)
h − n0

))
, (40)

which leads to(
1− λ2

h

∂2

∂z2

)
eϕ

Th
= ρ+

ω2
p

ω0 (ω0 − ωc)
|E|2

16πn0Th
+

1

2

(
eϕ

Th
−

ω2
p

ω0 (ω0 − ωc)
|E|2

16πn0Th

)2

− n
(1)
h

n0

,

(41)

where λ2
h = Th/4πn0e

2 is the electron Debye length. Excluding ϕ in the right hand side of

(41) we get

∂

∂z

eϕ

Th
'
(

1 + λ2
h

∂2

∂z2

)
∂ρ

∂z
+

ω2
p

ω0 (ω0 − ωc)

(
∂

∂z
− ωc
ω0 − ωc

k0

ω0

∂

∂t

)
|E|2

16πn0Th
+

1

2

∂ρ2

∂z
. (42)
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Then, using (36) we obtain that

∂2ρ

∂t2
− c2

s

∂2ρ

∂z2
− c2

s

∂2

∂z2

(
λ2

0

∂2ρ

∂z2
+

Th
Th + Ti

ρ2

2

)

−
ω2
p

ω0 (ω0 − ωc)
∂

∂z

(
∂

∂z
− ωc

(ω0 − ωc)
k0

ω0

∂

∂t

)
|E|2

16πn0mi

=
∂

∂z

(
V
∂V

∂z
− ∂

∂t
(ρV )

)
, (43)

where λ2
0 = Thλ

2
h/(Th + Ti). For waves propagating along one direction with the velocity U

we can write that ρ ' ρ (τ , ξ) , where ξ = z − Ut, and suppose the slow dependence of ρ

on τ (i.e. ∂/∂t ' −U∂/∂z) . In the first approximation we get that V ' ρU and, as we can

write that

∂

∂z

(
V
∂V

∂z
− ∂

∂t
(ρV )

)
' 3

2
U2∂

2ρ2

∂z2
,

∂2ρ

∂t2
' −2U

∂

∂z

∂ρ

∂τ
+ U2∂

2ρ

∂z2
, (44)

we can derive that

∂ρ

∂τ
− (U2 − c2

s)

2U

∂ρ

∂z
+

c2
s

2U

∂

∂z

(
λ2

0

∂2ρ

∂z2
+
λ2

0

λ2
h

ρ2

2

)

+
ω2
p

2Uω0 (ω0 − ωc)

(
∂

∂z
− ωc

(ω0 − ωc)
k0

ω0

∂

∂t

)
|E|2

16πn0mi

+
3U

4

∂ρ2

∂z
= 0. (45)

With the required accuracy we can write that U ' cs and ∂/∂t ' −cs∂/∂z, so that we

obtain finally

∂ρ

∂τ
+
cs
2
λ2

0

∂3ρ

∂z3
+
cs
2

∂

∂z

(
c2
s − U2

c2
s

ρ+

(
λ2

0

λ2
h

+ 3

)
ρ2

2

)
= −csχ

2

∂

∂z

|E|2

16πn0mic2
s

, (46)

which is a KdV equation with a right hand side term describing the ponderomotive effects.

The high frequency equation (6) coupled with (46) can be written in the form

i
∂B

∂t
+ ivg0

∂B

∂z
+
v′g0
2

∂2B

∂z2
= −

ω0ω
2
p

D′0 (ω0 − ωc)

(
1 +

ωc
ω0 − ωc

k0cs
ω0

)
ρB =

αχ

2
ρB, (47)

where we note

χ =
ω2
p

ω0 (ω0 − ωc)

(
1 +

ωc
(ω0 − ωc)

k0cs
ω0

)
, α = −2ω2

0

D′0
. (48)

The system formed by the equations (46)-(47) has an Hamiltonian Hs which is the sum of

three Hamiltonians, i.e. Hw, Hρ and Hint. Indeed, multiplying (47) by −∂B∗/∂t, adding

the complex conjugate and integrating on space, we obtain the first part Hw of the total

Hamiltonian Hs

Hw =

∫
dz

L

(
ivg0
2

(
B
∂B∗

∂z
−B∗∂B

∂z

)
+
v′g0
2

∣∣∣∣∂B∂z
∣∣∣∣2
)
, (49)
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which is the whistler wave energy. The KdV equation (46) provides the following Hamilto-

nian, which is related to the energy of the low frequency dynamics

Hρ = αγ

∫
dz

L

((
c2
s − U2

c2
s

)
ρ2

2
− λ2

0

2

(
∂ρ

∂z

)2

+

(
λ2

0

λ2
h

+ 3

)
ρ3

6

)
, (50)

where γ = 8π(c2k2
0/ω

2
0)n0mic

2
s, whereas the interaction of the plasma fluid and the whistler

field is governed by the third Hamiltonian

Hint =
αχ

2

∫
dz

L
ρ |B|2 . (51)

The total Hamiltonian Hs = Hw +Hint +Hρ of the system is given by

Hs =

∫
dz

L

(
ivg0
2

(
B
∂B∗

∂z
−B∗∂B

∂z

)
+
v′g0
2

∣∣∣∣∂B∂z
∣∣∣∣2
)

+

∫
dz

L

(
αχ

2
ρ |B|2 + αγ

((
c2
s − U2

c2
s

)
ρ2

2
− λ2

0

2

(
∂ρ

∂z

)2

+

(
Th

Th + Ti
+ 3

)
ρ3

6

))
, (52)

where the canonical variables are the couples (B,B∗) and (ρ, ψ), with ψ = 2αγρ/cs, which

satisfy the Hamilton equations

∂B

∂t
= −iδHs

δB∗
,

∂B∗

∂t
= i

δHs

δB
, (53)

∂ρ

∂t
= − ∂

∂z

(
δHs

δψ

)
,

∂ψ

∂t
= − ∂

∂z

(
δHs

δρ

)
. (54)

In order to determine the form of the soliton which can propagate in the system, let us

define the variables τ = t and ξ = z − vg0t and write the equations (46)-(47) in the frame

moving with the group velocity as

∂ρ

∂τ
+ (cs − vg0)

∂ρ

∂ξ
+
cs
2

∂

∂ξ

(
λ2

0

∂2ρ

∂ξ2 +
1

2

(
λ2

0

λ2
h

+ 3

)
ρ2

)
+
csχ

2

∂

∂ξ

|E|2

16πn0mic2
s

= 0, (55)

i
∂E

∂τ
+
v′g0
2

∂2E

∂ξ2 =
αχ

2
ρE. (56)

Let us search in this frame stationary solutions in the form ρ = ρ(ξ) and E = Es (ξ) e−i$teiµ
′z.

We get
2 (cs − vg0)

cs
ρ+ λ2

0

∂2ρ

∂ξ2 +
1

2

(
λ2

0

λ2
h

+ 3

)
ρ2 +

χ |Es|2

16πn0mic2
s

= 0, (57)

and
v′g0
2

∂2Es

∂ξ2 +$Es −
αχ

2
ρEs = 0. (58)

Note that the expected mutual compensation of dispersive and nonlinear effects is realized

in the higher frequency equation (58) but unlikely in the lower frequency equation (57),
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due to the smallness of the dispersive term λ2
0∂

2ρ/∂ξ2, which is typically 100 times smaller

than (v′g0/2)∂2E/∂ξ2. In this case the nonlinear term proportional to ρ2, which could lead to

steepening effects and wave breaking, is compensated by the ponderomotive effects propor-

tional to |Es|2. The equations (57)-(58) have solutions in the form ρ (ξ) = ρ0 sec2 (ξ/ls) and

Es (ξ) = ±Es0 sec (ξ/ls) tanh (ξ/ls), with $ = −v′g0/2l2s and

ρ0 = −
6v′g0
αχl2s

' −(cs − vg0)

cs

4

λ2
0/λ

2
h + 3− 2αχλ2

0/3v
′
g0

, (59)

where the term 2
∣∣αχ/v′g0∣∣λ2

0/3 � 1 in the denominator can be neglected compared to the

other ones. With the same accuracy we get also

|Es|2

16πn0mic2
s

' 8 (cs − vg0)2

χc2
s

(
λ2

0/λ
2
h + 3

) ,
c2

ω2
c l

2
s

' (cs − vg0)

cs

c2

ω2
c

2αχ

3v′g0
(
λ2

0/λ
2
h + 3

) .
Note that α is positive whatever the parameters are and that χ > 0 when vg0 ' cs. One can

show that, similarly to ρ0, |Es| and 1/l2s are proportional to cs − vg0 : when vg0 → cs the

soliton’s amplitude decreases and its width increases. If v′g0 > 0, the soliton exists whatever

the parameters are, it is slightly subsonic (vg0 . cs) and propagates with a density dip

ρ0 < 0. On the other hand, if v′g0 < 0, the soliton only exists if the following condition is

fulfilled
Th

Th + Ti
+ 3 >

2αχλ2
0∣∣v′g0∣∣ . (60)

In this case, it is slightly supersonic (cs . vg0) and its density perturbation propagates as a

hump (ρ0 > 0). In both cases we have v′g0 (cs − vg0) > 0.

The variation of vg0 with ω0/ωc shows that the condition vg0 ' cs can be fulfilled in

two frequency domains : ω0 � ωc or ω0 ' ωc. In the latter case, we get the following

approximate expressions for a plasma with ωp > ωc : vg0 ' 2c (ωc/ωp) (1− ω0/ωc)
1/2 , v′g0 '

−8c2ωc/ω
2
p/ (1− ω0/ωc) and αχ ' 2ωpcs (1− ω0/ωc)

−1/2 /c, where we note that v′g0 < 0;

then the condition (60) can be written as

Th
Th + Ti

(
1− v2

T

c2

(
1− ω0

ωc

))
+ 3 > 0,

which is always true : solitons of the KdV equation exist for sonic whistlers with frequencies

near ωc. Moreover their electric field amplitude is given by

|Es|2

16πn0mic2
s

' 8
(cs − vg0)2

c2
s

c

cs

ω3
c

ω3
p

(1− ω0/ωc)
5/2

λ2
0/λ

2
h + 3

,

with the corresponding width and density dip

c2

ω2
c l

2
s

' −(cs − vg0)

6c

ω3
p

ω3
c

(1− ω0/ωc)
1/2

λ2
0/λ

2
h + 3

, ρ0 ' −
4 (cs − vg0)

cs
(
λ2

0/λ
2
h + 3

) .
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The soliton is slightly supersonic and the density ρ propagates as a hump. No subsonic

soliton exists in this case.

VI. CONCLUSION

A self-consistent Hamiltonian model based on equations describing the coupled dynamics

of electromagnetic whistlers and lower frequency waves in inhomogeneous plasmas is built.

Based on this model, the paper extends and generalizes the existing studies by enlarging

the domain of their parameters’ validity and by providing detailed numerical simulations

controlled by the model’s invariants and involving various weakly inhomogeneous plasma

density structures. Different aspects of whistler turbulence are studied, concerning mainly

the development of modulational instabilities and the dynamics of envelope solitons in ir-

regular plasmas.

Modulational instability can develop for supersonic or subsonic whistlers, if the derivative

v′g0 = dvg0/dk of the group velocity vg0 is negative or positive, respectively. Simple analytical

expressions of the growth rates are provided for the supersonic, subsonic as well as sonic

cases. Moreover numerical simulations show that modulational instability can lead to the

generation of a beating of stable nonlinear whistlers propagating with a speed near the group

velocity.

The whistler envelope soliton has been determined analytically by using the developed

model and its propagation in plasmas presenting random density fluctuations and irregular

density structures of different scales and amplitudes has been studied, showing that the

envelope is very weakly affected by these inhomogeneities, even if the wavelengths and the

amplitudes of the phase oscillations inside the envelopes strongly vary. As a linear wave, the

whistler soliton can accelerate or decelerate when crossing density gradients, these effects

remaining however very weak. Moreover, simulations show for the first time that two whistler

solitons colliding one with the other remain unchanged after this collision, independently of

their initial amplitudes and velocities.

The propagation of sonic whistler solitons is actually different from that of subsonic and

supersonic ones. Their lower frequency perturbation is governed by a KdV-type equation

where dispersive effects are however weak. But they are compensated by ponderomotive

effects due to the whistler fields which counterbalance the steepening and the wave breaking

processes due to the nonlinearity.
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VIII. APPENDIX A : MODEL’S EQUATIONS

A. Equation for the whistler field envelope

Using (1) we can write that ∂B/∂t = (∂/∂t− iω0)Be−iω0t+ik0z (x+iy) /2 + c.c. Tak-

ing into account that the envelopes are varying slowly in time and space, we obtain that

∂2B/∂t2 ' (−2iω0∂/∂t− ω2
0)Be−iω0t+ik0z (x+iy) /2 + c.c. and ∇2B ' (2ik0∂/∂z − k2

0)B

e−iω0t+ik0z (x+iy) /2 + c.c. So we get from (4) that

1

c2

(
−2iω0

∂B

∂t
− ω2

0B

)
−
(

2ik0
∂B

∂z
− k2

0B

)
=

4π

c
(∇× jL +∇× jext) , (A1)

where jL is the linear current density corresponding to the plasma (nonresonant) particles,

which can be calculated using the Ohm’ law as jL = − (iω/4π)
(
ε̂− Î

)
E; ε̂ is the cold

dielectric tensor with the non vanishing elements εxx = εyy = ε⊥, εzz = 1−ω2
p/ω

2 and εxy =

−εyx = iq; Î is the unity tensor. Then Maxwell equations lead to

∇× jL '
iω

4πc

(
ε̂− Î

) ∂B

∂t
' ω2

8πc

(
c2k2

ω2
− D(ω, k)

ω2
− 1

)
Be−iω0t+ik0z (x + iy) + c.c.

When no external current density is included (jext = 0), we get from (A1) that D(ω, k)

B ' 0, where D(ω, k) can be presented in the form of a differential operator (5). Note that,

obviously, order two terms of D(ω, k) in the small nonlinear terms including ρ, δve and δBz

are neglected. Therefore we can write the equation for the magnetic field envelope as

i

(
∂D
∂ω

)
0

∂B

∂t
− i
(
∂D
∂k

)
0

∂B

∂z
− 1

2

((
∂2D
∂ω2

)
0

∂2B

∂t2
− 2

(
∂2D
∂k∂ω

)
0

∂2B

∂z∂t
+

(
∂2D
∂k2

)
0

∂2B

∂z2

)
+ρ

(
∂D
∂ρ

)
0

B + δve

(
∂D
∂δve

)
0

B +
δBz

B0

(
∂D

∂ (δBz/B0)

)
0

B ' 0.
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Dividing this expression by (∂D/∂ω)0 and noting that vg0 = (dω/dk)0 = − (∂D/∂k)0 / (∂D/∂ω)0

as well as

v′g0 =
∂vg0
∂k

+ vg0
∂vg0
∂ω
' −

((
∂2D
∂k2

)
0

+ 2vg0
∂2D
∂k∂ω

+ v2
g0

(
∂2D
∂ω2

)
0

)
/

(
∂D
∂ω

)
0

and(
∂2D
∂ω2

)
0

∂2B

∂t2
−2

(
∂2D
∂k∂ω

)
0

∂2B

∂z∂t
+

(
∂2D
∂k2

)
0

∂2B

∂z2
'
((

∂2D
∂k2

)
0

+ 2vg0

(
∂2D
∂k∂ω

)
+ v2

g0

(
∂2D
∂ω2

)
0

)
∂2B

∂z2
,

we get finally (6), observing that

D (ω, k) ' k2c2 − ω2 +
ω2
p(1 + ρ)ω

ω − kδve − ωc(1 + δBz/B0)
.

B. Hamiltonian of the system

In order to obtain the Hamiltonian (18) of the system of equations (12)-(13)-(17), let us

multiply (17) by ∂B∗/∂t, add the complex conjugate and integrate over the plasma size L.

The first term is obviously vanishing. The second term can be expressed as follows, using

integration by parts and the fact that the field and its derivatives are vanishing at infinity

ivg0

∫
dz

L

(
∂B
∂z

∂B∗

∂t
− ∂B∗

∂z

∂B
∂t

)
= −ivg0

2

∂

∂t

∫
dz

L

(
B∂B

∗

∂z
− B∗∂B

∂z

)
. (A2)

For the same reasons, the third term can be written as

v′g0
2

∫
dz

L

(
∂2B
∂z2

∂B∗

∂t
+
∂2B∗

∂z2

∂B
∂t

)
= −

v′g0
2

∂

∂t

∫
dz

L

∣∣∣∣∂B∂z
∣∣∣∣2 . (A3)

For the fourth term we use the following decomposition∫
dz

L

(
ρB∂B

∗

∂t
+ ρB∗∂B

∂t

)
=

∫
dz

L
ρ
∂

∂t
|B|2 =

∂

∂t

∫
dz

L
ρ |B|2 −

∫
dz

L
|B|2 ∂ρ

∂t
. (A4)

In the fifth term we insert the low frequency equations (15)-(16) so that we can write∫
dz

L

(
∂Ψ

∂z
B∂B

∗

∂t
+
∂Ψ

∂z
B∗∂B

∂t

)
=

∂

∂t

∫
dz

L

(
∂Ψ

∂z
|B|2

)
−
∫
dz

L
|B|2 ∂

2Ψ

∂t∂z
. (A5)

Then, summing the two last terms of (A4)-(A5), replacing ∂ρ/∂t using (16) and ∂2Ψ/∂t∂z

using (15), we get that

ω0

∫
dz

L
|B|2 ∂ρ

∂t
+

k0ωc
(ω0 − ωc)

∫
dz

L
|B|2 ∂

2Ψ

∂t∂z
= −k

2
0(ω0 − ωc)

2ω2
p

∂

∂t

∫
dz

L

((
∂Ψ

∂z

)2

+ c2
sρ

2

)
.

(A6)
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Finally, for the sixth term we can write that∫
dz

L
|B|2

(
B∂B

∗

∂t
+ B∗∂B

∂t

)
=

1

2

∂

∂t

∫
dz

L
|B|4 . (A7)

Gathering all the terms of (A2)-(A7) leads to the Hamiltonian

H =

∫
dz

L

(
ivg0
2

(
B∂B

∗

∂z
− B∗∂B

∂z

)
+
v′g0
2

∣∣∣∣∂B∂z
∣∣∣∣2 +

ω2
pω0ρ |B|2

(ωc − ω0)D′0

− k2
0

2D′0

((
∂Ψ

∂z
+

ωcω
2
p

k0(ωc − ω0)2
|B|2

)2

+ c2
sρ

2

))
,

which is similar to (18) if one takes into account (14).

IX. APPENDIX B : NON STATIONARY PART OF THE

PONDEROMOTIVE FORCE

Let us calculate the non stationary part of the ponderomotive force. The slowly varying

parallel fluid motion can be written as

me
∂vz
∂t

+mevz
∂

∂z
vz + eEz = −e

c
〈(v⊥ ×B⊥)z〉 =

〈F 〉
n0

' 1

n0c
〈jxBy − jyBx〉 ,

where Ez is the low frequency part of the parallel electric field and 〈F 〉 is the ponderomotive

force per unit volume. At the first order, we can write the Newton equations for the electrons

in the perpendicular plane in the form

dvx
dt

= − e

me

Ex −
e

mec
vyB0,

dvy
dt

= − e

me

Ey +
e

mec
vxB0.

Let us define v+ = vx + ivy, v
− = vx − ivy, E

+ = Ex + iEy and E− = Ex − iEy, which

provide the motion equations in the form

dv±

dt
= − e

me

E± ± iωcv±.

Searchig solutions proportional to e−iω0t we get the velocity perturbations as a function of

the electric field perturbation

δv± = − e

me (ω0 ± ωc)2

∂δE±

∂t
.

Keeping only the field E−, as for whistlers we have Ex = −iEy, i.e. E+ = 0, we get the real

values of the velocities

(Re vx,Re vy) =
e

2me

1

ω0 − ωc
(
ImE−,ReE−

)
,
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(Re δvx,Re δvy) =
e

2me (ω0 − ωc)2

∂

∂t

(
−Re δE−, Im δE−

)
.

For the fields we get similarly the first order perturbations

Re δBx ' −
k0c

ω0

∂ Im δEy
ω0∂t

, Re δBy '
k0c

ω0

∂ Im δEx
ω0∂t

.

The above equations allow us to calculate the ponderomotive force’s perturbation

δF

n0

= −e
c

[Re vx Re δBy − Re vy Re δBx + Re δvx ReBy − Re δvy ReBx]

so that
δF

n0

=
1

8π

ω2
pωc

ω0 (ω0 − ωc)2

k

ω0

∂

∂t
|δEx|2 .

Averaging on time, we get the non stationary part of the ponderomotive force as

〈F 〉
n0

=
ω2
pωc

ω0 (ω0 − ωc)2

k

ω0

∂

∂t

〈
|E|2

〉
16π

.

X. APPENDIX C : NORMALIZED MODEL’S EQUATIONS AND

NUMERICAL SCHEME

Figures are presented using dimensionless variables. The time t, the distance z and the

whistler magnetic field B are normalized by the electron gyrofrequency ωc, by ωc/c and

by the modulus B0 of the ambient magnetic field, respectively. All velocities, as the group

velocity vg0, the ion acoustic velocity cs and the electron thermal velocity vT are normalized

by the light velocity c, except of the slow velocity V of the electrons which is normalized by

cs. The normalized forms of the equations (6), (12) and (13) are (the same name is given

to the normalized variables used below, and to the non normalized ones used in the body of

the text)

i
∂B

∂t
+ ivg0

∂B

∂z
+
v′g0
2

∂2B

∂z2
= −

ω0ω
2
p

ωc (ω0 − ωc)D′0

(
ρ+

ωc
ω0 − ωc

cs
k0V

ω0

)
B,

∂

∂t

(
csV −

ω3
c

(ω0 − ωc)2

me

mi

|B|2

4k0

)
+

∂

∂z

(
c2
sρ+

me

mi

ω0ω
2
c

(ω0 − ωc)
|B|2

4k2
0

)
' 0,

∂ρ

∂t
+ cs

∂V

∂z
' 0,

where ωc = 1, ρ = δni/n0 and V = δve/cs. The corresponding numerical scheme used for

integration of the equations is given by

Bn+1
κ =

(1− iτΩκ/2)

(1 + iτΩκ/2)
Bn
κ+
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+
iτ

(1 + iτΩκ/2)

ω0ω
2
p

2D′0 (ω0 − ωc)

[
(ρB)n+1

κ + (ρB)nκ +
ωc

ω0 − ωc
csk0

ω0

(
(V B)n+1

κ + (V B)nκ
)]
,

ρn+1
κ = ρnκ −

iτκcs
2

(
V n+1
κ + V n

κ

)
,

V n+1
κ =

(1− τ 2κ2cs/4)

(1 + τ 2κ2cs/4)
V n
κ +

−iτκcsρnκ
(1 + τ 2κ2cs/4)

+

+
1

(1 + τ 2κ2cs/4) k0cs (ω0 − ωc)
me

4mi

((
|B|2

)n+1

κ
−
(
|B|2

)n
κ

(ω0 − ωc)
+ iτκ

ω0

2k0

((
|B|2

)n+1

κ
+
(
|B|2

)n
κ

))
,

where Ωκ = vg0κ+v′g0κ
2/2 and ε = τ 2κ2cs/4; τ is the time step ; ρnκ, V

n
κ , B

n
κ are the Fourier

components at time n of the density, the fluid velocity and the magnetic field envelope.
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