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Abstract

The inclusion of introgressive processes in evolutionary studies induces a less constrained view of evolution. Network-based

methods (like large-scale similarity networks) allow to include in comparative genomics all extrachromosomic carriers (like

viruses, the most abundant biological entities on the planet) with their cellular hosts. The integration of several levels of

biological organization (genes, genomes, communities, environments) enables more comprehensive analyses of gene shar-

ing and improved sequence-based classifications. However, the algorithmic tools for the analysis of such networks are usually

restricted to people with high programming skills. We present an integrated suite of software tools named MultiTwin, aimed

at the construction, structuring, and analysis of multipartite graphs for evolutionary biology. Typically, this kind of graph is

useful for the comparative analysis of the gene content of genomes in microbial communities from the environment and for

exploring patterns of gene sharing, for example between distantly related cellular genomes, pangenomes, or between

cellular genomes and their mobile genetic elements. We illustrate the use of this tool with an application of the bipartite

approach (using gene family–genome graphs) for the analysis of pathogenicity traits in prokaryotes.
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Introduction

The network paradigm is increasingly used as a complement

for the invaluable phylogenetic tree reconstruction for biolog-

ical evolutionary studies (Halary et al. 2010; Kloesges et al.

2011; Leigh et al. 2011; Tamminen et al. 2012; Corel et al.

2016, 2018; Iranzo, Krupovic, et al. 2016). Recently, multi-

partite graph analysis is in particular starting to receive an

increased attention in evolutionary studies (Lanza et al.

2015; Iranzo, Koonin, et al. 2016; Corel et al. 2018). These

graphs encompass several levels of biological organization.

Bipartite graphs have been up to now most commonly used

for comparative genomics (Ahn et al. 2011; Himmelstein et al.

2015; Lanza et al. 2017), and particularly gene family–ge-

nome bipartite graphs have already demonstrated their use-

fulness, like uncovering membrane-related genes shared

between recently discovered ultrasmall bacteria (CPR) and ar-

chaea (Jaffe et al. 2016), proposing finer classifications of ar-

chaeal or ds-DNA viruses (Iranzo, Koonin, et al. 2016; Iranzo,

Krupovic, et al. 2016), or analyzing the transmission of anti-

biotic resistance through Firmicute plasmids (Lanza et al.

2015). Moreover detecting structural features in genome-

based graphs informs on the degree of redundancy of geno-

mic data, and gives a summarization of the genomes under

study, with possible applications to the detection of functional

modules (bio-bricks). Higher level applications of multipartite

graph analysis would also be of considerable interest, like the

study of environmental adaptive traits with tripartite gene–

genome–environment graphs or quadri-partite domain–

gene–genome–environment graphs, and are starting to gain

attention both from the computational (Murata 2010) and

applied point of view (Alaimo et al. 2014). Here, we introduce

a general framework and dedicated tools developed in Python

for the basic construction, structuring, and analysis of multi-

partite graphs.

Our tool implements the exhaustive search for two types of

structures in multipartite graphs: twin nodes and articulation
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points. Twin nodes are useful since they describe entities hav-

ing exclusively identical distributions, such as gene families

that are shared by the same sets of genomes (Corel et al.

2018). As well as being interesting from a biological perspec-

tive as sets of genes that are codistributed, these sets of ex-

clusive genes can be used to reduce the size of the graph,

which is useful when analyzing large data sets. Articulation

points, which are points whose removal disconnects the

graph, represent in contrast the unique bridge between oth-

erwise completely unrelated nodes in the graph, and hint at

the existence of communities in the graph, without having to

rely on an explicit clustering algorithm. In the example of a

gene family–genome bipartite graph these points may be a

bridging gene family or set of gene families that are shared by

otherwise very different genomes, indicative of long-distance

gene sharing (Corel et al. 2018). Furthermore, the MultiTwin

suite can generate a bipartite gene family–genome graph di-

rectly from genomic or proteome sequence data (i.e., either

from sequences themselves or the output file of a BLAST all-

against-all run on the set of sequences) to summarize all gene

sharing between that set of genomes.

Materials and Methods

A graph is k-partite if there exists a partition of the set of

nodes into k subsets, such that an edge only connects nodes

from two different subsets of the partition. For example, a

gene family–genome graph has two types of nodes (gene

families and genomes). An edge only connects gene families

and genomes, specifically when one member of a gene family

is found in a genome. Nodes related by an edge are said to be

neighbors. In k-partite graphs, neighbors are necessarily in

different subsets of the partition. MultiTwin contains pro-

grams of two kinds: analysis of k-partite graphs, and modifi-

cations of k-partite graphs.

Analysis of k-Partite Graphs

MultiTwin includes a program named detect_twins.py
for the detection of exclusively shared nodes, that is, nodes

having exactly the same neighbors, and of their support (i.e.,

their common neighborhood). It also includes a dedicated tool

to construct gene families (familydetector). Finally, it fea-

tures a module (description.py) to annotate the content

of a k-partite graph (and of its possible intermediate modifi-

cations). For instance, figure 1 represents a bipartite graph

that is subjected to three successive modifications: intermedi-

ate modifications are construction of gene families (level 1)

and detection of twins (level 2).

Modifications of k-Partite Graphs

MultiTwin operates via the following basic operations on

graphs: subgraphs, factoring, and (overlapping) clustering.

We distinguish between iterable and terminal operations,

according to whether the operation on the graph preserves

or destroys the graph’s structure.

• A subgraph is defined by a subset of the graph’s edges. It

can be used, for example, to restrict the graph to nodes

having certain properties (say, gene families with particular

functions), or to edges between nodes of some kind (say,

genomes having the same taxonomy). It is iterable, since it

preserves the k-partiteness of the graph. It is implemented

in MultiTwin’s subgraph.py script.

• Factoring is defined by clustering nonoverlapping subsets

of nodes. It results in a factor graph, where each node

represents a cluster of nodes of the original graph. This

operation can be used to find properties that are common

to some subsets of nodes (for example, to construct gene

family–genome bipartite graphs, one replaces all mem-

bers of a gene family by a single node). This operation

(implemented in factorgraph.py) is iterable as long as

one does not cluster nodes of different types together. It

also reduces the number of nodes and edges of the

graph, and therefore usually implies to rename the nodes

(encoded in a trail file).

To this end, an initial graph has to be defined (the root

graph), whose node identifiers will serve as reference. The

graph can be iteratively modified, and all intermediate

steps can be considered in the analysis. This is achieved

by the use of a trail file, which maintains the correspon-

dence between the original node identifiers (in the root

graph) and those of the increasingly compressed graph

(cf. fig. 1).

The rationalebehind thechoice tomaintain the reference to

the identifiersof the rootgraph is that somebiological annota-

tionsaremost likelyavailable for theentities formingthenodes

of the root graph. In our example, the root graph is the gene–

genome bipartite graph. Functional and taxonomic annota-

tions are thus available for individual genes and for genomes,

respectively.

• Overlapping clustering happens when a single node can be

assigned to multiple clusters. This operation can be used for

instance when assessing taxonomic consistency of

genomes containing given functional gene categories (a

function performed by a cluster of gene families is present

in several taxonomical categories). This is a terminal graph

operation, since the overlap of clusters forces the merging

of several clusters into a same supernode, and thus destroys

the graph’s structure in some extent.

File Formats and Types

All files generically follow the same syntax X TAB Y. MultiTwin

works with the following basic files.

• Node type files where X is a node ID and Y is the node type

(e.g., type 1 corresponding to genes and type 2 to

genomes). Node type files can be omitted for unipartite
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graphs, and also for bipartite graphs, provided that the first

column of the edge file only contains type 1 nodes, and the

second column type 2 nodes.

• Edge files where X denotes the head and Y the tail of an

edge.

• Community files where X is a node ID and Y is a community

ID. These files encode overlapping and nonoverlapping clus-

terings (depending on whether node IDs are repeated or

not). Community files are generated by MultiTwin but can

also be supplied by the user. For example, the decomposi-

tion of the graph into connected components can be

encoded as a community file. Clusters can be any kind of

node subsets: groups of gene families or genomes, nodes

forming a connected component, communities returned by

an external clustering algorithm, and so on.

• Trail files, where X refers to the node ID in the root graph, Y
to the node ID in the compressed graph. These files start

with a two-line header recalling the operation that has pro-

duced the compressed graph. Trail files allow to track con-

sistently successive modifications of multipartite graphs and

are therefore exclusively generated by the MultiTwin suite.

Only the annotation file, provided by the user, and which

contains the biological information has a different format. It

consists of a tab-separated file, whose first row contains the

attribute names corresponding to the column below, and

whose remaining rows start with the identifier used in the

root graph, like in the following example:

UniqID Species Project ID Pathogen

57955 Rhizobium leguminosarum PRJNA57955 No

Implementation and Availability

The implementation of the framework was carried out in

Python (version 3.5) with some additional original code in

Cþþ. The Python code includes efficient implementations

of graph algorithms from the igraph package (Cs�ardi and

Nepusz 2006), that can moreover be accessed through the

python-igraph wrapper.

The source code available at https://github.com/TeamAIRE/

MultiTwin, last accessed October 6, 2018; accepts different

kinds of inputs, depending on the user’s objectives. A detailed

file with installation and usage information is provided.

FIG. 1.—Outline of the bipartite graph generation and analysis. At the root level, the bipartite graph only consists in disjoint star graphs. Level 1 and level

2 are constructed by two successive runs of factorgraph.py using the maps described in blue. The first factoring is based is the gene family clustering

produced by our script familydetector. Different similarity thresholds can be used, resulting in differently structured graph (assuming a molecular clock,

these graphs can be seen as time slices of evolution). The second factoring corresponds to the identification of twins by detect_twins.py. The change of

identifiers in the graph is recorded in the trail files as indicated on the bottom line. At level 3, the operation is a terminal one, since it produces overlapping

clusters. The analysis of the resulting components is performed by the description.py script, and is based on the annotations (at the root level) and the

specified trail files.
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A user-friendly graphical interface is available for the main

scripts of the MultiTwin suite. The data used in the application

is also included as supplementary material online with a ded-

icated guide file that allows to replicate our analysis.

Standalone Generation and Analysis of Bipartite Gene
Family–Genome Graphs

The standalone program bitwin.py performs the construc-

tion and the analysis of bipartite gene family–genome graphs

(fig. 2).

• Construction of gene families. By default, MultiTwin

assumes that the sequences have been subjected to an

all-against-all BLAST or Diamond run (that can optionally

be performed if the raw sequences are supplied in FASTA

format). Only the reciprocal best hit is kept, and the se-

quence similarities are filtered for �80% mutual coverage

and E-value �10�5 Then MultiTwin constructs a sequence

similarity network (SSN) by filtering the remaining similari-

ties above a user-defined similarity threshold (�30% se-

quence identity by default) (Bittner et al. 2010). The

sequences are then grouped into gene families. There are

two ways to construct gene families (like in the software

program CompositeSearch; Pathmanathan et al. 2018).

With the option 1, each gene family is a connected com-

ponent of the SSN (i.e., all sequences are directly related, or

indirectly by a path in the graph). With the option 2, which

gives a finer-grained definition of gene families, the gene

families are the clusters of the SSN produced by the com-

munity multilevel algorithm (a.k.a. Louvain algorithm)

(Blondel et al. 2008).

• Construction of the gene family–genome bipartite graph.

The user-supplied genome-sequence file is seen as the edge

file of a bipartite graph, and the previously constructed

gene families are stored as a community file. The bipartite

graph is obtained by factoring the graph by this community

file.

All the resulting bipartite graphs produced by the pipeline

are stored in a hierarchy of directories below the current

working directory.

Custom Usage

The MultiTwin code can also be used as a framework for the

analysis of user-supplied multipartite graphs, such as a tripar-

tite graph of gene families within different genomes, within

different environments (fig. 3).

Results

We have applied the MultiTwin suite to the study of gene

sharing in the microbial world (Corel et al. 2018). Here, we

propose a small application for the study of pathogenicity

traits in prokaryotes. We assembled a data set of 20 pairs of

genomes with comparable sizes, coming from phylogeneti-

cally closely related pathogen and nonpathogen organisms

(supplementary table 1, Supplementary Material online), to

test the existence of genes exclusively associated with patho-

genicity or nonpathogenicity. According to (Merhej et al.

2009; Georgiades and Raoult 2011), there are good reasons

to expect finding such genes. Organisms were assigned as

“pathogens” or “nonpathogens” based on metadata from

the GOLD (Mukherjee et al. 2017) and PATRIC (Wattam et al.

2017) databases. Protein sequences from these genomes

were used in an all-against-all BLAST search with parameters

as described in (Bittner et al. 2010), and the bipartite network

was generated using bitwin.py, with a minimum of 30%

identity and 80% mutual coverage between sequences and

gene family direction set to assemble connected components

(with the option 1). COG annotations were assigned to gene

families using RPS-BLAST (Marchler-Bauer et al. 2002). The

detect_twins.py function was used to identify sets of

genomes sharing exclusive gene families. These exclusive

gene families were used as a community file for factor-
graph.py, collapsing gene-families that have an identical

species distribution into a single node in the factored bipartite

graph. Should the gene content of prokaryotic genomes have

evolved largely in a tree-like fashion, one would expect to find

mostly exclusive gene families in host genomes having the

same taxonomy. However, our study uncovered many sets

of genes shared exclusively by polyphyletic groups of

genomes.

FIG. 2.—Overall structure of the bitwin.py program. The green boxes

denote the user input files (optional when connected with a dotted line).

The oval boxes represent the programs called by the bitwin.py script, and

the in and outgoing arrows represent the input and output files. The blue

boxes represented the output files generated overall by the bitwin.py

script.
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In total, 26,228 gene families were compressed to 3,982

groups of exclusively shared gene families, of which 3,197

consisted of a single gene family with a unique taxonomic

distribution (80.29%), and 785 of multiple gene families

with a unique taxonomic distribution (19.71%) (fig. 4). The

latter include a “core” bacterial group, composed of 50 gene

families (comprising 4,371 genes) that are universally con-

served in all 40 genomes included in the analysis (fig. 4).

Additionally, 119 pathogen-specific groups of exclusively

shared gene families were identified that included sequences

from more than one pathogen species (58 single gene family

groups and 61 containing multiple gene families) (supplemen-

tary table 2, Supplementary Material online), as well as 20

species-specific groups of exclusively shared gene families.

The strongest cases for pathogen-specific traits identified by

bipartite analysis are the pathogen-specific groups of exclu-

sively shared gene families that are most broadly distributed

across multiple pathogenic genomes. Indeed, the majority of

pathogen-specific groups of exclusively shared gene families

(84) only included sequences from two different pathogen

genomes, and none included sequences exclusive to all path-

ogen genomes, meaning that there is no “core” pool of gene

families exclusively shared by pathogens. Two strategies were

used to screen for exclusively shared gene families enriched in

pathogens but also present in nonpathogens—either a coarse

cutoff value of >80% of genes within a given group being

pathogen-derived (42 groups of exclusive gene families in

total) or a hypergeometric test followed by FDR correction

to identify groups of exclusive gene families significantly

enriched in pathogen-derived genes (five groups) (supple-

mentary table 2, Supplementary Material online).

Both pathogen-specific and pathogen-enriched groups of

exclusive gene families identified in this analysis include gene

families with known roles in pathogenicity. One of the most

broadly distributed pathogen-specific group of exclusive gene

families, ADP-heptose: LPS heptosyltransferase (COG0859), is

a part of the core machinery for LPS biosynthesis which, as an

endotoxin, is a characterized factor in the pathogenesis of a

broad range of Gram-negative bacteria (Raetz and Whitfield

2002). Another pathogenicity factor, haemolysin coregulated

protein 1, was enriched in pathogens (based on the >80%

cutoff). This is part of the type 6 secretion machinery, and has

been proposed as a chaperone for effector protein secretion

(Silverman et al. 2013). In addition to pathogenicity factors, a

chloramphenicol-O-acetyl transferase and a beta-lactamase

class D were enriched in pathogen genomes, enzymes con-

ferring antibiotic resistance (Schwarz et al. 2004).

The identification of these known pathogen gene families

within our set of groups of exclusive gene families can be seen

as a proof of concept. It demonstrates the effectiveness of the

bipartite graph approach for gene rediscovery. Moreover, this

approach could be applied to identify novel genes associated

with a particular feature. For example, in this data set many

groups of exclusive gene families unique to pathogens and

enriched in pathogen genomes compared with nonpatho-

gens are either annotated by COG as conserved proteins of

unknown function, or unannotated in COG. Their enrichment

in pathogen genomes compared with other groups of exclu-

sive gene families suggests a potential role in pathogenicity

for these thus far uncharacterized genes.

Likewise, 181 nonpathogen-specific groups of exclusive

gene families (98 groups containing a single gene family

and 83 containing multiple gene families) were identified in

this analysis, and none were featured in all nonpathogen

genomes. Additionally, we identified 96 groups of exclusive

gene families in which >80% of genes were from nonpath-

ogens, and 29 groups of exclusive gene families enriched in

nonpathogens, using the hypergeometric test. The nonpath-

ogen-specific and enriched groups of exclusive gene families

are more abundant and generally have broader distribution

than those found in pathogens. This greater abundance is

consistent with the findings of a broader analysis on 317

genomes (Merhej et al. 2009), which suggested that gene

loss, in opposed to acquisition of virulence factors, has driven

the evolution of parasites in their adaptation to their host cell.

This included the loss of rRNA genes and transcriptional reg-

ulators, a result which is mirrored in our analysis. Another five

broadly distributed nonpathogen-enriched groups of

FIG. 3.—Twin nodes in a toy example of tripartite graph. Twin classes

are formed by all the nodes having exactly the same neighborhood. In this

example, we highlighted in the same color the nodes forming the graph’s

three twin classes containing more than one node. All nodes in black have

a different set of neighbors (and form thus each their own twin class). In a

multipartite graph, twins can be homogeneous, like twin 1 (in yellow) or

heterogeneous, like twins 2 and 3. The detect_twins.py script imple-

ments an option to detect only homogeneous twins (possibly even of a

given type). In a tripartite graph where nodes of respective types 1, 2, and

3 are gene families, genomes, and environments, it may be interesting to

detect patterns like twin 2, where a gene family is found in the strict subset

of those genomes that thrive in the same environment. Twin 3 is likely less

informative, since the environment is nondiscriminating (core genes are

nevertheless detected on the lower layer).
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exclusive gene families (two of them containing several gene

families) are associated with loss of transcriptional regulation,

supporting the idea that the evolution of pathogenesis could

be related to the loss of regulation. Our approach indepen-

dently found a correlation between nutrient acquisition

(Merhej et al. 2009), and specifically a nitrogen fixation ability

and a nonpathogenic lifestyle. Two large and broadly distrib-

uted groups of several exclusive gene families enriched in

nonpathogens are made up entirely of ABC-transport protein

gene families, with predicted substrates including sugars and

amino acids and oxoions. Four different groups of exclusive

gene families also each include different components of the

TRAP-type C4-dicarboxylate transport system, with substrates

including succinate, malate and fumarate. This transport sys-

tem is required for nitrogen fixation (Finan et al. 1983).

Another more broadly distributed group of several exclusive

gene families present only in nonpathogens includes two

gene families, a predicted Fe-S oxidoreductase and nitroge-

nase molybdenum-iron protein (alpha and beta chains). These

are central components of the pathway for nitrogen fixation

(Dixon and Kahn 2004). Moreover, one exclusive gene family,

unique to nonpathogens, is annotated as a Sec-independent

protein secretion pathway component. This secretion system

has a broad range of functions, one of which is its require-

ment for nitrogen oxide reduction in the nitrogen cycle

(Natale et al. 2008). Finally, two groups of exclusive gene

families containing >80% nonpathogen genes include addi-

tional parts of the pathway for nitrogen fixation: nitrogenase

subunit NifH and Nitrate/Nitrite transport proteins. While ele-

ments of the nitrogen fixation pathway are shared between

pathogens and nonpathogens (Carvalho et al. 2010), our bi-

partite graph analysis reinforces the argument that nitrogen

FIG. 4.—Summary of the bipartite graph analysis of forty prokaryotic genomes. (A) The majority of gene families contained an equal proportion of

pathogen and nonpathogen genes. Comparatively few are enriched in either pathogens or nonpathogens, with an extreme drop off from the peak at 0.5. A

subset of gene families are exclusive to pathogens or to nonpathogens, indicated by peaks at 0 and 1, however the majority of these are only found in one

genome. (B) Most groups of exclusively shared gene families also contain an equal proportion of pathogens and nonpathogens, however the peak at 0.5 is

less extreme in comparison to the surrounding distribution. There is a more gradual decline in number of exclusively shared gene families from this peak

toward the extremities at 0 and 1 than in the distribution at the gene family level. (C) Functional analysis revealed that the group of exclusively shared gene

families containing all “core” gene families was predominantly composed of gene families involved in information and storage processing. This contrasts the

groups of exclusively shared gene families containing gene families found in only two species, where informational genes are the least represented COG.

Gene families found in two species are predominantly either associated with poorly characterized COGs or unannotated. (D) An example of group of

exclusively shared gene families of four gene families (bottom nodes) codistributing in two relatively distantly related pathogen genomes (top nodes) from

Dickeya zeae (Gamma-proteobacteria) and Capnocytophaga gingivalis (Flavobacteria). Two gene families (purple) contain components of the type IV

secretion system, while two (yellow) have no known COG annotations. Their codistribution with components of the type IV secretion system in distantly

related taxa suggests that these may play a role in pathogenicity.
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fixation is a predominantly a feature of nonpathogenic

bacteria.

Discussion

This relatively small scale bipartite graph analysis identified

known signatures of pathogenesis and antibiotic resistance

that were exclusive to or enriched in pathogen genomes, as

well as genes of thus far unknown function which may play

similar roles in pathogen biology, highlighting the potential of

the approach for gene discovery. A larger number of groups

of exclusive gene families were associated with nonpathogen

genomes, consistent with the idea that pathogens undergo

reductive evolution during their adaptation to the host envi-

ronment including deregulation of gene expression (Merhej

et al. 2009; Georgiades and Raoult 2011). Nonpathogen-

enriched groups of exclusive gene families associated were

also associated with nitrogen fixation. Nitrogen fixation within

a prokaryotic community can be viewed as an example of the

production of a “public good”—it is a pathway that produces

an important commodity that can be shared by an entire

community, but its phylogenetic distribution within that com-

munity is patchy. Though some pathogens are known to en-

code genes involved in the production of public goods, it

would be interesting to explore whether there is a broad trend

toward the production of public goods by nonpathogens.

MultiTwin would allow to test this hypothesis on a larger scale

data set, as well as extend the analysis to additional levels of

organization: investigating the subgenic level, by using tripar-

tite domain–gene–genome graphs or, at the other end of the

scale, the environmental conditions, by using tripartite gene–

genome–environments graphs (or even considering 4-partite

domain–gene–genome–environments graphs). Another likely

direction would be to use MultiTwin to define core and shell

genes of pangenomes.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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