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Measure-independent anomaly of nonlocality

S. Camalet
Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600,

Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France

We show that any Bell local state, with a hidden nonlocality that can be revealed by local filtering,
is more, or equally, entangled than nonlocal states. More precisely, it can be deterministically
transformed into a nonlocal state, by local operations and classical communication. For such a
state, there is a clear anomaly of nonlocality, for any measures of entanglement and nonlocality.
Moreover, we prove that the hidden nonlocality of any bipartite state more, or equally, entangled
than nonlocal states, can be revealed by local operations and the sending of two one-bit messages,
one in each direction. For some particular states, one bit of communication is even enough.

I. INTRODUCTION

Bell nonlocality and quantum entanglement are two
distinct notions, whose relation is not straightforward
[1–4]. Entanglement is a quantum resource [5–10] which
cannot be generated by deterministic state transforma-
tions involving only local operations and classical com-
munication (LOCC) [11, 12]. In other words, a state
is necessarily changed into a less, or equally, entangled
state, by such a LOCC transformation. Thus, any proper
measure of entanglement cannot increase under LOCC
operations [12, 13]. The states with vanishing entangle-
ment, are the separable states, which are the mixtures
of product states [1]. Any of them, can be reached by
LOCC, from any state.

Whereas entanglement is defined strictly within the
framework of quantum mechanics, this is not the case
for Bell nonlocality. The latter concerns the outcomes
of local measurements, quantum or not, performed by
distant observers. Their joint probabilities are said to
be Bell local, if they can be reproduced by a hidden-
variable model, in which a measurement outcome is de-
termined only by the corresponding measurement, and
the hidden variables, and does not depend on any other
measurement [3]. As well known, when a set of probabil-
ities is Bell local, it satisfies Bell inequalities, such as the
Clauser-Horne-Shimony-Holt (CHSH) inequality [14, 15].
In the opposite case, it is said nonlocal, and violates such
an inequality.

For a separable state, the joint probabilities of local
measurement results, are always Bell local. But this is
not specific to separable density operators. Some entan-
gled states have this property [1, 2]. A state for which
there are measurements violating a Bell inequality, is said
to be nonlocal. A pure state is nonlocal if and only if it is
entangled [16–19]. Nevertheless, even for pure states, the
relation between quantum entanglement and Bell nonlo-
cality, is not obvious. For the simplest composite system,
consisting of two two-level systems, the more entangled
a pure state is, the more it can violate the CHSH in-
equality [20, 21]. But the situation is less clear for other
Bell inequalities [22–26], or other measures of nonlocal-
ity [27–30], which are not maximum for maximally en-
tangled states. However, it can be argued that they are

not correct measures of nonlocality, and that, hence, no
”anomaly of nonlocality” can be evidenced using them
[31].

Different procedures have been proposed to violate a
Bell inequality with a Bell local entangled state, and
hence, in some sense, reveal its hidden nonlocality. Such
a violation can, for instance, be obtained by using several
copies of the same state [32–34], by performing local pre-
measurements and selecting specific outcomes [35–37], by
combining these two approaches [38], or by using more
sophisticated techniques [39–41]. In these scenarios, the
density operator whose nonlocality is tested, is not the
Bell local state of interest. The corresponding transfor-
mations change it into a state which is nonlocal, and pos-
sibly also more entangled. For example, several copies of
a density operator, constitute a state more, or equally,
entangled than this density operator, since the former is
transformed into the latter, by local partial traces, which
are LOCC operations. Thus, the above-mentioned proce-
dures are not helpful in the understanding of a potential
anomaly of nonlocality.

In this paper, we show that there exist Bell local states
which are more, or equally, entangled than nonlocal ones.
In this case, the anomaly of nonlocality is manifest, since
any nonlocality measure increases in going from such a
Bell local state to a corresponding nonlocal one, whereas
entanglement measures do not. The outline of the pa-
per is as follows. We first recall, in Sec.II, what are Bell
nonlocality, LOCC operations, and local filtering opera-
tions. In Sec.III, we prove our main result, namely, that
a bipartite state which can be changed into a nonlocal
one, by local filtering, is more, or equally, entangled than
nonlocal states. In this section, we also discuss a par-
ticular state, which is Bell local, and as entangled as a
nonlocal state. In Sec.IV, we address the issue of the
amount of classical communication, required to trans-
form, by LOCC, a given bipartite state into a nonlocal
state. We show that, whenever such a transformation
is possible, two observers can achieve it with the trans-
mission of only one bit from one observer to the other,
and one bit in the opposite direction. Moreover, for some
states, a single bit suffices. Finally, in Sec.V, we summa-
rize our results and discuss an important question they
raise.

http://arxiv.org/abs/1709.01420v1
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II. PRELIMINARIES

In this section, we introduce the notions used through-
out the paper, namely, the local filtering [3, 35–37], the
LOCC-based ordering of quantum states [11, 12], and the
Bell nonlocality [3, 14, 15].

A. Local filtering and LOCC operations

In this paper, we consider two kinds of quantum state
transformations. For two systems, say A and B, whose
Hilbert spaces are, respectively, HA and HB, a local fil-
tering operation, described by the operators M on HA,
and N on HB, changes the state ρ, of A and B, into

ρ̂ =M ⊗NρM † ⊗N †/p, (1)

where p = tr(M †M ⊗N †Nρ) ∈ (0, 1] [3]. The operators
M and N are such that M †M ≤ IA and N †N ≤ IB,
where IA and IB are the identity operators of A and B,
respectively. This filtering transformation is stochastic.
It is achieved by performing measurements on A and B,
and selecting specific outcomes. The state ρ̂ is obtained
with probability p.
The other transformations of interest for our purpose,

are the LOCC operations. A state ρ is more, or equally,
entangled than another one ρ′, if and only if there is a
LOCC map Λ, such that ρ′ = Λ(ρ) [12]. Such a trans-
formation is deterministic, i.e., it gives ρ′, from ρ, with
probability unity. It is a composition of local partial
traces, and of one-way LOCC operations of the form

Λ(ρ) =
∑

i

(Fi ⊗ IC)ρ(Fi ⊗ IC)
† ⊗ |i〉〈i|, (2)

where C is A or B, the linear maps Fi : HD → HE, with D

the other system, B or A, are such that
∑

i F
†
i Fi = ID,

and |i〉 are orthonormal states of an ancillary system,
close to C, see Appendix. The system E can be D itself,
a subsystem of it, or a system of which D is a subsystem.
The transformation (2) involves a measurement on one
of the systems, by an observer, and the sending, to an-
other observer, of the outcome i, which is recorded using
the ancilla. If i has two possible values, only one bit is
exchanged between the two observers. Operations of the
form of eq.(2), play an essential role in what follows.

B. Bell nonlocality

Let us denote p(ij|kl) the probability of the outcomes i
and j, of measurements, indexed by k and l, performed on
systems A and B, respectively. The set {p(ij|kl)}i,j,k,l is
Bell local if and only if these probabilities can be written
as

p(ij|kl) =
∫

dλq(λ)p(i|kλ)p(j|lλ), (3)

where λ denotes hidden variables, q a probability density
function, and p(i|kλ) a probability distribution of the
outcome i of the measurement k [3].
Within the framework of quantum mechanics, a mea-

surement, on A, with mk outcomes, is described by a
set of positive operators, Ak = {Ai|k}mk

i=1, such that
∑mk

i=1 Ai|k = IA, and joint probabilities of measurements
on A and B, are given by

p(ij|kl) = tr
(

ρAi|k ⊗Bj|l

)

, (4)

for the state ρ of A and B, where Bj|l are the operators
describing the measurement l on B [42]. The state ρ is
nonlocal if there are measurements Ak and Bl such that
{p(ij|kl)}i,j,k,l does not satisfy eq.(3). If, on the contrary,
the probabilities (4) can be written in the form of eq.(3),
for any measurements Ak and Bl, ρ is a Bell local state.

III. REVEALING NONLOCALITY BY LOCC

Some Bell local states can be changed into nonlocal
ones, by local filtering [35–37]. For such a state ρ, we
show below that there are nonlocal states less, or equally,
entangled than ρ. We then consider a particular Bell local
state, first studied in Ref.[37], which is as entangled as a
nonlocal state.

A. Main result

Proposition 1. If a bipartite state can be changed into a
nonlocal state, by local filtering, then two observers can
deterministically transform it into a nonlocal state, using
local operations, and the transmission of one bit from
one observer to the other, and one bit in the opposite
direction.

Proof. Consider a composite system AB, consisting of
systems A and B, and a state ρ, of AB, such that there
are operators M and N for which the state (1) is non-
local. Since M †M ≤ IA and N †N ≤ IB, there exist
operators M̃ and Ñ such that M †M + M̃ †M̃ = IA,
and N †N + Ñ †Ñ = IB. The LOCC operation given
by eq.(2) with orthonormal states |i〉 of a two-level sys-

tem B′, F0 = |0′〉M , and F1 = |1′〉M̃ , where |i′〉 are
orthonormal states of a two-level system A′, transforms
ρ into

ρ1 = R0 ⊗MρM † ⊗ S0 +R1 ⊗ M̃ρM̃ † ⊗ S1, (5)

where Ri = |i′〉〈i′|, Si = |i〉〈i|, and the short-hand nota-
tion M = M ⊗ IB is used. A similar operation, with N
and Ñ , in place ofM and M̃ , respectively, and two more
two-level systems, A′′ and B′′, transforms ρ1 into

ρ2 =

3
∑

i=0

Pi ⊗KiρK
†
i ⊗Qi, (6)



3

where Pi (Qi) are four projectors of system A′A′′ (B′B′′),

summing to IA′A′′ (IB′B′′), K0 =M ⊗N , K1 =M ⊗ Ñ ,

K2 = M̃ ⊗N , and K3 = M̃ ⊗ Ñ .
The filtered state ρ̂, given by eq.(1), is nonlocal, by as-

sumption. Thus, there are measurementsAk andBl such
that the vector p, termed behavior [43], whose compo-
nents are the probabilities p(ij|kl), given by eq.(4) with
the density operator ρ̂, does not satisfy eq.(3). We define
the positive operators, on HA′A′′A,

Ãi|k = P0 ⊗Ai|k + δi,rk(IA′A′′ − P0)⊗ IA, (7)

where rk ∈ {1, . . . ,mk}, with mk the number of out-

comes of Ak. The set Ãk = {Ãi|k}mk

i=1 constitutes a

measurement, on A′A′′A, since
∑mk

i=1 Ãi|k = IA′A′′A.
Similarly, from a measurement Bl, on B, with nl out-
comes, a measurement B̃l, on BB′B′′, involving an inte-
ger sl ∈ {1, . . . , nl}, can be defined. The probabilities

p̃(ij|kl) = tr(ρ2Ãi|k ⊗ B̃j|l) can be written as

p̃(ij|kl) = pp(ij|kl) + (1− p)dλ(ij|kl), (8)

where p = tr(M †M ⊗N †Nρ), dλ(ij|kl) = δi,rkδj,sl , and
λ = (r1, r2, . . . , s1, s2, . . .).
The behavior p̃ is Bell local if and only if it belongs to

the compact convex polytope

L =

{

∑

λ

qλdλ : qλ ≥ 0,
∑

λ

qλ = 1

}

, (9)

where the sums run over all λ [3, 44]. There is a particular
λ such that p̃ = pp+ p̄dλ /∈ L, where p̄ = 1−p. This can
be seen as follows. Assume that, for any λ, pp+ p̄dλ ∈ L.
This implies, together with the convexity of L, that pp+
p̄p′ ∈ L, for any Bell local behavior p′ =

∑

λ qλdλ. This
gives a sequence of elements of L, [1− p̄n]p+ p̄np′, that
converges to p, which is not possible since L is closed,
and p /∈ L. In conclusion, there are measurements Ãk

and B̃l for which the corresponding behavior p̃ is not
in L, and hence ρ2 is nonlocal. The two-stage LOCC
transformation ρ 7→ ρ1 7→ ρ2 involves the sending of two
one-bit messages, one in each direction.

The exchange and storage of classical information play
a crucial role in the above transformation leading to a
nonlocal state. To see it, consider the state ρ3 obtained
from the state (6), by tracing out the systems B′ and
A′′, used to record the bits exchanged between the two
observers. This density operator can be written as ρ3 =
ΛB◦ΛA(ρ), where ΛA and ΛB are local operations. Thus,
it is Bell local if ρ is [2].

B. Example

As an example, we consider the state, of two three-level
systems, A and B,

ρ = p|ψ〉〈ψ|+ pM ⊗ Ñ + qM̃ ⊗N + 4qM̃ ⊗ Ñ , (10)

where |ψ〉 = (|0〉|0′〉 + |1〉|1′〉)/
√
2, with orthonormal

states |i〉 of A, and |i′〉 of B, q = (1 − 3p)/6, p ≤ 1/18,

M = |0〉〈0| + |1〉〈1|, and M̃ = |2〉〈2|. The operators N

and Ñ , on HB, are given by similar expressions. This
state has been shown to be Bell local [37]. The corre-
sponding filtered state (1) is |ψ〉〈ψ|, which maximally
violates the CHSH inequality. It is attained with proba-
bility p.
The state (6), obtained by LOCC from ρ, is here

ρ2 = pP0 ⊗ |ψ〉〈ψ| ⊗Q0 + pP1 ⊗M ⊗ Ñ ⊗Q1

+ qP2 ⊗ M̃ ⊗N ⊗Q2 + 4qP3 ⊗ M̃ ⊗ Ñ ⊗Q3, (11)

It results, from the above proof, that it is nonlocal. This
can be shown directly as follows. We find

〈A1(B1 +B2) +A2(B1 −B2)〉 = 2p(
√
2− 1) + 2 ≥ 2,

where AkBl = Ak ⊗ Bl, and 〈. . .〉 = tr(ρ2 . . .), for the
dichotomic observables

Ak = P0 ⊗
(

σk + M̃
)

+ P̃ ⊗ IA,

Bl =
(

[σ′
1 + (3 − 2l)σ′

2]/
√
2 + Ñ

)

⊗Q0 + IB ⊗ Q̃,

where σ1 = |0〉〈0| − |1〉〈1|, σ2 = |0〉〈1|+ |1〉〈0|, σ′
1 and σ′

2

are defined similarly for system B, P̃ = IA′A′′ − P0, and
Q̃ = IB′B′′ − Q0. That is to say, ρ2 violates the CHSH
inequality. Other measurements may lead to a larger vi-
olation. It is also possible that other Bell inequalities
could be more appropriate. The local operations consist-
ing in tracing out the systems A′A′′ and B′B′′, change
the state (11) back into the state (10). They are thus
equally entangled, whereas one is Bell local and the other
is nonlocal.

IV. AMOUNT OF COMMUNICATION

REQUIRED TO REVEAL NONLOCALITY

We have seen above that the hidden nonlocality of
some bipartite states, can be revealed by sending two
one-bit messages, one in each direction. One can wonder
whether this can be achieved with less communication.
Some exchange of information is necessary, since local op-
erations alone cannot transform a Bell local state into a
nonlocal one [2]. We show below that one bit of commu-
nication is enough for some states. We then prove that,
for any state more, or equally, entangled than nonlocal
states, it can be done with only one bit per direction.

A. One bit is the minimum

The proof below applies to Bell local states that can be
changed into nonlocal states, with only one local filter.
Let us first show that there exist such states. Consider a
Bell local state ρ, such that the filtered state (1) is nonlo-
cal, and the state ρ′ ∝M ⊗ IBρM

† ⊗ IB, obtained, from
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ρ, by applying only the filter described by M . The latter
is transformed into the nonlocal state (1), by the filter
described by N . If ρ′ is nonlocal, then the hidden non-
locality of ρ can be revealed with one local filter. If, on
the contrary, ρ′ is Bell local, then its hidden nonlocality
can be revealed with one local filter.

Proposition 2. If a bipartite state can be changed into a
nonlocal state, with one local filter, then it can be deter-
ministically transformed into a nonlocal state, with local
operations, and one bit of communication.

Proof. Consider two systems A and B, and a state ρ
of these systems, such that there is an operator M on
HA, for which the state ρ′ =M ⊗ IBρM

† ⊗ IB/p, where

p = tr(M †M ⊗ IBρ), is nonlocal. There exists M̃ such

that M †M + M̃ †M̃ = IA. Since ρ′ is nonlocal, there
are measurements Ak, with mk outcomes, and Bl, with
nl outcomes, such that the behavior p, whose compo-
nents are the probabilities p(ij|kl), given by eq.(4) with
the density operator ρ′, is nonlocal, i.e., does not satisfy
eq.(3). Let us introduce two two-level systems A′ and B′,
and define the positive operators, on HA′A,

Ãi|k = |0′〉〈0′| ⊗Ai|k + δi,rk |1′〉〈1′| ⊗ IA,

where |i′〉 are orthonormal states of A′, and rk ∈
{1, . . . ,mk}, and similar ones, B̃j|l, on HBB′ , with an
integer of {1, . . . , nl}, and orthonormal states of B′. The

set Ãk = {Ãi|k}mk

i=1 constitutes a measurement on A′A,

and B̃l on BB′. The probabilities p̃(ij|kl) = tr(ρ1Ãi|k ⊗
B̃j|l), where ρ1 is given by eq.(5), can be cast into the
form of eq.(8), with p defined above. Since p is non-
local, there is a deterministic behavior dλ, such that
p̃ = pp + (1 − p)dλ is nonlocal, see the proof of propo-
sition 1, and hence ρ1 is nonlocal. The LOCC transfor-
mation ρ 7→ ρ1 involves the sending of only one one-bit
message.

B. One bit per direction is enough

Proposition 3. A bipartite state is more, or equally, en-
tangled than a nonlocal state, if and only if it can be
deterministically transformed into a nonlocal state, with
local operations, and two one-bit messages, one in each
direction.

Proof. Consider a state ρ, of systems A and B, such that
there is a LOCC operation Λ, for which ρ′ = Λ(ρ) is
nonlocal. The map Λ is separable [11, 45], i.e., ρ′ =
∑

i qiωi with the states ωi = Mi ⊗ NiρM
†
i ⊗ N †

i /qi,
where the operators Mi and Ni, on HA and HB, re-

spectively, are such that
∑

iM
†
iMi ⊗N †

iNi = IAB, and

qi = tr(M †
iMi ⊗N †

iNi ρ). Since ρ
′ is nonlocal, there are

measurements Ak and Bl such that the corresponding
behavior p is nonlocal. It can be written as p =

∑

i qipi,

where pi is the behavior for the state ωi, and the mea-
surementsAk andBl. Since the set L of the Bell local be-
haviors, given by eq.(9), is convex, p /∈ L, and ∑

i qi = 1,
there is ι such that pι /∈ L.
The corresponding operators Mι and Nι obey

M †
ιMι ≤ IA, and N †

ιNι ≤ IB, see Appendix. Thus,

there are M̃ and Ñ such that M †
ιMι + M̃ †M̃ = IA,

and N †
ιNι + Ñ †Ñ = IB. As shown in the proof of

proposition 1, there is a LOCC operation, involving the
sending of two one-bit messages, one in each direction,
that transforms ρ into the state ρ2, given by eq.(6) with

K0 = Mι ⊗ Nι, K1 = Mι ⊗ Ñ , K2 = M̃ ⊗ Nι, and
K3 = M̃ ⊗ Ñ . Since pι /∈ L, there are measurements
Ãk, given by eq.(7), and B̃l, defined similarly from Bl,

such that the behavior of components tr(ρ2Ãi|k ⊗ B̃j|l),
is nonlocal, and hence ρ2 is nonlocal, see the proof of
proposition 1.
The converse follows directly from the definition of the

entanglement ordering.

V. CONCLUSION

In summary, we have shown that there are states which
are Bell local, but more, or equally, entangled than non-
local ones. They are those with a hidden nonlocality that
can be revealed by local filtering. For these states, there
is a clear anomaly of nonlocality, for any measures of en-
tanglement and nonlocality. We have also proved that
any state more, or equally, entangled than nonlocal ones,
can be changed into a nonlocal state, with local opera-
tions and only two bits of communication, one in each
direction. For some particular states, a single bit is even
enough.
A natural question arising from these results, is

whether all entangled states are more, or equally, en-
tangled than nonlocal states. In other words, do all Bell
local entangled states have a hidden nonlocality that can
be revealed by LOCC ? It has been shown recently that
the answer to the similar question for local filtering, is
negative [46]. But this does not imply a negative answer
for LOCC. Due to our last result, this issue can be ad-
dressed by considering only LOCC operations involving
the sending of a single one-bit message per direction.

APPENDIX: ONE-WAY LOCC DECOMPOSITION

In this Appendix, we show how any LOCC operation
can be obtained from a sequence of one-way LOCC maps
of the form of eq.(2). Any LOCC transformation of a
state ρ of a bipartite system A1B1, can be written as

Λ(ρ) =
∑

i
K

i
ρK†

i
, where i = (i1, . . . , i2n), ir runs from

1 to dr, and

Ki =
(

M
(2n−1)
i2n−1

⊗N
(2n)
i2n

)

. . .
(

M
(1)
i1

⊗N
(2)
i2

)

,

= M
(2n−1)
i2n−1

. . .M
(1)
i1

⊗N
(2n)
i2n

. . .N
(2)
i2
,
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with ir = (i1, . . . , ir). The linear maps M
(2r−1)
i2r−1

: HAr
→

HAr+1 satisfy

d2r−1
∑

i2r−1=1

(

M
(2r−1)
i2r−2,i2r−1

)†

M
(2r−1)
i2r−2,i2r−1

= IAr
,

and the operators N
(2r)
i2r

: HBr
→ HBr+1 obey similar

relations [11]. We remark that the above equality gives,

for any |ψ〉 ∈ HAr
, 〈ψ|(M (2r−1)

i2r−1
)†M

(2r−1)
i2r−1

|ψ〉 ≤ 〈ψ|ψ〉,
and hence, for any |ψ〉 ∈ HA1 ,

〈ψ|
(

M
(2n−1)
i2n−1

. . .M
(1)
i1

)†

M
(2n−1)
i2n−1

. . .M
(1)
i1

|ψ〉 ≤ 〈ψ|ψ〉.

Let us introduce the systems A′
r and B′

r, of Hilbert
space dimension dr, where r ∈ {1, . . . , 2n}, and the
composite systems A[r] = A′

1 . . .A
′
2r−1Ar+1, and B[r] =

Br+1B
′
1 . . .B

′
2r. We denote by P

(r)
ir

projectors such that
∑dr

ir=1 P
(r)
ir

= IA′

r
, and Q

(r)
ir

similar projectors for B′
r,

and define the one-way LOCC operations Λ1, . . . ,Λ2n by

Λ1(ρ1) =
∑

i1

P
(1)
i1

⊗
(

M
(1)
i1

⊗ IB1

)

ρ1

(

M
(1)
i1

⊗ IB1

)†

⊗Q
(1)
i1

Λ2r(ρ2r) =
∑

i2r

P
(2r)
i2r

⊗
(

IA[r] ⊗N
(2r)
i2r

⊗Qi2r−1

)

ρ2r

(

IA[r] ⊗N
(2r)
i2r

⊗Qi2r−1

)†

⊗Q
(2r)
i2r

Λ2r+1(ρ2r+1) =
∑

i2r+1

P
(2r+1)
i2r+1

⊗
(

Pi2r ⊗M
(2r+1)
i2r+1

⊗ IB[r]

)

ρ2r+1

(

Pi2r ⊗M
(2r+1)
i2r+1

⊗ IB[r]

)†

⊗Q
(2r+1)
i2r+1

,

where Pir = P
(r)
ir

⊗ P
(r−1)
ir−1

⊗ . . . ⊗ P
(1)
i1

, ir runs from 1

to dr, ρ1 is a state of A1B1, ρ2r of A[r]BrB
′
1 . . .B

′
2r−1,

and ρ2r+1 of A′
1 . . .A

′
2rAr+1B

[r]. The LOCC map Φ =

Λ2n ◦ . . . ◦ Λ1 transforms a state ρ of A1B1, into Φ(ρ) =
∑

i
Pi ⊗K

i
ρK†

i
⊗Qi. Tracing out the ancillary systems

A′
r and B′

r, gives Λ(ρ).
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