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Measure-independent anomaly of nonlocality

We show that any Bell local state, with a hidden nonlocality that can be revealed by local filtering, is more, or equally, entangled than nonlocal states. More precisely, it can be deterministically transformed into a nonlocal state, by local operations and classical communication. For such a state, there is a clear anomaly of nonlocality, for any measures of entanglement and nonlocality. Moreover, we prove that the hidden nonlocality of any bipartite state more, or equally, entangled than nonlocal states, can be revealed by local operations and the sending of two one-bit messages, one in each direction. For some particular states, one bit of communication is even enough.

I. INTRODUCTION

Bell nonlocality and quantum entanglement are two distinct notions, whose relation is not straightforward [START_REF] Werner | Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model[END_REF][START_REF] Barrett | Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality[END_REF][START_REF] Brunner | Bell nonlocality[END_REF][START_REF] Camalet | Monogamy inequality for entanglement and local contextuality[END_REF]. Entanglement is a quantum resource [START_REF] Brandão | Resource Theory of Quantum States Out of Thermal Equilibrium[END_REF][START_REF] Baumgratz | Quantifying Coherence[END_REF][START_REF] Gour | The resource theory of informational nonequilibrium in thermodynamics[END_REF][START_REF] Brandão | Reversible Framework for Quantum Resource Theories[END_REF][START_REF] Chitambar | Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence[END_REF][START_REF] Camalet | Monogamy inequality for any local quantum resource and entanglement[END_REF] which cannot be generated by deterministic state transformations involving only local operations and classical communication (LOCC) [START_REF] Donald | The uniqueness theorem for entanglement measures[END_REF][START_REF] Horodecki | Quantum entanglement[END_REF]. In other words, a state is necessarily changed into a less, or equally, entangled state, by such a LOCC transformation. Thus, any proper measure of entanglement cannot increase under LOCC operations [START_REF] Horodecki | Quantum entanglement[END_REF][START_REF] Bennett | Mixed-state entanglement and quantum error correction[END_REF]. The states with vanishing entanglement, are the separable states, which are the mixtures of product states [START_REF] Werner | Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model[END_REF]. Any of them, can be reached by LOCC, from any state.

Whereas entanglement is defined strictly within the framework of quantum mechanics, this is not the case for Bell nonlocality. The latter concerns the outcomes of local measurements, quantum or not, performed by distant observers. Their joint probabilities are said to be Bell local, if they can be reproduced by a hiddenvariable model, in which a measurement outcome is determined only by the corresponding measurement, and the hidden variables, and does not depend on any other measurement [START_REF] Brunner | Bell nonlocality[END_REF]. As well known, when a set of probabilities is Bell local, it satisfies Bell inequalities, such as the Clauser-Horne-Shimony-Holt (CHSH) inequality [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF][START_REF] Clauser | Proposed experiment to test local hidden-variable theories[END_REF]. In the opposite case, it is said nonlocal, and violates such an inequality.

For a separable state, the joint probabilities of local measurement results, are always Bell local. But this is not specific to separable density operators. Some entangled states have this property [START_REF] Werner | Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model[END_REF][START_REF] Barrett | Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality[END_REF]. A state for which there are measurements violating a Bell inequality, is said to be nonlocal. A pure state is nonlocal if and only if it is entangled [16][START_REF] Home | Bell's theorem and the EPR paradox[END_REF][START_REF] Gisin | Bell's inequality holds for all non-product states[END_REF][START_REF] Popescu | Generic quantum nonlocality[END_REF]. Nevertheless, even for pure states, the relation between quantum entanglement and Bell nonlocality, is not obvious. For the simplest composite system, consisting of two two-level systems, the more entangled a pure state is, the more it can violate the CHSH inequality [START_REF] Verstraete | Entanglement versus Bell Violations and Their Behavior under Local Filtering Operations[END_REF][START_REF] Méthot | An anomaly of nonlocality[END_REF]. But the situation is less clear for other Bell inequalities [START_REF] Acín | Quantum nonlocality in two three-level systems[END_REF][START_REF] Liang | Semi-deviceindependent bounds on entanglement[END_REF][START_REF] Vidick | More nonlocality with less entanglement[END_REF][START_REF] Junge | Large violation of Bell inequalities with low entanglement[END_REF][START_REF] Regev | Bell violations through independent bases games[END_REF], or other measures of nonlocality [START_REF] Eberhard | Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment[END_REF][START_REF] Toner | Communication cost of simulating Bell correlations[END_REF][START_REF] Acín | Optimal Bell tests do not require maximally entangled states[END_REF][START_REF] Brunner | Entanglement and non-locality are different resources[END_REF], which are not maximum for maximally entangled states. However, it can be argued that they are not correct measures of nonlocality, and that, hence, no "anomaly of nonlocality" can be evidenced using them [START_REF] Fonseca | Measure of nonlocality which is maximal for maximally entangled qutrits[END_REF].

Different procedures have been proposed to violate a Bell inequality with a Bell local entangled state, and hence, in some sense, reveal its hidden nonlocality. Such a violation can, for instance, be obtained by using several copies of the same state [START_REF] Navascués | Activation of nonlocal quantum resources[END_REF][START_REF] Palazuelos | Superactivation of quantum nonlocality[END_REF][START_REF] Cavalcanti | All quantum states useful for teleportation are nonlocal resources[END_REF], by performing local premeasurements and selecting specific outcomes [START_REF] Popescu | Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality[END_REF][START_REF] Gisin | Hidden quantum nonlocality revealed by local filters[END_REF][START_REF] Hirsch | Genuine hidden quantum nonlocality[END_REF], by combining these two approaches [START_REF] Peres | Collective tests for quantum nonlocality[END_REF], or by using more sophisticated techniques [START_REF] Sen(de | Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality[END_REF][START_REF] Cavalcanti | Quantum networks reveal quantum nonlocality[END_REF][START_REF] Klobus | Nonlocality activation in entanglementswapping chains[END_REF]. In these scenarios, the density operator whose nonlocality is tested, is not the Bell local state of interest. The corresponding transformations change it into a state which is nonlocal, and possibly also more entangled. For example, several copies of a density operator, constitute a state more, or equally, entangled than this density operator, since the former is transformed into the latter, by local partial traces, which are LOCC operations. Thus, the above-mentioned procedures are not helpful in the understanding of a potential anomaly of nonlocality.

In this paper, we show that there exist Bell local states which are more, or equally, entangled than nonlocal ones. In this case, the anomaly of nonlocality is manifest, since any nonlocality measure increases in going from such a Bell local state to a corresponding nonlocal one, whereas entanglement measures do not. The outline of the paper is as follows. We first recall, in Sec.II, what are Bell nonlocality, LOCC operations, and local filtering operations. In Sec.III, we prove our main result, namely, that a bipartite state which can be changed into a nonlocal one, by local filtering, is more, or equally, entangled than nonlocal states. In this section, we also discuss a particular state, which is Bell local, and as entangled as a nonlocal state. In Sec.IV, we address the issue of the amount of classical communication, required to transform, by LOCC, a given bipartite state into a nonlocal state. We show that, whenever such a transformation is possible, two observers can achieve it with the transmission of only one bit from one observer to the other, and one bit in the opposite direction. Moreover, for some states, a single bit suffices. Finally, in Sec.V, we summarize our results and discuss an important question they raise.

II. PRELIMINARIES

In this section, we introduce the notions used throughout the paper, namely, the local filtering [START_REF] Brunner | Bell nonlocality[END_REF][START_REF] Popescu | Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality[END_REF][START_REF] Gisin | Hidden quantum nonlocality revealed by local filters[END_REF][START_REF] Hirsch | Genuine hidden quantum nonlocality[END_REF], the LOCC-based ordering of quantum states [START_REF] Donald | The uniqueness theorem for entanglement measures[END_REF][START_REF] Horodecki | Quantum entanglement[END_REF], and the Bell nonlocality [START_REF] Brunner | Bell nonlocality[END_REF][START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF][START_REF] Clauser | Proposed experiment to test local hidden-variable theories[END_REF].

A. Local filtering and LOCC operations

In this paper, we consider two kinds of quantum state transformations. For two systems, say A and B, whose Hilbert spaces are, respectively, H A and H B , a local filtering operation, described by the operators M on H A , and N on H B , changes the state ρ, of A and B, into

ρ = M ⊗ N ρM † ⊗ N † /p, (1) 
where

p = tr(M † M ⊗ N † N ρ) ∈ (0, 1] [3]. The operators M and N are such that M † M ≤ I A and N † N ≤ I B ,
where I A and I B are the identity operators of A and B, respectively. This filtering transformation is stochastic.

It is achieved by performing measurements on A and B, and selecting specific outcomes. The state ρ is obtained with probability p.

The other transformations of interest for our purpose, are the LOCC operations. A state ρ is more, or equally, entangled than another one ρ ′ , if and only if there is a LOCC map Λ, such that ρ ′ = Λ(ρ) [START_REF] Horodecki | Quantum entanglement[END_REF]. Such a transformation is deterministic, i.e., it gives ρ ′ , from ρ, with probability unity. It is a composition of local partial traces, and of one-way LOCC operations of the form

Λ(ρ) = i (F i ⊗ I C )ρ(F i ⊗ I C ) † ⊗ |i i|, (2) 
where C is A or B, the linear maps F i : H D → H E , with D the other system, B or A, are such that i F † i F i = I D , and |i are orthonormal states of an ancillary system, close to C, see Appendix. The system E can be D itself, a subsystem of it, or a system of which D is a subsystem. The transformation (2) involves a measurement on one of the systems, by an observer, and the sending, to another observer, of the outcome i, which is recorded using the ancilla. If i has two possible values, only one bit is exchanged between the two observers. Operations of the form of eq.( 2), play an essential role in what follows.

B. Bell nonlocality

Let us denote p(ij|kl) the probability of the outcomes i and j, of measurements, indexed by k and l, performed on systems A and B, respectively. The set {p(ij|kl)} i,j,k,l is Bell local if and only if these probabilities can be written as

p(ij|kl) = dλq(λ)p(i|kλ)p(j|lλ), (3) 
where λ denotes hidden variables, q a probability density function, and p(i|kλ) a probability distribution of the outcome i of the measurement k [START_REF] Brunner | Bell nonlocality[END_REF]. Within the framework of quantum mechanics, a measurement, on A, with m k outcomes, is described by a set of positive operators,

A k = {A i|k } m k i=1 , such that m k i=1 A i|k = I A ,
and joint probabilities of measurements on A and B, are given by

p(ij|kl) = tr ρA i|k ⊗ B j|l , (4) 
for the state ρ of A and B, where B j|l are the operators describing the measurement l on B [START_REF] Jacobs | Quantum measurement theory and its applications[END_REF]. The state ρ is nonlocal if there are measurements A k and B l such that {p(ij|kl)} i,j,k,l does not satisfy eq.( 3). If, on the contrary, the probabilities (4) can be written in the form of eq.( 3), for any measurements A k and B l , ρ is a Bell local state.

III. REVEALING NONLOCALITY BY LOCC

Some Bell local states can be changed into nonlocal ones, by local filtering [START_REF] Popescu | Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality[END_REF][START_REF] Gisin | Hidden quantum nonlocality revealed by local filters[END_REF][START_REF] Hirsch | Genuine hidden quantum nonlocality[END_REF]. For such a state ρ, we show below that there are nonlocal states less, or equally, entangled than ρ. We then consider a particular Bell local state, first studied in Ref. [START_REF] Hirsch | Genuine hidden quantum nonlocality[END_REF], which is as entangled as a nonlocal state. Proof. Consider a composite system AB, consisting of systems A and B, and a state ρ, of AB, such that there are operators M and N for which the state (1) is nonlocal. Since M † M ≤ I A and N † N ≤ I B , there exist operators M and Ñ such that M † M + M † M = I A , and N † N + Ñ † Ñ = I B . The LOCC operation given by eq.( 2) with orthonormal states |i of a two-level system B ′ , F 0 = |0 ′ M , and F 1 = |1 ′ M , where |i ′ are orthonormal states of a two-level system A ′ , transforms ρ into

ρ 1 = R 0 ⊗ M ρM † ⊗ S 0 + R 1 ⊗ M ρ M † ⊗ S 1 , (5) 
where R i = |i ′ i ′ |, S i = |i i|, and the short-hand notation M = M ⊗ I B is used. A similar operation, with N and Ñ , in place of M and M , respectively, and two more two-level systems, A ′′ and B ′′ , transforms ρ 1 into

ρ 2 = 3 i=0 P i ⊗ K i ρK † i ⊗ Q i , (6) 
where

P i (Q i ) are four projectors of system A ′ A ′′ (B ′ B ′′ ), summing to I A ′ A ′′ (I B ′ B ′′ ), K 0 = M ⊗ N , K 1 = M ⊗ Ñ , K 2 = M ⊗ N , and K 3 = M ⊗ Ñ .
The filtered state ρ, given by eq.( 1), is nonlocal, by assumption. Thus, there are measurements A k and B l such that the vector p, termed behavior [START_REF] Tsirelson | Some results and problems on quantum Bell-type inequalities[END_REF], whose components are the probabilities p(ij|kl), given by eq.( 4) with the density operator ρ, does not satisfy eq.( 3). We define the positive operators, on

H A ′ A ′′ A , Ãi|k = P 0 ⊗ A i|k + δ i,r k (I A ′ A ′′ -P 0 ) ⊗ I A , (7) 
where r k ∈ {1, . . . , m k }, with m k the number of outcomes of

A k . The set Ãk = { Ãi|k } m k i=1 constitutes a measurement, on A ′ A ′′ A, since m k i=1 Ãi|k = I A ′ A ′′ A .
Similarly, from a measurement B l , on B, with n l outcomes, a measurement Bl , on BB ′ B ′′ , involving an integer s l ∈ {1, . . . , n l }, can be defined. The probabilities p(ij|kl) = tr(ρ 2 Ãi|k ⊗ Bj|l ) can be written as

p(ij|kl) = pp(ij|kl) + (1 -p)d λ (ij|kl), (8) 
where p = tr(M † M ⊗ N † N ρ), d λ (ij|kl) = δ i,r k δ j,s l , and λ = (r 1 , r 2 , . . . , s 1 , s 2 , . . .).

The behavior p is Bell local if and only if it belongs to the compact convex polytope

L = λ q λ d λ : q λ ≥ 0, λ q λ = 1 , (9) 
where the sums run over all λ [START_REF] Brunner | Bell nonlocality[END_REF][START_REF] Fine | Hidden variables, joint probability, and the Bell inequalities[END_REF]. There is a particular λ such that p = pp + pd λ / ∈ L, where p = 1 -p. This can be seen as follows. Assume that, for any λ, pp+ pd λ ∈ L. This implies, together with the convexity of L, that pp + pp ′ ∈ L, for any Bell local behavior p ′ = λ q λ d λ . This gives a sequence of elements of L, [1 -pn ]p + pn p ′ , that converges to p, which is not possible since L is closed, and p / ∈ L. In conclusion, there are measurements Ãk and Bl for which the corresponding behavior p is not in L, and hence ρ 2 is nonlocal. The two-stage LOCC transformation ρ → ρ 1 → ρ 2 involves the sending of two one-bit messages, one in each direction.

The exchange and storage of classical information play a crucial role in the above transformation leading to a nonlocal state. To see it, consider the state ρ 3 obtained from the state [START_REF] Baumgratz | Quantifying Coherence[END_REF], by tracing out the systems B ′ and A ′′ , used to record the bits exchanged between the two observers. This density operator can be written as ρ 3 = Λ B •Λ A (ρ), where Λ A and Λ B are local operations. Thus, it is Bell local if ρ is [START_REF] Barrett | Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality[END_REF].

B. Example

As an example, we consider the state, of two three-level systems, A and B, [START_REF] Camalet | Monogamy inequality for any local quantum resource and entanglement[END_REF] where |ψ = (|0 |0 ′ + |1 |1 ′ )/ √ 2, with orthonormal states |i of A, and |i ′ of B, q = (1 -3p)/6, p ≤ 1/18, M = |0 0| + |1 1|, and M = |2 2|. The operators N and Ñ , on H B , are given by similar expressions. This state has been shown to be Bell local [START_REF] Hirsch | Genuine hidden quantum nonlocality[END_REF]. The corresponding filtered state (1) is |ψ ψ|, which maximally violates the CHSH inequality. It is attained with probability p.

ρ = p|ψ ψ| + pM ⊗ Ñ + q M ⊗ N + 4q M ⊗ Ñ ,
The state [START_REF] Baumgratz | Quantifying Coherence[END_REF], obtained by LOCC from ρ, is here

ρ 2 = pP 0 ⊗ |ψ ψ| ⊗ Q 0 + pP 1 ⊗ M ⊗ Ñ ⊗ Q 1 + qP 2 ⊗ M ⊗ N ⊗ Q 2 + 4qP 3 ⊗ M ⊗ Ñ ⊗ Q 3 , (11) 
It results, from the above proof, that it is nonlocal. This can be shown directly as follows. We find

A 1 (B 1 + B 2 ) + A 2 (B 1 -B 2 ) = 2p( √ 2 -1) + 2 ≥ 2,
where A k B l = A k ⊗ B l , and . . . = tr(ρ 2 . . .), for the dichotomic observables

A k = P 0 ⊗ σ k + M + P ⊗ I A , B l = [σ ′ 1 + (3 -2l)σ ′ 2 ]/ √ 2 + Ñ ⊗ Q 0 + I B ⊗ Q, where σ 1 = |0 0| -|1 1|, σ 2 = |0 1| + |1 0|, σ ′ 1 and σ ′ 2
are defined similarly for system B, P = I A ′ A ′′ -P 0 , and

Q = I B ′ B ′′ -Q 0 .
That is to say, ρ 2 violates the CHSH inequality. Other measurements may lead to a larger violation. It is also possible that other Bell inequalities could be more appropriate. The local operations consisting in tracing out the systems A ′ A ′′ and B ′ B ′′ , change the state [START_REF] Donald | The uniqueness theorem for entanglement measures[END_REF] back into the state [START_REF] Camalet | Monogamy inequality for any local quantum resource and entanglement[END_REF]. They are thus equally entangled, whereas one is Bell local and the other is nonlocal.

IV. AMOUNT OF COMMUNICATION REQUIRED TO REVEAL NONLOCALITY

We have seen above that the hidden nonlocality of some bipartite states, can be revealed by sending two one-bit messages, one in each direction. One can wonder whether this can be achieved with less communication. Some exchange of information is necessary, since local operations alone cannot transform a Bell local state into a nonlocal one [START_REF] Barrett | Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality[END_REF]. We show below that one bit of communication is enough for some states. We then prove that, for any state more, or equally, entangled than nonlocal states, it can be done with only one bit per direction.

A. One bit is the minimum

The proof below applies to Bell local states that can be changed into nonlocal states, with only one local filter. Let us first show that there exist such states. Consider a Bell local state ρ, such that the filtered state (1) is nonlocal, and the state ρ ′ ∝ M ⊗ I B ρM † ⊗ I B , obtained, from ρ, by applying only the filter described by M . The latter is transformed into the nonlocal state (1), by the filter described by N . If ρ ′ is nonlocal, then the hidden nonlocality of ρ can be revealed with one local filter. If, on the contrary, ρ ′ is Bell local, then its hidden nonlocality can be revealed with one local filter.

Proposition 2. If a bipartite state can be changed into a nonlocal state, with one local filter, then it can be deterministically transformed into a nonlocal state, with local operations, and one bit of communication.

Proof. Consider two systems A and B, and a state ρ of these systems, such that there is an operator M on H A , for which the state ρ ′ = M ⊗ I B ρM † ⊗ I B /p, where p = tr(M † M ⊗ I B ρ), is nonlocal. There exists M such that M † M + M † M = I A . Since ρ ′ is nonlocal, there are measurements A k , with m k outcomes, and B l , with n l outcomes, such that the behavior p, whose components are the probabilities p(ij|kl), given by eq.( 4) with the density operator ρ ′ , is nonlocal, i.e., does not satisfy eq.( 3). Let us introduce two two-level systems A ′ and B ′ , and define the positive operators, on

H A ′ A , Ãi|k = |0 ′ 0 ′ | ⊗ A i|k + δ i,r k |1 ′ 1 ′ | ⊗ I A ,
where |i ′ are orthonormal states of A ′ , and r k ∈ {1, . . . , m k }, and similar ones, Bj|l , on H BB ′ , with an integer of {1, . . . , n l }, and orthonormal states of B ′ . The set Ãk = { Ãi|k } m k i=1 constitutes a measurement on A ′ A, and Bl on BB ′ . The probabilities p(ij|kl) = tr(ρ 1 Ãi|k ⊗ Bj|l ), where ρ 1 is given by eq.( 5), can be cast into the form of eq.( 8), with p defined above. Since p is nonlocal, there is a deterministic behavior d λ , such that p = pp + (1 -p)d λ is nonlocal, see the proof of proposition 1, and hence ρ 1 is nonlocal. The LOCC transformation ρ → ρ 1 involves the sending of only one one-bit message.

B. One bit per direction is enough Proposition 3. A bipartite state is more, or equally, entangled than a nonlocal state, if and only if it can be deterministically transformed into a nonlocal state, with local operations, and two one-bit messages, one in each direction.

Proof. Consider a state ρ, of systems A and B, such that there is a LOCC operation Λ, for which ρ ′ = Λ(ρ) is nonlocal. The map Λ is separable [START_REF] Donald | The uniqueness theorem for entanglement measures[END_REF][START_REF] Bennett | Quantum nonlocality without entanglement[END_REF], i.e., ρ ′ = i q i ω i with the states ω i = M i ⊗ N i ρM † i ⊗ N † i /q i , where the operators M i and N i , on H A and H B , respectively, are such that i M † i M i ⊗ N † i N i = I AB , and

q i = tr(M † i M i ⊗ N † i N i ρ)
. Since ρ ′ is nonlocal, there are measurements A k and B l such that the corresponding behavior p is nonlocal. It can be written as p = i q i p i , where p i is the behavior for the state ω i , and the measurements A k and B l . Since the set L of the Bell local behaviors, given by eq.( 9), is convex, p / ∈ L, and i q i = 1, there is ι such that p ι / ∈ L. The corresponding operators M ι and N ι obey M † ι M ι ≤ I A , and N † ι N ι ≤ I B , see Appendix. Thus, there are M and Ñ such that M † ι M ι + M † M = I A , and

N † ι N ι + Ñ † Ñ = I B .
As shown in the proof of proposition 1, there is a LOCC operation, involving the sending of two one-bit messages, one in each direction, that transforms ρ into the state ρ 2 , given by eq.( 6) with

K 0 = M ι ⊗ N ι , K 1 = M ι ⊗ Ñ , K 2 = M ⊗ N ι , and K 3 = M ⊗ Ñ . Since p ι /
∈ L, there are measurements Ãk , given by eq.( 7), and Bl , defined similarly from B l , such that the behavior of components tr(ρ 2 Ãi|k ⊗ Bj|l ), is nonlocal, and hence ρ 2 is nonlocal, see the proof of proposition 1.

The converse follows directly from the definition of the entanglement ordering.

V. CONCLUSION

In summary, we have shown that there are states which are Bell local, but more, or equally, entangled than nonlocal ones. They are those with a hidden nonlocality that can be revealed by local filtering. For these states, there is a clear anomaly of nonlocality, for any measures of entanglement and nonlocality. We have also proved that any state more, or equally, entangled than nonlocal ones, can be changed into a nonlocal state, with local operations and only two bits of communication, one in each direction. For some particular states, a single bit is even enough.

A natural question arising from these results, is whether all entangled states are more, or equally, entangled than nonlocal states. In other words, do all Bell local entangled states have a hidden nonlocality that can be revealed by LOCC ? It has been shown recently that the answer to the similar question for local filtering, is negative [START_REF] Hirsch | Entanglement without hidden nonlocality[END_REF]. But this does not imply a negative answer for LOCC. Due to our last result, this issue can be addressed by considering only LOCC operations involving the sending of a single one-bit message per direction.

APPENDIX: ONE-WAY LOCC DECOMPOSITION

In this Appendix, we show how any LOCC operation can be obtained from a sequence of one-way LOCC maps of the form of eq.( 2). Any LOCC transformation of a state ρ of a bipartite system A 1 B 1 , can be written as Λ(ρ) = i K i ρK † i , where i = (i 1 , . . . , i 2n ), i r runs from 1 to d r , and 

K i = M

A. Main result Proposition 1 .

 1 If a bipartite state can be changed into a nonlocal state, by local filtering, then two observers can deterministically transform it into a nonlocal state, using local operations, and the transmission of one bit from one observer to the other, and one bit in the opposite direction.

with i r = (i 1 , . . . , i r ). The linear maps M : H Br → H Br+1 obey similar relations [START_REF] Donald | The uniqueness theorem for entanglement measures[END_REF]. We remark that the above equality gives, for any |ψ ∈ H Ar , ψ|(M

i2r-1 |ψ ≤ ψ|ψ , and hence, for any |ψ ∈ H A1 , ψ| M

Let us introduce the systems A ′

r and B ′ r , of Hilbert space dimension d r , where r ∈ {1, . . . , 2n}, and the composite systems A

We denote by P ir similar projectors for B ′ r , and define the one-way LOCC operations Λ 1 , . . . , Λ 2n by

where P ir = P (r)

Tracing out the ancillary systems A ′ r and B ′ r , gives Λ(ρ).