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Monogamy inequality for entanglement and local contextuality

S. Camalet
Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600,

Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France

We derive a monogamy inequality for entanglement and local contextuality, for any finite bipar-
tite system. It essentially results from the relations between the entropy of a local state and the
entanglement of the global state, and between the purity of a state, in the sense of majorization,
and its ability to violate a given state-dependent noncontextuality inequality. We build an explicit
entanglement monotone that satisfies the found monogamy inequality. An important consequence
of this inequality, is that there are global states too entangled to violate the local noncontextuality
inequality.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.Mn

I. INTRODUCTION

One of the most important property of quantum en-
tanglement, is known as entanglement monogamy [1, 2].
Consider two systems, say A and B, in a maximally
entangled state. Since this state is pure, there is no
correlation between A and any third system, say C. In
this extreme case, the entanglement between A and B,
is maximum, and that between A and C, vanishes. In
the general case, there is a trade-off between the two
amounts of entanglement. Expressing it in quantitative
terms, requires to specify a measure of entanglement [2–
4]. Monogamy inequalities have been derived, first for
three qubits, in terms of squared concurrence [1], and
then, for larger systems, and using different measures of
entanglement [5–10]. Related works consider nonlocality
tests based on the Clauser-Horne-Shimony-Holt (CHSH)
inequality [11, 12]. When this inequality is violated for A
and B, it is necessarily satisfied for A and C, if the same
measurements are performed on A in both tests [13, 14].
In contrast, monogamy inequalities for entanglement, do
not involve specific observables, since the amount of en-
tanglement between two systems, depends only on their
common quantum state.

It has been shown that the Klyachko-Can-Binicioğlu-
Shumovski (KCBS) noncontextuality inequality [15], for
A only, cannot be violated toghether with the CHSH lo-
cality inequality [16], or the I3322 inequality [17], when
the same measurements are carried out on A in both
tests. One can thus wonder whether there is a monogamy
relation between entanglement and local contextuality.
Such a relation must involve only the states of the global
system, and of the considered local system, not particu-
lar observables. The ability of a state to disobey a non-
contextuality inequality with few observables, is deter-
mined by its eigenvalues [18–21]. Moreover, if a state is
less pure, in the sense of majorization [22, 23], than a
state that always satisfies a noncontextuality inequality,
then it also cannot violate this inequality. The purity
of the state of A, and the entanglement between A and
B, clearly influence each other. To see it, consider the
following two extreme cases. If A is in a pure state, A

and B are uncorrelated. If A and B are maximally entan-
gled, the reduced density operator for A is the maximally
mixed state, which is majorized by any other one.
In this paper, we derive a monogamy inequality for en-

tanglement and local contextuality, for any finite bipar-
tite system. To do so, we exploit the above mentioned
relations between purity and contextuality, and between
entanglement and local purity. We first show, in Sec.
II, that, for any entanglement monotone, the entangle-
ment between A and B, cannot exceed a function of the
state of A, that has the essential properties of an entropy
[24]. This result expresses quantitatively how the purity
of a local state, and the entanglement of the global state,
constrain each other. Then, in Sec. III, we define, from
any given state-dependent noncontextuality inequality,
involving dichotomic observables, an entropic measure,
which dictates, for a specific size of A, wether its state can
disobey the inequality. Finally, in Sec. IV, we build an
explicit entanglement monotone, which is upper bounded
by this particular entropy function. An important conse-
quence of the found monogamy inequality, is that there
are global states too entangled to violate the local non-
contextuality inequality. For four-level systems and the
CHSH inequality, we obtain a simple condition, in terms
of a readily computable quantity, that determines such
states, in Sec. V.

II. RELATION BETWEEN ENTANGLEMENT

AND LOCAL ENTROPY

We consider a measure E of the entanglement between
any two finite systems. The value E(ρ), where ρ is the
state of the global system, consisting of the local systems
A and B, is positive, and vanishes if ρ is not entangled.
Moreover, it does not increase when two operators carry
out local operations, and communicate classically. Such
a function E is an entanglement monotone. More specif-
ically, E[Λ(ρ)] ≤ E(ρ) for transformations Λ composed

of local operations ρ 7→ ∑

kMkρM
†
k , and maps of the

form ρ 7→∑

kMkρM
†
k ⊗|k〉〈k|, where Mk acts on one lo-

cal system only,
∑

kM
†
kMk is equal to the corresponding
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identity operator, and |k〉 are orthonormal states of an
ancilla close to the other system [2]. We reiterate that E
is defined for local systems of any sizes. Clearly, the last
map above transforms states of a system, into states of a
different system. Moreover, Mk can be a linear operator
from the Hilbert space of a system, to that of one of its
subsystems, or to that of a local larger system [3].
We are interested in the constraint on the reduced den-

sity operator of a local system, set by the entanglement
E(ρ). To express it, we define, for states ρA of a d-level
system A,

Sd(ρA) ≡ max
ρ∈C(ρA)

E(ρ), (1)

where C(ρA) is the set of all states ρ of all composite
systems consisting of A, and another system, such that
the reduced density operator for A is ρA. For any system
B, and any state ρ of the global system AB, consisting of
A and B,

Sd(trB ρ) ≥ E(ρ),

where trB denotes the partial trace over B. As we will
see, the equality is reached when ρ is pure. We show be-
low that the functions (1) have the essential properties
of the familiar entropies (von Neumann, Rényi, Tsallis,
. . . ) [24]. Thus, the above inequality expresses how the
purity of the local state trB ρ, and the entanglement of
the global state ρ, constrain each other. We remark that
this inequality is not necessarily satisfied if Sd is replaced
by an arbitrary entropy function. For distillable entan-
glement, entanglement cost, entanglement of formation,
and relative entropy of entanglement, eq.(1) gives the von
Neumann entropy [2, 25, 26]. For robustness and nega-
tivity, Sd(ρA) is simply related to the 1/2-Rényi entropy
[27, 28].

Proposition 1. The functions (1) satisfy

Sd(ρA) = s(p), (2)

where p is the vector made up of the nonzero eigenvalues
of ρA, in decreasing order, and s does not depend on
d, vanishes for p = 1, and obeys s(q) ≤ s(p) when q

majorizes p.

Proof. Consider any system B’, and any state ρ ∈ C(ρA)
of the composite system AB’. Denote its eigenvalues by
λm, and its eigenstates by |ψm〉. Let us introduce a third
system, say B”, which constitutes, together with B’, sys-
tem B. Provided the Hilbert space dimension of B” is
large enough, ρ can be written as ρ = trB′′ |Ψ〉〈Ψ|, where
|Ψ〉 = ∑

m

√
λm|ψm〉|φm〉 is a pure state of system AB,

with orthonormal states |φm〉 of B”. As trB′′ is a local
operation, on B, E(ρ) ≤ s where s = E(|Ψ〉〈Ψ|).
Since trB |Ψ〉〈Ψ| =

∑

i pi|i〉〈i|, where pi are the
nonzero eigenvalues of ρA, and |i〉 are the correspond-
ing eigenstates, |Ψ〉 =

∑

i

√
pi|i〉|χi〉, where |χi〉 are or-

thonormal states of B. For any pure state |Ψ′〉 of AB,

with Schmidt coefficients
√
pi, there are unitary opera-

tors UA and UB, acting on A and B, respectively, such
that |Ψ′〉 = UA ⊗ UB|Ψ〉. Thus, |Ψ〉〈Ψ| and |Ψ′〉〈Ψ′| can
be transformed into each other by local operations. Con-
sequently, E(|Ψ′〉〈Ψ′|) = s, and hence, s is a function
of p only. Since ρ is an arbitrary state of C(ρA), and
|Ψ〉〈Ψ| ∈ C(ρA), Sd(ρA) = s.
If p = 1, |Ψ〉 is a product state, and so s = 0.
Consider |Φ〉 =∑i

√
qi|i〉|χi〉 with q majorizing p. We

have s(p) = E(|Ψ〉〈Ψ|) and s(q) = E(|Φ〉〈Φ|). Since
|Ψ〉〈Ψ| can be changed into |Φ〉〈Φ| by local operations
and classical communication [29], s(p) ≥ s(q).

Relation (2) means not only that

Sd(UρAU
†) = Sd(ρA), (3)

where U is any unitary operator of A, but also that

Sd+1

(

d
∑

i=1

pi |̃ı〉〈̃ı|
)

= Sd

(

d
∑

i=1

pi|i〉〈i|
)

, (4)

where {|i〉}di=1 and {|̃ı〉}d+1
i=1 are orthonormal bases of the

considered Hilbert spaces, and the probabilities pi obey
∑d

i=1 pi = 1. The classical form of equation (4) is known
as the expansibility property, and is an essential require-
ment for an entropic measure [24, 30].

III. ENTROPIES FROM

NONCONTEXTUALITY INEQUALITIES

Our aim is to study the influence of the entanglement
between systems A and B, on contextuality tests involv-
ing only A. This local contextuality can be revealed by
considering N dichotomic observables Ak of A, such that
each observable is compatible with some other ones, but
not with all. We restrict ourselves to the usual case
of projective measurements with two outcomes. When
evaluated with a noncontextual hidden variable theory,
the correlations of the compatible observables, satisfy
inequalities, which can be violated by quantum states.
Such a noncontextuality inequality reads

∑

n

xn
〈

∏

k∈En

Ak

〉

≤ 1, (5)

where En are subsets of {1, . . . , N}, of any possible size,
and 〈. . .〉 = tr(ρA . . .) is the average with respect to the
density matrix ρA. The observables Ak and Al commute
with each other when k, l ∈ En. The coefficients xn are
such that the maximum value of the left-hand side of
eq.(5), is 1 for noncontextual hidden-variable models, i.e.,
there are ak = ±1, such that

∑

n xn
∏

k∈En
ak = 1. The

familiar CHSH and KCBS inequalities [11, 12, 15], for
example, can be cast into the form (5). Let us define

Cd(ρA) ≡ sup
A∈Ad

tr

(

ρA
∑

n

xn
∏

k∈En

Ak

)

,
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where d is the Hilbert space dimension of A, A stands
for (A1, . . . , AN ), and Ad is the set of all A consisting of
dichotomic observables Ak, such that [Ak, Al] = 0 for
k, l ∈ En. By construction, for a state ρA such that
Cd(ρA) > 1, there are observables Ak with which in-
equality (5) is violated.
It has been shown that Cd(ρA) = cd(p), where p is the

vector made up of the eigenvalues of ρA, in decreasing
order, and cd satisfies cd(q) ≥ cd(p) when q majorizes p
[20]. However, the functions Cd do not obey the expan-
sibility condition (4), and really depend on the dimen-
sion d. Due to the above-mentioned property of cd, Cd

reaches its maximum, Cmax
d ≡ cd(1), for pure states. We

assume that there are dimensions d for which Cmax
d > 1.

For these values of d, inequality (5) constitutes a proper
contextuality test, since it is not always satisfied. Note
that, for some state-dependent noncontextuality inequal-
ities, Cmax

d does not depend on d, provided it is larger
than some value [31]. For CHSH inequality, for example,

it is equal to
√
2, for d ≥ 4. We also remark that the

operators Ak = akA, where A is any dichotomic observ-
able, and ak = ±1 are such that

∑

n xn
∏

k∈En
ak = 1,

obviously fulfill the above-stated commutation relations.
Such a case describes a set-up that consists ofN measure-
ment apparatuses corresponding to the same observable
A. As a consequence, if all products in eq.(5), have an
even number of terms, Cd ≥ 1.
To study the impact of the entanglement between A

and B, on the local contextuality test (5), we define

Slc
d (ρA) ≡ Cmax

d0
−max

{|ı̃〉}
tCd0





d1
∑

i,j=1

〈̃ı|ρA|̃〉|i〉〈j|/t



 , (6)

where d0 is a specific dimension, d1 = min{d, d0}, t =
∑d1

i=1〈̃ı|ρA |̃ı〉, {|i〉}d0

i=1 is an orthonormal basis, and the
maximum is taken over the orthonormal bases {|̃ı〉}di=1

of A. Since Cd0
obeys eq.(3), the definition (6) does not

depend on any particular basis. For d = d0, it reduces
to Slc

d0
(ρA) = Cmax

d0
− Cd0

(ρA), but, for d 6= d0, S
lc
d and

Cd are not simply related to each other. As Cmax
d0

is the
maximum value of Cd0

, the functions (6) are positive.
As a consequence of the result below, they also fulfill
the properties enumerated in proposition 1. Note that
there are state-independent noncontextuality inequalities
[32–35] for which the definition (6) gives zero for any
state, and is thus of no use. In this case, no meaningful
entanglement monotone E can obey eq.(1) with Slc

d , since
the only possibility is E = 0. In the following, we use the
notation λ(M) for the vector made up of the eigenvalues
of the Hermitian operator M , in decreasing order.

Proposition 2. The functions (6) satisfy

Slc
d (ρA) = Cmax

d0
− sup

µ∈Λ

(

d0
∑

i=1

µipi

)

,

where Λ is the set of all vectors λ(
∑

n xn
∏

k∈En
Ak), with

(A1, . . . , AN ) ∈ Ad0
, pi = λi(ρA) for i ≤ d, and pi = 0

for i > d.

Proof. Consider any orthonormal bases {|̃ı〉}di=1 and

{|i〉}d0

i=1, and define Ω =
∑d1

i,j=1 〈̃ı|ρA|̃〉|i〉〈j|, where d1 =

min{d, d0}, and the state ω = t−1Ω, where t = trΩ.
It has been shown that Cd0

(ω) = sup
µ∈Λ[µ · λ(ω)],

where a · b =
∑d0

i=1 aibi [20]. Since tλ(ω) = λ(Ω),
tCd0

(ω) = sup
µ∈Λ[µ · λ(Ω)].

We denote λ(ρA) by p. For d > d0, the matrix rep-
resentation of Ω, in the basis {|i〉}, is a diagonal block
of that of ρA, in the basis {|̃ı〉}. Thus, p weakly sub-
majorizes λ(Ω) [23], and so, for j = 1, . . . , d0, Rj ≡
∑j

i=1[λi(Ω)− pi] is negative. Consequently, for any µ ∈
Λ, µ · [λ(Ω)−p[d0]] =

∑d0−1
j=1 (µj−µj+1)Rj+µd0

Rd0
≤ 0,

where p[d0] is made up of the d0 largest pi, in decreasing
order. Hence, tCd0

(ω) ≤ sup
µ∈Λ(µ · p[d0]). For d ≤ d0,

this inequality becomes an equality, with p[d0] made up
of the pi, in decreasing order, followed by d0 − d zeros,
since λ(Ω) = p[d0].
For any d, when {|̃ı〉}di=1 is such that ρA =

∑d
i=1 pi |̃ı〉〈̃ı|, λ(Ω) = p[d0], which finishes the proof.

IV. MONOGAMY OF ENTANGLEMENT AND

LOCAL CONTEXTUALITY

The functions (6) have all the required characteristics
to satisfy eq.(1) with an entanglement monotone E. It
remains to show that there is indeed such a measure E.
This can be achieved, by using the convex roof method
[2], since, due to the convexity of Cd0

[20], Slc
d , given by

eq.(6), is concave.

Proposition 3. Consider, for any composite system AB,
and any state ρ of AB,

Ecr(ρ) ≡ inf
{Pm,|Ψm〉}∈D(ρ)

∑

m

PmSd (trB |Ψm〉〈Ψm|) , (7)

where D(ρ) is the set of all ensembles {Pm, |Ψm〉} such
that

∑

m Pm|Ψm〉〈Ψm| = ρ, d is the Hilbert space dimen-
sion of A, and Sd are positive concave functions obeying
eq.(2), and vanishing for pure states.
The function Ecr is an entanglement monotone, and

satisfies eq.(1) with Sd.

Proof. We first consider that ρ is not entangled. Then,
by definition, ρ is a mixture of pure product states |Ψm〉.
The corresponding states trB |Ψm〉〈Ψm| are pure, and
hence Ecr(ρ) = 0.
Let us now prove that interchanging A and B

does not modify expression (7). The reduced den-
sity operators trB |Ψm〉〈Ψm| and trA |Ψm〉〈Ψm|, have
the same nonvanishing eigenvalues. Thus, due to
eq.(2), Sd(trB |Ψm〉〈Ψm|) in eq.(7), can be replaced by
Sd′(trA |Ψm〉〈Ψm|), where d′ is the Hilbert space dimen-
sion of B.
It follows from eq.(7) that Ecr is convex [3]. For op-

erators Bk of system B, such that
∑

k B
†
kBk is equal

to its identity operator, the concavity of Sd leads to
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Ecr(ρ) ≥ ∑

k pkE
cr(ρk), where pk = tr(B†

kBkρ) and

ρk = BkρB
†
k/pk [3]. This inequality and the convexity of

Ecr ensure that Ecr does not increase under local oper-
ations on B. With expression (7) rewritten as explained
above, the same proof shows that this is also the case for
local operations on A. Since ρk and ρ̃k = ρk ⊗ |k〉〈k|,
where |k〉 is a pure state of an ancilla close to A,
can be transformed into each other by local operations,
Ecr(ρ̃k) = Ecr(ρk). Thus, Ecr(

∑

k pkρ̃k) ≤ Ecr(ρ),
which finishes the proof that Ecr is an entanglement
monotone.
Consider a given state ρA of A, and any state ρ ∈

C(ρA). The definition (7) and the concavity of Sd give
Ecr(ρ) ≤ Sd(ρA). If d′ ≥ d, there are pure states |Ψ〉 of
AB such that trB |Ψ〉〈Ψ| = ρA, and hence Ecr(|Ψ〉〈Ψ|) =
Sd(ρA). Consequently, maxρ∈C(ρA)E

cr(ρ) = Sd(ρA).

We have thus, for a d0-level system A, the monogamy
inequality

E(ρ) + Cd0
(ρA) ≤ Cmax

d0
, (8)

where E is given by eq.(7) with the functions (6). Thus,
the entanglement of A with B, as quantified by E(ρ),
restricts the value of the left side of inequality (5). In
particular, for a state ρ such that E(ρ) ≥ Cmax

d0
− 1, this

noncontextuality inequality cannot be violated. Equa-
tion (8) can also be read as an upper bound on the entan-
glement E(ρ). In the extreme case of maximal violation
of eq.(5), i.e., Cd0

(ρA) = Cmax
d0

, it gives E(ρ) = 0. There
may be other entanglement monotones that coincide with
the functions (6) when ρ is pure, and so satisfy inequality
(8). But, there is no entanglement monotone, for which
eq.(8) is always an equality, since Cd0

[Λ(ρA)] ≤ Cd0
(ρA)

for some local operations Λ on A. Some noncontextuality
inequalities (5) are violated for any state ρ, which, in this
case, necessarily satisfies E(ρ) < Cmax

d0
− 1. If the cor-

responding function Cd0
is constant, E = 0, and eq.(8)

is trivially obeyed, and of no relevance. This is not sur-
prising, since such a state-independent noncontextuality
inequality is always maximally violated [32–35]. If Cd0

is
larger than unity, but not constant, eq.(8) still gives an
upperbound, that depends on the entanglement beween
A and B, for the left side of eq.(5).

V. COMPUTABLE MEASURES OF

ENTANGLEMENT

The monogamy inequality (8) involves an unusual en-
tanglement monotone, defined from the considered non-
contextuality inequality. Moreover, even familiar entan-
glement monotones are difficult to evaluate for an arbi-
trary density matrix ρ [36]. An exception is the negativ-

ity (‖ρΓ‖ − 1)/2, where ‖M‖ = tr
√
MM † denotes the

trace norm of operator M , and ρΓ is a partial transpose
of ρ [2, 28, 37]. There are entangled states with vanishing
negativity. Other quantities can be used to detect entan-
glement, e.g., ‖R(ρ)‖, where R is a matrix realignment

map, which is not greater than 1 when ρ is not entan-
gled [38–40]. In ref.[41], a lower bound is derived for the
entanglement of formation, in terms of

x ≡ max{‖ρΓ‖, ‖R(ρ)‖}, (9)

which is readily computable. We show below that a sim-
ilar bound can be obtained for any entanglement mono-
tone of the form (7).

Proposition 4. Consider an entanglement monotone Ecr

given by eq.(7), two systems, A and B, of Hilbert space
dimensions d and d′, respectively, and the function f de-
fined, for y ∈ [1, d∗], where d∗ = min{d, d′}, by

f(y) ≡ inf
p∈F(y)

s(p), (10)

where s is given by eq.(2), and F(y) is the set of
the d∗-component probability vectors p, such that

(
∑d∗

i=1

√
pi)

2 = y.
For any state ρ of AB, Ecr(ρ) ≥ co(f)(x), where co(f)

is the convex hull of f , and x is given by eq.(9).

Proof. Let us first show that co(f) exists and is nonde-
creasing. Since s is positive, f ≥ 0, and thus, f has a
convex hull [42]. It is the maximum of the convex func-
tions not larger than f . As f ≥ 0, co(f) is positive.
The only element of F(1) is p = 1. Thus, f(1) = 0,
and hence, co(f)(1) = 0. Consider y1 and y2 such that
1 ≤ y1 ≤ y2 ≤ d∗. We have y1 = τ + (1 − τ)y2 with
τ ∈ [0, 1]. So, using the convexity and positivity of co(f),
and co(f)(1) = 0, we get co(f)(y1) ≤ co(f)(y2).
Consider any ensemble {Pm, |Ψm〉} ∈ D(ρ), and de-

note by p(m) the d∗-component vector made up of the
squared Schmidt coefficients of |Ψm〉, in decreasing or-
der, possibly completed with zeros. By definition of
f ,
∑

m PmSd(trB ρm) ≥
∑

m Pmf(ym), where ρm =

|Ψm〉〈Ψm|, and ym = [
∑d∗

i=1(p
(m)
i )1/2]2. The right side

of this inequality is not smaller than co(f)(y) where y =
∑

m Pmym. Since ym = ‖ρΓm‖ = ‖R(ρm)‖ [28, 38, 43],
and the trace norm is convex, x ≤ y. Using this inequal-
ity, and the monotonicity of co(f), leads to the result.

The above proposition, and the monogamy inequality
(8), give, for a d0-level system A,

Cd0
(ρA) ≤ Cmax

d0
− co(f)(x), (11)

where f is given by eq.(10) with the functions (6), and
d∗ = min{d0, d′} with d′ the Hilbert space dimension of
B. For states ρ such that co(f)(x) ≥ Cmax

d0
−1, eq.(5) can-

not be violated. As noted above, if all products in eq.(5),
have an even number of terms, Cd ≥ 1, and so, co(f) can
reach Cmax

d0
− 1 only for x = d∗, i.e., for maximally en-

tangled states. However, even in this case, eq.(11) can
be useful to determine states too entangled to violate
inequality (5). As an example, consider d∗ = d0 = 4,
and the CHSH inequality, for which, as shown below,
C4(ρA) = max{1, C′

4(ρA)}, where

C′
4(ρA) =

√

2 [(p1 − p4)2 + (p2 − p3)2], (12)
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with pi = λi(ρA). The functions (6), defined with C′
4,

have all the necessary properties to obey eq.(11) with the
corresponding f . Using the method of Lagrange multi-
pliers, we find

f(y) =
√
2−(3

√
y+
√

32− 7y)3/2(
√

32− 7y−√
y)1/2/32.

This function is convex, and is hence equal to its convex
hull. It increases from 0 to Cmax

4 =
√
2. Consequently,

for states ρ such that x ≥ 2.95, C′
4(ρA) ≤ 1, and thus,

the local CHSH inequality is always satisfied.

Proof. For CHSH inequality, Cd(ρA) = supA∈Ad
〈T 〉/2,

where 〈T 〉 = tr(ρAT ), and T = A1(A2 + A4) + A3(A2 −
A4). For Ak = A1, 〈T 〉 = 2, and hence Cd ≥ 1. We
are thus interested only in observables Ak such that 〈T 〉
can be larger than 2. For d = 4, Ak can be written
as Ak = ηk(2Πk − I) where ηk = ±1, I is the identity
operator, and Πk is a projector of rank not greater than
2. Using this expression, one finds T 2 = 4I± 16R, where
R = [Π1,Π3][Π2,Π4] [44]. If R = 0, the eigenvalues of T
can only be 2 and −2, and so 〈T 〉 ≤ 2. We thus search
for the projectors Πk for which R 6= 0. If two commuting
Πk and Πl, obey ΠkΠl = 0 or ΠkΠl = Πk, then R = 0.
Consequently, the sought projectors are of rank 2, and
such that, for [Πk,Πl] = 0, ΠkΠl is a rank-1 projector.
This gives Πk = |k〉〈k|+ |k′〉〈k′|, with

|1〉 = |1̃〉, |1′〉 = |2〉 = |2̃〉, |2′〉 = |3̃〉, |3〉 = ν1|2̃〉+ ν̂1|3̃〉,
|3′〉 = ν1|1̃〉+ν̂1|4̃〉, |4〉 = ν2|1̃〉+ν̂2|2̃〉, |4′〉 = ν̂2|3̃〉+ν2|4̃〉,

where {|̃ı〉}4i=1 is any orthonormal basis, |ν̂k|2 + ν2k = 1,
and νk ∈ [0, 1]. For these projectors, the eigenvalues

of [Πk,Πk+2], where k = 1 or 2, are ±iνk|ν̂k|. Since
these two commutators commute with each other, and
trR = 0, there are Ak such that λ(R) = 4r(1, 1,−1,−1),
where r ∈]0, 1]. For these Ak, tr(AkAl) = 0 for com-
muting Ak and Al, and hence trT = 0. So, λ(T ) =
(r+, r−,−r−,−r+), where r± = 2

√
1± r. Maximising

λ(T ) · p over r, leads to eq.(12).

VI. CONCLUSION

In summary, a monogamy inequality for entanglement
and local contextuality, has been derived. It involves
an entanglement monotone that depends on the consid-
ered noncontextuality inequality, and the Hilbert space
dimension of the local system. It essentially results from
the relations between the entanglement of the global state
and the entropy of the local state, and between the eigen-
values of the local state and its ability to disobey the
noncontextuality inequality. Thus, other entanglement
monotones, different from the one we have built, may
satisfy the same monogamy inequality. A consequence of
the found monogamy, is that there are global states so
entangled that they cannot violate the noncontextuality
inequality. The obtained monogamy inequality relates
entanglement per se to local contextuality. It would thus
be of interest to find out if there are global states, that
are Bell-local [11], but still entangled enough to prevent
the violation of a local noncontextuality inequality.
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