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We derive a monogamy inequality for entanglement and local contextuality, for any finite bipartite system. It essentially results from the relations between the entropy of a local state and the entanglement of the global state, and between the purity of a state, in the sense of majorization, and its ability to violate a given state-dependent noncontextuality inequality. We build an explicit entanglement monotone that satisfies the found monogamy inequality. An important consequence of this inequality, is that there are global states too entangled to violate the local noncontextuality inequality.

I. INTRODUCTION

One of the most important property of quantum entanglement, is known as entanglement monogamy [START_REF] Coffman | Distributed entanglement[END_REF][START_REF] Horodecki | Quantum entanglement[END_REF]. Consider two systems, say A and B, in a maximally entangled state. Since this state is pure, there is no correlation between A and any third system, say C. In this extreme case, the entanglement between A and B, is maximum, and that between A and C, vanishes. In the general case, there is a trade-off between the two amounts of entanglement. Expressing it in quantitative terms, requires to specify a measure of entanglement [START_REF] Horodecki | Quantum entanglement[END_REF][START_REF] Vidal | Entanglement monotones[END_REF][START_REF] Plenio | An introduction to entanglement measures[END_REF]. Monogamy inequalities have been derived, first for three qubits, in terms of squared concurrence [START_REF] Coffman | Distributed entanglement[END_REF], and then, for larger systems, and using different measures of entanglement [START_REF] Koashi | Monogamy of quantum entanglement and other correlations[END_REF][START_REF] Osborne | General monogamy inequality for bipartite qubit entanglement[END_REF][START_REF] Bai | General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems[END_REF][START_REF] Song | General monogamy relation of multi-qubit systems in terms of squared Rényi-alpha entanglement[END_REF][START_REF] Luo | General Monogamy of Tsallis-q Entropy Entanglement in Multiqubit Systems[END_REF][START_REF] Lancien | Should Entanglement Measures be Monogamous or Faithful ?[END_REF]. Related works consider nonlocality tests based on the Clauser-Horne-Shimony-Holt (CHSH) inequality [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF][START_REF] Clauser | Proposed experiment to test local hidden-variable theories[END_REF]. When this inequality is violated for A and B, it is necessarily satisfied for A and C, if the same measurements are performed on A in both tests [START_REF] Toner | Monogamy of non-local quantum correlations[END_REF][START_REF] Toner | Monogamy of Bell correlations and Tsirelson's bound[END_REF]. In contrast, monogamy inequalities for entanglement, do not involve specific observables, since the amount of entanglement between two systems, depends only on their common quantum state.

It has been shown that the Klyachko-Can-Binicioglu-Shumovski (KCBS) noncontextuality inequality [START_REF] Klyachko | Simple Test for Hidden Variables in Spin-1 Systems[END_REF], for A only, cannot be violated toghether with the CHSH locality inequality [START_REF] Kurzyński | Fundamental Monogamy Relation between Contextuality and Nonlocality[END_REF], or the I 3322 inequality [START_REF] Saha | A unified graph-theoretic approach to monogamy relations between nonlocality and contextuality[END_REF], when the same measurements are carried out on A in both tests. One can thus wonder whether there is a monogamy relation between entanglement and local contextuality. Such a relation must involve only the states of the global system, and of the considered local system, not particular observables. The ability of a state to disobey a noncontextuality inequality with few observables, is determined by its eigenvalues [START_REF] Kurzyński | Contextuality of almost all qutrit states can be revealed with nine observables[END_REF][START_REF] Xu | Quantum contextuality of a qutrit state[END_REF][START_REF] Camalet | Simple state preparation for contextuality tests with few observables[END_REF][START_REF] Ramanathan | Necessary and Sucient Condition for State-Independent Contextual Measurement Scenarios[END_REF]. Moreover, if a state is less pure, in the sense of majorization [START_REF] Hardy | Inequalities[END_REF][START_REF] Marshall | Inequalities: Theory of Majorization and its Applications, Second edition[END_REF], than a state that always satisfies a noncontextuality inequality, then it also cannot violate this inequality. The purity of the state of A, and the entanglement between A and B, clearly influence each other. To see it, consider the following two extreme cases. If A is in a pure state, A and B are uncorrelated. If A and B are maximally entangled, the reduced density operator for A is the maximally mixed state, which is majorized by any other one.

In this paper, we derive a monogamy inequality for entanglement and local contextuality, for any finite bipartite system. To do so, we exploit the above mentioned relations between purity and contextuality, and between entanglement and local purity. We first show, in Sec. II, that, for any entanglement monotone, the entanglement between A and B, cannot exceed a function of the state of A, that has the essential properties of an entropy [START_REF] Bosyk | A family of generalized quantum entropies: definition and properties[END_REF]. This result expresses quantitatively how the purity of a local state, and the entanglement of the global state, constrain each other. Then, in Sec. III, we define, from any given state-dependent noncontextuality inequality, involving dichotomic observables, an entropic measure, which dictates, for a specific size of A, wether its state can disobey the inequality. Finally, in Sec. IV, we build an explicit entanglement monotone, which is upper bounded by this particular entropy function. An important consequence of the found monogamy inequality, is that there are global states too entangled to violate the local noncontextuality inequality. For four-level systems and the CHSH inequality, we obtain a simple condition, in terms of a readily computable quantity, that determines such states, in Sec. V.

II. RELATION BETWEEN ENTANGLEMENT AND LOCAL ENTROPY

We consider a measure E of the entanglement between any two finite systems. The value E(ρ), where ρ is the state of the global system, consisting of the local systems A and B, is positive, and vanishes if ρ is not entangled. Moreover, it does not increase when two operators carry out local operations, and communicate classically. Such a function E is an entanglement monotone. More specifically, E[Λ(ρ)] ≤ E(ρ) for transformations Λ composed of local operations ρ → k M k ρM † k , and maps of the form ρ → k M k ρM † k ⊗ |k k|, where M k acts on one local system only, k M † k M k is equal to the corresponding identity operator, and |k are orthonormal states of an ancilla close to the other system [START_REF] Horodecki | Quantum entanglement[END_REF]. We reiterate that E is defined for local systems of any sizes. Clearly, the last map above transforms states of a system, into states of a different system. Moreover, M k can be a linear operator from the Hilbert space of a system, to that of one of its subsystems, or to that of a local larger system [START_REF] Vidal | Entanglement monotones[END_REF]. We are interested in the constraint on the reduced density operator of a local system, set by the entanglement E(ρ). To express it, we define, for states ρ A of a d-level system A,

S d (ρ A ) ≡ max ρ∈C(ρA) E(ρ), (1) 
where C(ρ A ) is the set of all states ρ of all composite systems consisting of A, and another system, such that the reduced density operator for A is ρ A . For any system B, and any state ρ of the global system AB, consisting of A and B,

S d (tr B ρ) ≥ E(ρ),
where tr B denotes the partial trace over B. As we will see, the equality is reached when ρ is pure. We show below that the functions (1) have the essential properties of the familiar entropies (von Neumann, Rényi, Tsallis, . . . ) [START_REF] Bosyk | A family of generalized quantum entropies: definition and properties[END_REF]. Thus, the above inequality expresses how the purity of the local state tr B ρ, and the entanglement of the global state ρ, constrain each other. We remark that this inequality is not necessarily satisfied if S d is replaced by an arbitrary entropy function. For distillable entanglement, entanglement cost, entanglement of formation, and relative entropy of entanglement, eq.( 1) gives the von Neumann entropy [START_REF] Horodecki | Quantum entanglement[END_REF][START_REF] Bennett | Concentrating partial entanglement by local operations[END_REF][START_REF] Vedral | Entanglement measures and purification procedures[END_REF]. For robustness and negativity, S d (ρ A ) is simply related to the 1/2-Rényi entropy [START_REF] Vidal | Robustness of entanglement[END_REF][START_REF] Vidal | Computable measure of entanglement[END_REF].

Proposition 1. The functions (1) satisfy

S d (ρ A ) = s(p), (2) 
where p is the vector made up of the nonzero eigenvalues of ρ A , in decreasing order, and s does not depend on d, vanishes for p = 1, and obeys s(q) ≤ s(p) when q majorizes p.

Proof. 

|Ψ Ψ| ∈ C(ρ A ), S d (ρ A ) = s.
If p = 1, |Ψ is a product state, and so s = 0. Consider |Φ = i √ q i |i |χ i with q majorizing p. We have s(p) = E(|Ψ Ψ|) and s(q) = E(|Φ Φ|). Since |Ψ Ψ| can be changed into |Φ Φ| by local operations and classical communication [START_REF] Nielsen | Conditions for a Class of Entanglement Transformations[END_REF], s(p) ≥ s(q).

Relation (2) means not only that

S d (U ρ A U † ) = S d (ρ A ), ( 3 
)
where U is any unitary operator of A, but also that

S d+1 d i=1 p i |ĩ ĩ| = S d d i=1 p i |i i| , (4) 
where {|i } d i=1 and {|ĩ } d+1 i=1 are orthonormal bases of the considered Hilbert spaces, and the probabilities p i obey d i=1 p i = 1. The classical form of equation ( 4) is known as the expansibility property, and is an essential requirement for an entropic measure [START_REF] Bosyk | A family of generalized quantum entropies: definition and properties[END_REF][START_REF] Khinchin | Mathematical Foundations of Information Theory[END_REF].

III. ENTROPIES FROM NONCONTEXTUALITY INEQUALITIES

Our aim is to study the influence of the entanglement between systems A and B, on contextuality tests involving only A. This local contextuality can be revealed by considering N dichotomic observables A k of A, such that observable is compatible with some other ones, but not with all. We restrict ourselves to the usual case of projective measurements with two outcomes. When evaluated with a noncontextual hidden variable theory, the correlations of the compatible observables, satisfy inequalities, which can be violated by quantum states. Such a noncontextuality inequality reads

n x n k∈En A k ≤ 1, (5) 
where E n are subsets of {1, . . . , N }, of any possible size, and . . . = tr(ρ A . . .) is the average with respect to the density matrix ρ A . The observables A k and A l commute with each other when k, l ∈ E n . The coefficients x n are such that the maximum value of the left-hand side of eq.( 5), is 1 for noncontextual hidden-variable models, i.e., there are a k = ±1, such that n x n k∈En a k = 1. The familiar CHSH and KCBS inequalities [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF][START_REF] Clauser | Proposed experiment to test local hidden-variable theories[END_REF][START_REF] Klyachko | Simple Test for Hidden Variables in Spin-1 Systems[END_REF], for example, can be cast into the form [START_REF] Koashi | Monogamy of quantum entanglement and other correlations[END_REF]. Let us define

C d (ρ A ) ≡ sup A∈A d tr ρ A n x n k∈En A k ,
where d is the Hilbert space dimension of A, A stands for (A 1 , . . . , A N ), and For these values of d, inequality (5) constitutes a proper contextuality test, since it is not always satisfied. Note that, for some state-dependent noncontextuality inequalities, C max d does not depend on d, provided it is larger than some value [START_REF] Araújo | All noncontextuality inequalities for the n-cycle scenario[END_REF]. For CHSH inequality, for example, it is equal to √ 2, for d ≥ 4. We also remark that the operators A k = a k A, where A is any dichotomic observable, and a k = ±1 are such that n x n k∈En a k = 1, obviously fulfill the above-stated commutation relations. Such a case describes a set-up that consists of N measurement apparatuses corresponding to the same observable As a consequence, if all products in eq.( 5), have an even number of terms, C d ≥ 1.

A d is the set of all A consisting of dichotomic observables A k , such that [A k , A l ] = 0 for k, l ∈ E n . By construction, for a state ρ A such that C d (ρ A ) > 1,
To study the impact of the entanglement between A and B, on the local contextuality test (5), we define is the maximum value of C d0 , the functions (6) are positive. As a consequence of the result below, they also fulfill the properties enumerated in proposition 1. Note that there are state-independent noncontextuality inequalities [START_REF] Peres | Incompatible results of quantum measurements[END_REF][START_REF] Mermin | Simple Unified Form for the Major No-Hidden-Variables Theorems[END_REF][START_REF] Cabello | Experimentally Testable State-Independent Quantum Contextuality[END_REF][START_REF] Yu | State-Independent Proof of Kochen Specker Theorem with 13 Rays[END_REF] for which the definition [START_REF] Osborne | General monogamy inequality for bipartite qubit entanglement[END_REF] gives zero for any state, and is thus of no use. In this case, no meaningful entanglement monotone E can obey eq.( 1) with S lc d , since the only possibility is E = 0. In the following, we use the notation λ(M ) for the vector made up of the eigenvalues of the Hermitian operator M , in decreasing order. Proposition 2. The functions (6) satisfy

S lc d (ρ A ) ≡ C max d0 -max {|ĩ } tC d0   d1 i,j=1 ĩ|ρ A | |i j|/t   , (6) 
S lc d (ρ A ) = C max d0 -sup µ∈Λ d0 i=1 µ i p i ,
where Λ is the set of all vectors λ( n x n k∈En A k ), with (A 1 , . . . , A N ) ∈ A d0 , p i = λ i (ρ A ) for i ≤ d, and p i = 0 for i > d.

Proof. Consider any orthonormal bases {|ĩ } d i=1 and {|i } d0 i=1 , and define Ω = d1 i,j=1 ĩ|ρ A | |i j|, where d 1 = min{d, d 0 }, and the state ω = t -1 Ω, where t = tr Ω.

It has been shown that

C d0 (ω) = sup µ∈Λ [µ • λ(ω)], where a • b = d0 i=1 a i b i [20]. Since tλ(ω) = λ(Ω), tC d0 (ω) = sup µ∈Λ [µ • λ(Ω)].
We denote λ(ρ A ) by p. For d > d 0 , the matrix representation of Ω, in the basis {|i }, is a diagonal block of that of ρ A , in the basis {|ĩ }. Thus, p weakly submajorizes λ(Ω) [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications, Second edition[END_REF], and so, for j = 1, . . . , d 0 ,

R j ≡ j i=1 [λ i (Ω) -p i ] is negative. Consequently, for any µ ∈ Λ, µ • [λ(Ω) -p [d0] ] = d0-1
j=1 (µ j -µ j+1 )R j + µ d0 R d0 ≤ 0, where p [d0] is made up of the d 0 largest p i , in decreasing order. Hence, tC d0 (ω) ≤ sup µ∈Λ (µ • p [d0] ). For d ≤ d 0 , this inequality becomes an equality, with p [d0] made up of the p i , in decreasing order, followed by d 0 -d zeros, since λ(Ω) = p [d0] .

For any d, when {|ĩ

} d i=1 is such that ρ A = d i=1 p i |ĩ ĩ|, λ(Ω) = p [d0]
, which finishes the proof.

IV. MONOGAMY OF ENTANGLEMENT AND LOCAL CONTEXTUALITY

The functions ( 6) have all the required characteristics to satisfy eq.( 1) with an entanglement monotone E. It remains to show that there is indeed such a measure E. This can be achieved, by using the convex roof method [START_REF] Horodecki | Quantum entanglement[END_REF], since, due to the convexity of C d0 [START_REF] Camalet | Simple state preparation for contextuality tests with few observables[END_REF], S lc d , given by eq.( 6), is concave. Proposition 3. Consider, for any composite system AB, and any state ρ of AB,

E cr (ρ) ≡ inf {Pm,|Ψm }∈D(ρ) m P m S d (tr B |Ψ m Ψ m |) , (7) 
where D(ρ) is the set of all ensembles {P m , |Ψ m } such that m P m |Ψ m Ψ m | = ρ, d is the Hilbert space dimension of A, and S d are positive concave functions obeying eq.( 2), and vanishing for pure states.

The function E cr is an entanglement monotone, and satisfies eq.( 1) with S d .

Proof. We first consider that ρ is not entangled. Then, by definition, ρ is a mixture of pure product states |Ψ m . The corresponding states tr B |Ψ m Ψ m | are pure, and hence E cr (ρ) = 0.

Let us now prove that interchanging A and B does not modify expression [START_REF] Bai | General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems[END_REF]. The reduced density operators tr B |Ψ m Ψ m | and tr A |Ψ m Ψ m |, have the same nonvanishing eigenvalues.

Thus, due to eq.( 2), S d (tr B |Ψ m Ψ m |) in eq.( 7), can be replaced by

S d ′ (tr A |Ψ m Ψ m |)
, where d ′ is the Hilbert space dimension of B.

It follows from eq.( 7) that E cr is convex [START_REF] Vidal | Entanglement monotones[END_REF]. For operators B k of system B, such that k B † k B k is equal to its identity operator, the concavity of S d leads to

E cr (ρ) ≥ k p k E cr (ρ k ), where p k = tr(B † k B k ρ) and ρ k = B k ρB † k /p k [3]
. This inequality and the convexity of E cr ensure that E cr does not increase under local operations on B. With expression (7) rewritten as explained above, the same proof shows that this is also the case for local operations on A. Since ρ k and ρk = ρ k ⊗ |k k|, where |k is a pure state of an ancilla close to A, can be transformed into each other by local operations, E cr (ρ k ) = E cr (ρ k ). Thus, E cr ( k p k ρk ) ≤ E cr (ρ), which finishes the proof that E cr is an entanglement monotone.

Consider a given state ρ A of A, and any state ρ ∈ C(ρ A ). The definition [START_REF] Bai | General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems[END_REF] and the concavity of

S d give E cr (ρ) ≤ S d (ρ A ). If d ′ ≥ d, there are pure states |Ψ of AB such that tr B |Ψ Ψ| = ρ A , and hence E cr (|Ψ Ψ|) = S d (ρ A ). Consequently, max ρ∈C(ρA) E cr (ρ) = S d (ρ A ).
We have thus, for a d 0 -level system A, the monogamy inequality

E(ρ) + C d0 (ρ A ) ≤ C max d0 , (8) 
where E is given by eq.( 7) with the functions (6). Thus, the entanglement of A with B, as quantified by E(ρ), restricts the value of the left side of inequality [START_REF] Koashi | Monogamy of quantum entanglement and other correlations[END_REF]. In particular, for a state ρ such that E(ρ) ≥ C max d0 -1, this noncontextuality inequality cannot be violated. Equation (8) can also be read as an upper bound on the entanglement E(ρ). In the extreme case of maximal violation of eq.( 5), i.e., C d0 (ρ A ) = C max d0 , it gives E(ρ) = 0. There may be other entanglement monotones that coincide with the functions (6) when ρ is pure, and so satisfy inequality [START_REF] Song | General monogamy relation of multi-qubit systems in terms of squared Rényi-alpha entanglement[END_REF]. But, there is no entanglement monotone, for which eq.( 8) is always an equality, since C d0 [Λ(ρ A )] ≤ C d0 (ρ A ) for some local operations Λ on A. Some noncontextuality inequalities (5) are violated for any state ρ, which, in this case, necessarily satisfies E(ρ) < C max d0 -1. If the corresponding function C d0 is constant, E = 0, and eq.( 8) is trivially obeyed, and of no relevance. This is not surprising, since such a state-independent noncontextuality inequality is always maximally violated [START_REF] Peres | Incompatible results of quantum measurements[END_REF][START_REF] Mermin | Simple Unified Form for the Major No-Hidden-Variables Theorems[END_REF][START_REF] Cabello | Experimentally Testable State-Independent Quantum Contextuality[END_REF][START_REF] Yu | State-Independent Proof of Kochen Specker Theorem with 13 Rays[END_REF]. If C d0 is larger than unity, but not constant, eq.( 8) still gives an upperbound, that depends on the entanglement beween A and B, for the left side of eq.( 5).

V. COMPUTABLE MEASURES OF ENTANGLEMENT

The monogamy inequality (8) involves an unusual entanglement monotone, defined from the considered noncontextuality inequality. Moreover, even familiar entanglement monotones are difficult to evaluate for an arbitrary density matrix ρ [START_REF] Huang | Computing quantum discord is NP-complete[END_REF]. An exception is the negativity ( ρ Γ -1)/2, where M = tr √ M M † denotes the trace norm of operator M , and ρ Γ is a partial transpose of ρ [2, [START_REF] Vidal | Computable measure of entanglement[END_REF][START_REF] Życzkowski | Volume of the set of separable states[END_REF]. There are entangled states with vanishing negativity. Other quantities can be used to detect entanglement, e.g., R(ρ) , where R is a matrix realignment map, which is not greater than 1 when ρ is not entangled [START_REF] Rudolph | Further results on the cross norm criterion for separability[END_REF][START_REF] Rudoplh | Some properties of the computable crossnorm criterion for separability[END_REF][START_REF] Chen | A matrix realignment method for recognizing entanglement[END_REF]. In ref. [START_REF] Chen | Entanglement of Formation of Bipartite Quantum States[END_REF], a lower bound is derived for the entanglement of formation, in terms of

x ≡ max{ ρ Γ , R(ρ) }, (9) 
which is readily computable. We show below that a similar bound can be obtained for any entanglement monotone of the form [START_REF] Bai | General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems[END_REF]. 

s(p), ( 10 
)
where s is given by eq.( 2), and F (y) is the set of the d * -component probability vectors p, such that (

d * i=1 √ p i ) 2 = y.
For any state ρ of AB, E cr (ρ) ≥ co(f )(x), where co(f ) is the convex hull of f , and x is given by eq.( 9).

Proof. Let us first show that co(f ) exists and is nondecreasing. Since s is positive, f ≥ 0, and thus, f has a convex hull [START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF]. It is the maximum of the convex functions not larger than f . As f ≥ 0, co(f ) is positive. The only element of F (1) is p = 1. Thus, f (1) = 0, and hence, co(f )(1) = 0. Consider y 1 and y 2 such that 1 ≤ y 1 ≤ y 2 ≤ d * . We have [START_REF] Vidal | Computable measure of entanglement[END_REF][START_REF] Rudolph | Further results on the cross norm criterion for separability[END_REF][START_REF] Chen | Concurrence of Arbitrary Dimensional Bipartite Quantum States[END_REF], and the trace norm is convex, x ≤ y. Using this inequality, and the monotonicity of co(f ), leads to the result.

y 1 = τ + (1 -τ )y 2 with τ ∈ [0, 1]. So,
m = ρ Γ m = R(ρ m )
The above proposition, and the monogamy inequality (8), give, for a d 0 -level system A,

C d0 (ρ A ) ≤ C max d0 -co(f )(x), ( 11 
)
where f is given by eq.( 10) with the functions (6), and d * = min{d 0 , d ′ } with d ′ the Hilbert space dimension of B. For states ρ such that co(f )(x) ≥ C max d0 -1, eq.( 5) cannot be violated. As noted above, if all products in eq.( 5), have an even number of terms, C d ≥ 1, and so, co(f ) can reach C max d0 -1 only for x = d * , i.e., for maximally entangled states. However, even in this case, eq.( 11) can be useful to determine states too entangled to violate inequality [START_REF] Koashi | Monogamy of quantum entanglement and other correlations[END_REF]. As an example, consider d * = d 0 = 4, and the CHSH inequality, for which, as shown below, C 4 (ρ A ) = max{1, C ′ 4 (ρ A )}, where

C ′ 4 (ρ A ) = 2 [(p 1 -p 4 ) 2 + (p 2 -p 3 ) 2 ], (12) 
with p i = λ i (ρ A ). The functions (6), defined with C ′ 4 , have all the necessary properties to obey eq.( 11) with the corresponding f . Using the method of Lagrange multipliers, we find 

f (y) = √ 2-(3 √ y+ 32 -7y)
T = A 1 (A 2 + A 4 ) + A 3 (A 2 - A 4 ). For A k = A 1 , T = 2,
and hence C d ≥ 1. We are thus interested only in observables A k such that T can be larger than 2. For d = 4, A k can be written as A k = η k (2Π k -I) where η k = ±1, I is the identity operator, and Π k is a projector of rank not greater than 2. Using this expression, one finds [START_REF] Landau | On the violation of Bell inequality in quantum theory[END_REF]. If R = 0, the eigenvalues of T can only be 2 and -2, and so T ≤ 2. We thus search for the projectors Π k for which R = 0. If two commuting Π k and Π l , obey Π k Π l = 0 or Π k Π l = Π k , then R = 0. Consequently, the sought projectors are of rank 2, and such that, for [Π k , Π l ] = 0, Π k Π l is a rank-1 projector. This gives Π k = |k k| + |k ′ k ′ |, with where k = 1 or 2, are ±iν k |ν k |. Since these two commutators commute with each other, and tr R = 0, there are A k such that λ(R) = 4r(1, 1, -1, -1), where r ∈]0, 1]. For these A k , tr(A k A l ) = 0 for commuting A k and A l , and hence tr T = 0. So, λ(T ) = (r + , r -, -r -, -r + ), where r ± = 2 √ 1 ± r. Maximising λ(T ) • p over r, leads to eq.( 12).

T 2 = 4I ± 16R, where R = [Π 1 , Π 3 ][Π 2 , Π 4 ]
|1 = | 1 , |1 ′ = |2 = | 2 , |2 ′ = | 3 , |3 = ν 1 | 2 + ν1 | 3 , |3 ′ = ν 1 | 1 +ν 1 | 4 , |4 = ν 2 | 1 +ν 2 | 2 , |4 ′ = ν2 | 3 +ν 2 | 4 ,

VI. CONCLUSION

In summary, a monogamy inequality for entanglement and local contextuality, has been derived. It involves an entanglement monotone that depends on the considered noncontextuality inequality, and the Hilbert space dimension of the local system. It essentially results from the relations between the entanglement of the global state and the entropy of the local state, and between the eigenvalues of the local state and its ability to disobey the noncontextuality inequality. Thus, other entanglement monotones, different from the one we have built, may satisfy the same monogamy inequality. A consequence of the found monogamy, is that there are global states so entangled that they cannot violate the noncontextuality inequality. The obtained monogamy inequality relates entanglement per se to local contextuality. It would thus be of interest to find out if there are global states, that are Bell-local [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF], but still entangled enough to prevent the violation of a local noncontextuality inequality.

  there are observables A k with which inequality (5) is violated. It has been shown that C d (ρ A ) = c d (p), where p is the vector made up of the eigenvalues of ρ A , in decreasing order, and c d satisfies c d (q) ≥ c d (p) when q majorizes p [20]. However, the functions C d do not obey the expansibility condition (4), and really depend on the dimension d. Due to the above-mentioned property of c d , C d reaches its maximum, C max d ≡ c d (1), for pure states. We assume that there are dimensions d for which C max d > 1.

where d 0

 0 is a specific dimension, d 1 = min{d, d 0 }, t = d1 i=1 ĩ|ρ A |ĩ , {|i } d0 i=1 is an orthonormal basis, and the maximum is taken over the orthonormal bases {|ĩ } d i=1 of A. Since C d0 obeys eq.(3), the definition (6) does not depend on any particular basis. For d = d 0 , it reduces to S lc d0 (ρ A ) = C max d0 -C d0 (ρ A ), but, for d = d 0 , S lc d and C d are not simply related to each other. As C max d0

Proposition 4 .

 4 Consider an entanglement monotone E cr given by eq.(7), two systems, A and B, of Hilbert space dimensions d and d ′ , respectively, and the function f defined, for y ∈ [1, d * ], where d * = min{d, d ′ }, by f (y) ≡ inf p∈F (y)

) 1 / 2 ] 2 .

 122 using the convexity and positivity of co(f ), and co(f )(1) = 0, we get co(f )(y 1 ) ≤ co(f )(y 2 ). Consider any ensemble {P m , |Ψ m } ∈ D(ρ), and denote by p (m) the d * -component vector made up of the squared Schmidt coefficients of |Ψ m , in decreasing order, possibly completed with zeros. By definition of f , m P m S d (tr B ρ m ) ≥ m P m f (y m ), where ρ m = |Ψ m Ψ m |, and y m = [ The right side of this inequality is not smaller than co(f )(y) where y = m P m y m . Since y

where {|ĩ } 4

 4 i=1 is any orthonormal basis, |ν k | 2 + ν 2 k = 1, and ν k ∈ [0, 1]. For these projectors, the eigenvalues of [Π k , Π k+2 ],

  Consider any system B', and any state ρ ∈ C(ρ A ) of the composite system AB'. Denote its eigenvalues by λ m , and its eigenstates by |ψ m . Let us introduce a third system, say B", which constitutes, together with B', system B. Provided the Hilbert space dimension of B" is large enough, ρ can be written as ρ = tr B ′′ |Ψ Ψ|, where |Ψ = m √ λ m |ψ m |φ m is a pure state of system AB, with orthonormal states |φ m of B". As tr B A and U B , acting on A and B, respectively, such that |Ψ ′ = U A ⊗ U B |Ψ . Thus, |Ψ Ψ| and |Ψ ′ Ψ ′ | can be transformed into each other by local operations. Consequently, E(|Ψ ′ Ψ ′ |) = s, and hence, s is a function of p only. Since ρ is an arbitrary state of C(ρ A ), and

′′ 

is a local operation, on B, E(ρ) ≤ s where s = E(|Ψ Ψ|). Since tr B |Ψ Ψ| = i p i |i i|, where p i are the nonzero eigenvalues of ρ A , and |i are the corresponding eigenstates, |Ψ = i √ p i |i |χ i , where |χ i are orthonormal states of B. For any pure state |Ψ ′ of AB, with Schmidt coefficients √ p i , there are unitary operators U

  3/2 ( 32 -7y-√ y) 1/2 /32. Proof. For CHSH inequality, C d (ρ A ) = sup A∈A d T /2, where T = tr(ρ A T ), and

	This function is convex, and is hence equal to its convex hull. It increases from 0 to C max = √ 2. Consequently, 4 for states ρ such that x ≥ 2.95, C ′ 4 (ρ A ) ≤ 1, and thus, the local CHSH inequality is always satisfied.