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We consider any noncontextuality inequality, and the state preparation scheme which consists in performing any von Neumann measurement on any initial state. For an inequality which is not always satisfied, and Hilbert space dimensions greater than a value specified by the inequality, we determine necessary and sufficient conditions for the existence of observables with which the inequality is violated after the preparation process. For an initial state with no zero eigenvalues, there are always such observables, and which are independent of this state.

Quantum mechanics is contextual. Measurement outcomes are not predetermined independently of the measurements actually performed [START_REF] Bell | On the Problem of Hidden Variables in Quantum Mechanics[END_REF][START_REF] Kochen | The Problem of Hidden Variables in Quantum Mechanics[END_REF]. This can be revealed with a finite set of observables, such that each observable is compatible with some other ones, but not with all. When evaluated with a noncontextual hiddenvariable theory, the correlations of the compatible observables, satisfy inequalities, which can be violated by quantum systems. Well-known examples of such noncontextuality inequalities are Clauser-Horne-Shimony-Holt (CHSH) and Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequalities [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF][START_REF] Clauser | Proposed experiment to test local hidden-variable theories[END_REF][START_REF] Fine | Hidden Variables, Joint Probability, and the Bell inequalities[END_REF][START_REF] Klyachko | Simple Test for Hidden Variables in Spin-1 Systems[END_REF]. Inequalities have been obtained, which are disobeyed for any state of the considered system. Moreover, this holds for fixed sets of observables, independent of the state. These inequalities involve 13 dichotomic observables for a three-level system [START_REF] Yu | State-Independent Proof of Kochen-Specker Theorem with 13 Rays[END_REF][START_REF] Cabello | State-independent quantum contextuality and maximum nonlocality[END_REF][START_REF] Cabello | Necessary and Sufficient Condition for Quantum State-Independent Contextuality[END_REF], and 9 for a four-level system [START_REF] Peres | Incompatible results of quantum measurements[END_REF][START_REF] Mermin | Simple Unified Form for the Major No-Hidden-Variables Theorems[END_REF][START_REF] Cabello | Experimentally Testable State-Independent Quantum Contextuality[END_REF]. However, contextuality can be revealed with less observables, 4 are enough for a d-level system with d ≥ 4, using CHSH inequality.

But contextuality tests with few observables, have two drawbacks. First, for some states, the noncontextuality inequality is satisfied with any set of observables obeying the required compatibility relations. Second, for the other states, the observables must be chosen according to the state, in order to violate the inequality [START_REF] Gisin | Bell's inequality holds for all non-product states[END_REF][START_REF] Camalet | Effectively classically correlated state of a measured system and a bosonic measurement apparatus[END_REF][START_REF] Kurzyński | Contextuality of al-most all qutrit states can be revealed with nine observables[END_REF][START_REF] Ramanathan | Necessary and Sufficient Condition for State-Independent Contextual Measurement Scenarios[END_REF][START_REF] Xu | Quantum contextuality of a qutrit state[END_REF]. A noncontextuality inequality involves a sum of expectation values. Thus, if it cannot be violated for pure states, it is always satisfied, and is hence not a proper contextuality test. The maximally mixed state of the considered system also plays a particular role. For three-level systems, an inequality, with 9 observables, has been found, that can be violated for any state except the maximally mixed one [START_REF] Kurzyński | Contextuality of al-most all qutrit states can be revealed with nine observables[END_REF]. The relation between the mixedness of a state, in the sense of majorization [START_REF] Hardy | Inequalities[END_REF][START_REF] Marshall | Inequalities: theory of majorization and its applications[END_REF], and its usefulness for revealing quantum contextuality, has been clarified in Ref. [START_REF] Ramanathan | Necessary and Sufficient Condition for State-Independent Contextual Measurement Scenarios[END_REF]. The eigenvalues of the state do not alone dictate if a given noncontextuality inequality can be disobeyed. The dimension of the system Hilbert space is an important parameter, since it determines the set of potentially accessible observables [START_REF] Gühne | Bounding the quantum dimension with contextuality[END_REF].

In this Letter, we show that the two above mentioned 

A k ≤ 1, (1) 
where . . . =Tr(ρ . . .) denotes the average with respect to the quantum state ρ. The subsets E n ⊂ {1, . . . , N }, are such that [A k , A l ] = 0 when k and l both belong to E n . The number of terms in the sum and the coefficients x n depend on the inequality considered. A noncontextuality inequality is always satisfied when the observables A k are replaced by classical random variables a k = ±1, and the average is evaluated with respect to a probability distribution of these variables. Moreover, the coefficients

x n are such that the maximum value of the left-hand side of eq.( 1) with classical random variables, is 1. Thus, a violation of inequality [START_REF] Bell | On the Problem of Hidden Variables in Quantum Mechanics[END_REF] clearly indicates that the obtained value cannot be accounted for by a noncontextual hidden-variable theory.

The states ρ of a d-level system, for which a given inequality (1) is violated with appropriate observables A k , are determined by the function C d defined as

C d (ρ) = max A∈A d Tr ρT (A) , (2) 
where A = (A 

p m = 1, i) C d (ρ 1 ) -C d (ρ 2 ) ≤ √ d n |x n |Tr (ρ 1 -ρ 2 ) 2 1/2 , ii) C d (U ρ 1 U † ) = C d (ρ 1 ), iii) C d m p m ρ m ≤ m p m C d (ρ m ). Proof. i) It follows from the Cauchy-Schwarz inequal- ity that Tr[ωT (A)] 2 ≤ Tr(ω 2 ) d i=1 t 2 i , where ω = ρ 1 -ρ 2 ,

and t i denotes the eigenvalues of T (A). Since

| k A k | ≤ 1 for any state ρ, |t i | ≤ n |x n |. Conse- quently, for any A ∈ A d , Tr[ρ 1/2 T (A)] ≤ C d (ρ 2/1 ) + [dTr(ω 2 )] 1/2 n |x n |. Maximizing over A completes the proof of point i). ii) Tr[U ρ 1 U † T (A)] = Tr[ρ 1 T (B)] where B k = U † A k U . For A ∈ A d , the observables B k satisfy the commuta- tion relations [B k , B l ] = U † [A k , A l ]U = 0 for k, l ∈ E n , and are dichotomic, since B 2 k = U † A 2 k U = I d where I d is the d-dimensional identity operator. Consequently, B belongs to A d . Thus, the above equality yields Tr[U ρ 1 U † T (A)] ≤ C d (ρ 1 ) for any A ∈ A d , and hence C d (U ρ 1 U † ) ≤ C d (ρ 1 )
. Since this inequality is valid for any ρ 1 and U , the equality holds for any ρ 1 and U .

iii) By linearity of the trace,

Tr[ m p m ρ m T (A)] ≤ m p m C d (ρ m ) for any A ∈ A d , which proves iii).
From point i) of proposition 1, it ensues that, any state ρ such that C d (ρ) > 1, has a neighborhood of states which can violate eq.( 1). Thus, no noncontextuality inequality can be disobeyed only for pure states. Points ii) and iii) show that applying unitary transformations to states ρ such that C d (ρ) ≤ 1, or preparing statistical mixtures of such states, cannot lead to a violation of inequality [START_REF] Bell | On the Problem of Hidden Variables in Quantum Mechanics[END_REF]. Another result of point ii) is that C d (ρ) depends only on the eigenvalues of the state ρ.

The convexity and invariance under unitary transformations of C d have the following consequence for positive operator-valued measurements. From now on, we use the notation

C d (F, ρ) = C d F ρF † /Tr(F † F ρ) , (3) 
where ρ is a state, and F any operator such that F ρF † = 0, of a d-level system.

Corollary 1. For any state ρ, and operators In other words, for any measurement, at least one resulting state ρ m gives a value of C d which can exceed that of the initial state. However, this obviously does not guarantee that inequality (1) can be violated. In the following, we show conditions under which this is the case for von Neumann measurements, i.e., if the operators F m are projectors.

F m such that m F † m F m = I d , of a d-level system, C d (ρ) ≤ max m∈E C d (F m ,
Below, we make use of the majorization relation, which is defined as follows. Consider two real d-component vectors a and b, and the vectors a ↓ and b ↓ obtained from a and b, respectively, by rearranging their components in decreasing order, i.e., a

↓ i ≥ a ↓ i+1 . It is said that a majorizes b, denoted a ≻ b, iff, for j = 1, . . . , d, j i=1 a ↓ i ≥ j i=1 b ↓ i , with equality for j = d. For density matrices, ρ 1 ≻ ρ 2 iff λ(ρ 1 ) ≻ λ(ρ 2 )
, where the spectrum λ(A) is the vector made up of the eigenvalues of the Hermitian operator A, in decreasing order [START_REF] Hardy | Inequalities[END_REF][START_REF] Marshall | Inequalities: theory of majorization and its applications[END_REF]. The majorization relation is generalized to states of systems of different sizes, by extending with zeros the spectrum with less eigenvalues. The next proposition will be proved using the following lemma. 

•c ≤ a ↓ •c ↓ , where a•b = d i=1 a i b i . Proof. It is already known that b • c ≤ b ↓ • c ↓ [18, 19]. We define R j = j i=1 (b ↓ i -a ↓ i ) for j = 1, . . . , d. Since a ≻ b, R j ≤ 0 and R d = 0. Thus, (b ↓ -a ↓ ) • c ↓ = d-1 j=1 (c ↓ j -c ↓ j+1 )R j ≤ 0.
To investigate the influence of the Hilbert space dimension d, we define the application G : A ′ → A as follows. As mentioned above, for any noncontextuality inequality (1), there is (a 1 , . . . , a N ) such that a k = ±1 and n x n k∈En a k = 1. For any Proof. We first prove that

A ′ ∈ A d ′ , A = (A 1 , . . . , A N ) ∈ A d , is given by ĩ|A k | = i|A ′ k |j , for d = d ′ ,

and by

A k = d ′ i,j=1 i|A ′ k |j |ĩ | + a k d i=d ′ +1 |ĩ ĩ|, (4) 
C d (ρ) = max t∈Λ d [t • λ(ρ)] (5) 
where

Λ d = {λ[T (A)] : A ∈ A d }.
For that purpose, we write Tr[ρT (A)] = d i=1 t i p i where p i = i|ρ|i , |i denotes the eigenvectors of T (A), and t its spectrum. The Schur-Horn theorem gives λ(ρ) ≻ (p 1 , . . . , p d ) [START_REF] Marshall | Inequalities: theory of majorization and its applications[END_REF]. Thus, using the lemma, we obtain Tr[ρT (

A)] ≤ t • λ(ρ), which results in C d (ρ) ≤ max t∈Λ d [t • λ(ρ)]. Consider t ∈ Λ d . By definition of Λ d , there is A ∈ A d such that λ[T (A)] = t. Consider B de- fined by B k = U † A k U where U is any unitary opera- tor. B belongs to A d (see proof of point ii) of proposi- tion 1). Moreover, T (B) = d i=1 t i U † |i i|U . Therefore, there is à ∈ A d such that the spectrum of T ( Ã) is t,
and its eigenvectors are identical to those of ρ. Hence,

d i=1 t i λ i (ρ) = Tr[ρT ( Ã)] ≤ C d (ρ)
, which gives the second inequality required to prove eq.( 5).

Consider a state ρ′ of a d-level system, with the same nonzero eigenvalues than ρ ′ . Since ρ ≻ ρ ′ , λ(ρ) ≻ λ(ρ ′ ). Thus, using the lemma and the form (5), we have t • λ(ρ ′ ) ≤ C d (ρ) for any t ∈ Λ d .

For any A ′ ∈ A d ′ , expression (4) gives A ∈ A d such that the components of t = λ[T (A)] are the d ′ eigenvalues t ′ i = λ i [T (A ′ )], and d-d ′ ones, arranged in decreasing order. Thus,

t i = t ′ i if t ′ i ≥ 1, and t i = 1 or t ′ i-j where j ≥ d -d ′ , if t ′ i < 1. So, for i ≤ d ′ , t ′ i ≤ t i , and hence Tr[ρ ′ T (A ′ )] ≤ d ′ i=1 t ′ i λ i (ρ ′ ) ≤ d i=1 t i λ i (ρ ′
), which, together with the above inequality, leads to the result.

For a von Neumann measurement, the resulting states ρ m = Π m ρΠ m /Tr(Π m ρ) where Π m are projectors and ρ is the initial state, have vanishing eigenvalues. To study their ability to violate inequality [START_REF] Bell | On the Problem of Hidden Variables in Quantum Mechanics[END_REF], it is convenient to define

C (r) d = max t∈Λ d r i=1 t i /r, (6) 
where r ≤ d. Noting that C

(r) d = C d (Π/r) where Π is any rank-r projector, see eq.( 5), and using proposition 2, the following properties of C for the maximally mixed state I d /d, which is majorized by any state of rank not larger than d. Thus, these two extreme values determine, for a d-level system, whether inequality (1) can be disobeyed or not, for all states or not. If C

(1) d ≤ 1, eq.( 1) is satisfied with any observables A k obeying the required commutation relations, for any system state ρ. It is then not a proper contextuality test for dimension d. If C (d) d > 1, inequality (1) can be violated for any state ρ, but it may remain necessary to choose the observables A k according to ρ. If C

(d) d ≤ 1 < C (1)
d , observables A k can be found to disobey eq.( 1) or not, depending on the spectrum of ρ.

Since C

(1) 1) can be violated for any state of a d ′ -level system, this is also the case for a larger system. The increase with d of C (r) d obviously does not guarantee that it exceeds 1 for large enough d. Below, we show that this is actually the case, under the only assumption that inequality (1) is not always satisfied, and draw consequences for von Neumann preparation measurements.

d increases with d, if inequality (1) is a contex- tuality test for a dimension d ′ , it is also so for dimensions d ≥ d ′ . Relations (4) lead to C (d) d ≥ 1 + (C (d ′ ) d ′ -1)d ′ /d, for d ≥ d ′ . Thus, if eq.(
Proposition 3. Consider a state ρ, and projectors Π m such that m Π m = I d , their ranks are not larger than r, and the rank of Π 1 is r, of a d-level system, and define E the set of m such that Tr(Π m ρ) = 0. Assume there is d ′ such that C

(1)

d ′ > 1, and d ≥ d ′ . i) If r ≤ d-d ′ +1, then C d (Π m , ρ) > 1 for any m ∈ E. ii) If r > d -d ′ + 1, d ≥ 2d ′ -3, and Tr(Π 1 ρ) = 1, then C d (Π m , ρ) > 1 for at least one m ∈ E.
Proof. We first show that C 6). Consider A ∈ A d , following from eq.( 4), and denote by t the spectrum of T (A). We have For dimensions d ≥ 2d ′ -3 where d ′ is such that C

(r) d > 1 for r ≤ d -d ′ + 1. Since C (1) d ′ > 1, there is A ′ ∈ A d ′ such that t ′ 1 > 1, where t ′ = λ[T (A ′ )], see eq.(
t 1 = t ′ 1 and t i ≥ 1 for i ≤ d -d ′ + 1. Consequently, r i=1 t i /r ≥ 1 + (t ′ 1 -1)/r > 1. We define ρ m = Π m ρΠ m /Tr(Π m ρ) for any m ∈ E. i) Since ρ m ≻ Π m /
(1) d ′ > 1, it results from proposition 3 that inequality (1) cannot be violated after the preparation measurement, only if a single outcome of this measurement has nonzero probability, and C d (ρ) ≤ 1 where ρ is the initial state. This last condition comes from the fact that the sole post-measurement state is equal to ρ. Proposition 3 concerns the post-measurement states ρ m , and the possibility to violate inequality (1) after one of them was selected. If, on the contrary, the measurement is unread, the state of the system after it, is ρ ′ = m Π m ρΠ m , which obeys ρ ≻ ρ ′ , due to quantum Hardy-Littlewood-Pólya theorem [START_REF] Jacobs | Quantum measurement theory and its applications[END_REF]. It follows from proposition 2, that eq.( 1) is always obeyed for ρ ′ if C d (ρ) ≤ 1. Interesting measurements are dichotomic ones with projectors of ranks d/2 for even d, and (d±1)/2 for odd d. They are the most inefficient in the sense that there is a projector Π m of lower rank for all the other measurements. For these measurements, inequality (1) can be disobeyed for both resulting states, provided d ≥ 2d ′ -2. The smaller is the dimension d ′ , the less demanding are the conditions in proposition 3. The minimum d ′ such that C

(1) d ′ > 1 is 4 for CHSH inequality [START_REF] Clauser | Proposed experiment to test local hidden-variable theories[END_REF], and 3 for KCBS inequality [START_REF] Klyachko | Simple Test for Hidden Variables in Spin-1 Systems[END_REF].

Proposition 3 ensures that, for any state ρ with no zero eigenvalues, and any von Neumann measurement, there are observables A k such that inequality (1) is violated for a post-measurement state ρ m , provided d ≥ 2d ′ -3. Such observables A k depend a priori on ρ. We show below that some of them are determined only by the considered measurement and inequality. For an initial state ρ = d i=1 λ i (ρ)|i i| of a D-level system, of rank d < D, proposition 4 holds for the subspace spanned by {|i } d i=1 , if d is large enough. Thus, a violation of inequality (1) can be achieved knowing only the subspace corresponding to the zero, or very small, eigenvalues of ρ, and choosing the preparation measurement, and observables A k , accordingly.

In summary, we have studied the possibility of preparing a state that violates a given noncontextuality inequality, by performing any von Neumann measurement on any initial state. For a large enough system, and an inequality which is not always satisfied, we have determined necessary and sufficient conditions for the existence of observables with which the inequality is violated for a state resulting from the preparation measurement. For an initial state with no zero eigenvalues, there are always such observables, and which do not depend on this state. A natural extension of this work is to consider, for the preparation stage, general measurements, for which only a partial result has been obtained.

  ρ), where E = {m : F m ρF † m = 0}. Proof. There are unitary operators U m such that ρ = m∈E p m U m ρ m U † m where p m = Tr(F † m F m ρ) and ρ m = F m ρF † m /p m [21]. Thus, with proposition 1, C d (ρ) ≤ m∈E p m C d (ρ m ), which leads, with m∈E p m = 1, to the result.

Lemma.

  Consider three real d-component vectors a, b and c. If a ≻ b then b

Proposition 2 .

 2 for d > d ′ , where {|i } d ′ i=1 and {|ĩ } d i=1 are orthonormal bases of the considered Hilbert spaces. With matrix representations of the observables A k and A ′ k , it is straightforward to show that, when A ′ ∈ A d ′ , the observables A k are dichotomic and obey the required commutation relations, and that the spectrum of T (A) consists of the d ′ eigenvalues λ i [T (A ′ )] and of d -d ′ ones. Using the lemma and function G, the following can be shown. Consider a state ρ of a d-level system, and a state ρ ′ of a d ′ -level system. If ρ ≻ ρ ′ and d ≥ d ′ then C d (ρ) ≥ C d ′ (ρ ′ ) .

  and C d can be proved. Any density matrix ρ of rank r, satisfies ρ ≻ Π/r, and henceC d (ρ) ≥ C (r) d . Consequently, if C (r) d > 1, a d-levelsystem in such a state ρ, can violate inequality[START_REF] Bell | On the Problem of Hidden Variables in Quantum Mechanics[END_REF]. Since Π/r ≻ Π ′ /r ′ where r ′ ≥ r and Π ′ is a rank-r ′ projector, C (r) d decreases as r increases, and increases with d. The function C d reaches its maximum C (1) d for pure states, which majorize any other state, and its minimum C (d) d

  r m where r m is the rank of Π m , and r m ≤ r, proposition 2 gives C d (ρ m ) ≥ C , using the above result, we get C d (ρ m ) > 1. ii) There is m = 1 such that Tr(Π m ρ) = 0. The rank r m of ρ m is not larger than d -r ≤ d -d ′ + 1, and hence, C d (ρ m ) ≥ C (rm) d > 1.

Corollary 2 .

 2 Consider a state ρ, and projectors Π m such that m Π m = I d , of a d-level system. Assume there is d ′ such that C (1)d ′ > 1, and d ≥ 2d ′ -3. C d (Π m , ρ) ≤ 1 for all Π m such that Tr(Π m ρ) = 0 iff Tr(Π m ρ) = 1 for one m, and C d (ρ) ≤ 1. Proof. If Tr(Π m ρ) = 1, then Tr(Π m ′ ρ) = 0 for any m ′ = m, and ρ = m ′ ,m ′′ Π m ′ ρΠ m ′′ = Π m ρΠ m .If C d (Π m ′ , ρ) ≤ 1 for all appropriate Π m ′ , then, due to proposition 3, Tr(Π m ρ) = 1 where Π m is the projector of largest rank, and thus ρ = Π m ρΠ m .

Proposition 4 .

 4 Consider projectors Π m such that m Π m = I d , of a d-level system. If there is d ′ such that C (1) d ′ > 1, and d ≥ 2d ′ -3, then there are A ∈ A d and a projector Π m , such that Tr[ρ m T (A)] > 1 where ρ m = Π m ρΠ m /Tr(Π m ρ), for all states ρ with no zero eigenvalues, of the d-level system.Proof. There is at least one projector Π m of rank r ≤ d/2. Denote by |φ one of its eigenvectors with eigenvalue 1. Since C(1)d ′ > 1, there is B ′ ∈ A d ′ such that t ′ 1 > 1, where t ′ = λ[T (B ′ )]. Consider B ∈ A d ,following from eq.(4), and define t = λ[T (B)]. We have t 1 = t ′ 1 , and, since r ≤ d-d ′ +1, t i ≥ 1 for i ≤ r. There is A ∈ A d such that the spectrum of T (A) is t, its first r eigenvectors |i obey Π m |i = |i , and |1 = |φ (see proof of proposition 2). Tr(Π m ρ) ≥ rλ, and φ|ρ|φ ≥ λ, where λ = min j λ j (ρ) > 0. Finally, the above results lead to Tr[ρ m T (A)] ≥ 1 + (t ′ 1 -1)p where p = φ|ρ|φ /Tr(Π m ρ) > 0.

  1 , . . . , A N ), T (A) = n x n k∈En A k , and A d denotes the set of all A consisting of dichotomic observables A k , of the d-level system, which obey [A k , A l ] = 0 for k, l ∈ E n . Note that this definition depends on the dimension d of the considered Hilbert space. By construction, for a state ρ such that C d (ρ) ≤ 1, inequality (1) is satisfied with any dichotomic observables A k obeying the required commutation relations.It results directly from the definition (2) that the function C d is continuous, invariant under unitary transformations of ρ, and convex. Proposition 1. For any states ρ m , unitary operator U , and probabilities p m such that m