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In superfluid systems several sound modes can be excited, as for example first and second sound in
liquid helium. Here, we excite running and standing waves in a uniform two-dimensional Bose gas
and we characterize the propagation of sound in both the superfluid and normal regimes. In the
superfluid phase, the measured speed of sound is in good agreement with the prediction of a two-
fluid hydrodynamic model, and the weak damping is well explained by the scattering with thermal
excitations. In the normal phase we observe a stronger damping, that we attribute to a departure
from hydrodynamic behavior.

Propagation of sound waves is at the heart of our un-
derstanding of quantum fluids. In liquid helium, the cel-
ebrated two-fluid model was confirmed by the observa-
tion of first and second sound modes [1, 2]. There, first
sound stands for the usual sound appellation, namely a
density wave for which normal and superfluid fractions
oscillate in phase. Second sound corresponds to a pure
entropy wave with no perturbation in density (normal
and superfluid components oscillating out of phase), and
is generally considered as a smoking gun of superfluidity.

Sound wave propagation is also central to the study of
dilute quantum gases, providing information on thermo-
dynamic properties, relaxation mechanisms and super-
fluid behavior. In ultracold strongly interacting Fermi
gases, the existence of first and second sound modes
in the superfluid phase was predicted [3] and observed
in experiments [4, 5], with a behavior similar to liquid
helium. In three-dimensional (3D) weakly interacting
Bose-Einstein condensates (BECs), one still expects two
branches of sound with speeds c(1) > c(2) but the nature
of first and second sound is strongly modified because
of their large compressibility [6]. At zero temperature
the gas is fully superfluid and the only relevant mode
corresponds to Bogoliubov excitations, i.e., density os-
cillations. At non-zero temperature, an isothermal den-
sity perturbation is expected to excite mostly the second
sound mode, propagating at a velocity approximately
proportional to the square root of the superfluid frac-
tion [6, 7]. This contrasts to the usual picture for liquid
helium where second sound is excited via local heating
[1, 2]. Sound waves in an elongated 3D BEC were ob-
served in Refs. [8–10] in a regime where the sound speed
remains close to the Bogoliubov sound speed.

The study of sound propagation can be very insightful
for two-dimensional (2D) Bose fluids, where superfluid-
ity does not result from a Bose-Einstein condensation,
but occurs instead via a Berezinskii-Kosterlitz-Thouless
(BKT) transition [11]. This transition is associated with
a jump of the superfluid density but as the transition is of
infinite order, the jump cannot be revealed by the ther-
modynamic properties of the fluid. However, the pres-
ence of a superfluid component is predicted to lead to two

FIG. 1. Experimental protocol and observation of propagat-
ing waves. (a) Absorption image of the cloud perturbed by a
local additional potential. The excitation is delimited by the
horizontal dashed line and depletes the atomic density by a
factor around 1/3. (b) Example of time evolution of the varia-
tion of the density profile n2D with respect to its spatial mean
value (integrated along x) obtained after abruptly removing
the additional potential. For this example T/Tc = 0.37(12)
and n2D = 29(3) µm−2. The position of the dip is fitted by
a triangle function (black solid line) which gives, c =1.49(3)
mm/s.

distinct sound modes, whose velocities c
(1)
HD and c

(2)
HD were

calculated within a hydrodynamic model in Refs. [12, 13].
These velocities are functions of the superfluid density
and thus both exhibit a discontinuity associated with the
superfluid jump at the critical point. In particular the
second sound velocity is expected to remain non-zero just
below the critical point of the superfluid to normal tran-
sition and to disappear just above. Experimentally, 2D
Bose fluids were first realized with liquid helium films
adsorbed on a substrate [14]; in this case the presence of
the substrate blocks the motion of the normal component
and thus prevents the investigation of such phenomena.

In this Letter, we report on the first observation of
sound propagation in a 2D Bose fluid. We observe a
single density sound mode both in the superfluid and
normal regimes. Deep in the superfluid regime, the mea-
sured sound speed agrees well with the Bogoliubov pre-
diction. We measure a weak damping rate compatible
with Landau damping, a fundamental mechanism for the
understanding of collective modes of superfluids at finite
temperature [15]. For higher temperatures, we observe a
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decrease of the sound velocity consistent with the second
sound speed variation predicted in Ref. [12] from two-
fluid hydrodynamics. The damping of sound increases
with temperature and, above the critical point, we still
observe strongly damped density waves with no discern-
able discontinuity at the critical point. The discrepancy
with the two-fluid model predictions could be due to a
departure from hydrodynamic behavior.

Our experimental setup has been described in Refs
[16, 17] and more details can be found in [18]. Briefly, we
confine 87Rb atoms in the |F = 1,m = 0〉 ground state
into a 2D rectangular box potential of size Lx × Ly =
30(1) × 38(1) µm (see Fig. 1a). The confinement along
the vertical z direction can be approximated by a har-
monic potential of frequency ωz/(2π) = 4.59(4) kHz. We
always operate in the quasi-2D regime where interaction
and thermal energies are smaller than ~ωz. The gas
is characterized by the effective coupling constant g =
~2g̃/m = (~2/m)

√
8π as/`z, where as is the s-wave scat-

tering length, `z =
√
~/(mωz) and m the atomic mass

[11]. We operate here in the weakly-interacting regime:
g̃ = 0.16(1). In the quasi-2D regime and for a given g̃,
the equilibrium state of the cloud is only characterized
by a dimensionless combination of T and n2D, thanks to
an approximate scale-invariance [11]. In the following we
use the ratio T/Tc, where Tc = 2πn2D~2/[mkB ln(380/g̃)]
is the calculated critical temperature for the BKT phase
transition [19]. In this work, we study Bose gases from
the highly degenerate regime (T/Tc ≈ 0.2) to the normal
regime (T/Tc ≈ 1.4).

We first investigate propagating waves which we ex-
cite by a density perturbation. Prior to evaporative
cooling in the box potential, we apply to the cloud a
repulsive potential, which creates a density dip on one
side of the rectangle (see Fig. 1a). The extension of
this dip is about 1/4 of the length of the box and its
amplitude is chosen so that the density in this region
is decreased by a factor of 1/3. After equilibration,
we abruptly remove the additional potential and mon-
itor the propagation of this density dip. We show in
Fig. 1b a typical time evolution of the density profile in-
tegrated along the transverse direction to the pertur-
bation for a strongly degenerate gas. In this regime,
the density perturbation propagates at constant speed
and bounces several times off the walls of the box. Us-
ing the calibrated size of the box, we extract a speed
c = 1.49(3) mm/s. This value is slightly lower than the
Bogoliubov sound speed cB =

√
gn2D/m = 1.6(1) mm/s

expected at zero temperature for the measured density
n2D = 29(3) µm−2. The measured speed is also close to

the second sound mode velocity c
(2)
HD = 1.4(1) mm/s, esti-

mated from two-fluid hydrodynamics at our experimental
value of T/Tc = 0.37(12) [12]. The first sound, expected

to propagate at a much higher speed c
(1)
HD = 3.3(3) mm/s

[12], does not appear in our measurements that feature a
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FIG. 2. Time evolution of the normalized amplitude of the
lowest-energy mode for (a) T/Tc = 0.21(11), (b) T/Tc =
0.95(5), (c) T/Tc = 1.38(18). The solid line is a fit of an
exponentially damped sinusoidal oscillation. For (b) and (c)
graphs, each data point is the average of three measurements
and the error bars represent the associated standard devia-
tion. In (a) each point corresponds to a single measurement.

single wavefront only. The absence of first sound in our
experiments can be explained by its very small coupling
to isothermal density excitations in a weakly interacting
gas [12].

In order to probe the role of the cloud degeneracy on
the sound wave propagation, we vary both n2D and T .
For each configuration, we excite the cloud with the pro-
tocol described above, while adjusting the intensity of the
depleting laser beam to keep the density dip around 1/3
of non-perturbed density. At lower degeneracies, sound
waves are strongly damped and the aforementioned mea-
surements of the density dip position become inadequate.
We thus focus on the time evolution of the lowest-energy
mode [20]. We decompose the density profiles integrated
along x as

n(y, t) = n̄+

∞∑
j=1

Aj(t) cos(jπy/Ly), (1)

where n̄ is the average density along y and the Aj are
the amplitudes of the modes. The choice of the cosine
basis ensures the cancellation of the velocity field on the
edges of the box. Our excitation protocol mainly couples
to the lowest energy modes. We keep the excitation to a
low value to be in the linear regime while still observing
a clear signal for the lowest-energy mode, which in return
provides a too weak signal for a quantitative analysis of
higher modes [21]. For each duration of the evolution, we
compute the overlap of the atomic density profile with the
lowest-energy mode. Examples of the time evolution of
the normalized amplitude Ã1(t) = A1(t)/A1(0) for differ-
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FIG. 3. Speed of sound and quality factor. (a) Measured
speed of sound c normalized to cB. The vertical dashed line
shows the position of the critical point. The solid line shows
the result from the two-fluid hydrodynamic model applied to
the 2D Bose gas [12]. A fit to the data points below Tc by this
hydrodynamic model with a free multiplicative factor shows
that the measurements are globally 3% above the theoretical
prediction. This could correspond to a 6% systematic error

in the calibration of n2D used to determine cB ∝ n
1/2
2D . Our

estimated uncertainty on n2D is on the order of 11% (see
Ref. [18]) and our measurements are thus compatible with the

predicted value of the speed of second sound c
(2)
HD. (b) Quality

factor Q = 2ω/Γ of the lowest-energy mode. The solid line
is the prediction for Landau damping [23] (continued as a
dashed line for T > Tc). For both graphs, the error bars
represent the statistical uncertainty extracted from the fitting
procedures used to determine c, Γ and T/Tc.

ent degrees of degeneracy are shown in Fig. 2. We observe
damped oscillations with a damping rate increasing with
T/Tc. We fit the experimental data by an exponentially
damped sinusoidal curve e−Γt/2[Γ/2ω sin(ωt)+cos(ωt)] to
determine the energy damping rate Γ and the frequency
ω [22]. We then determine the speed of sound c = Lyω/π
and the quality factor of this mode Q = 2ω/Γ.

We consolidate all our measurements of speed of sound
and quality factors in Fig. 3. To facilitate comparison
with theory, we show in Fig. 3a the values of c normal-
ized to cB. The non-normalized results are reported in
Ref. [18] for completeness. In the temperature range
T . 0.9Tc, we measure weakly damped density os-

cillations, corresponding to a well-defined sound mode
(Q & 10). In this regime, we observe a significant de-
crease by about ≈ 25% of the sound velocity for increas-
ing values of T/Tc . The measured velocities agree well
with the prediction from two-fluid hydrodynamics [12]
combined with the equation of state of the 2D Bose gas
[24]. According to the analysis of [12] for weakly inter-
acting gases, the change of speed of sound is mainly due
to the variation of the superfluid fraction fs from ≈ 1
at T = 0 to ≈ 0.5 close to T = Tc with the approxi-

mate scaling c
(2)
HD ∝ f

1/2
s [13]. We note the absence of a

discernable discontinuity of sound velocity at Tc, in dis-
agreement with the two-fluid hydrodynamic approach.

In order to explain this disagreement, we first note
that collective excitations in ultracold Bose gases can
be of different nature depending on the relative ampli-
tude of mean-field effects and collisions between parti-
cles [9, 25, 26]. In the very degenerate regime T � Tc,
the system is naturally described within quantum hydro-
dynamics [27], where interactions between particles occur
via a mean-field energy Eint. This is valid for ω � Eint/~,
which is satisfied for our setup. In this regime we expect
sound waves propagating at cB, as observed in the ex-
periment. For larger temperatures, but still below Tc,
the normal fraction becomes significant. In order to use
an hydrodynamic two-fluid model in that case, the lo-
cal equilibrium condition also requires ω � Γcoll, where
Γcoll = ~g̃2n/(2m) is the collision rate [28]. The same
condition holds for the single fluid case above Tc. The
opposite “collisionless” regime has been recently studied
in Refs. [29, 30]. It also leads to the existence of a sound
mode, originating solely from mean-field interactions de-
scribed for example by a Landau-Vlasov kinetic equation.
For T & Tc this collisionless sound mode has a velocity
notably smaller than the hydrodynamic result and close
to the prediction of Ref. [12] for the second sound veloc-
ity at Tc. For our data above Tc we estimate Γcoll/ω to
be in the range 1.6 − 3.4, which indicates that we are
in a crossover between these limiting hydrodynamic and
collisionless regimes.

The distinction between the quantum hydrodynamics
regime and the crossover regime (Γcoll ∼ ω) is supported
by the study of the measured quality factors (see Fig. 3b).
For T � Tc, damping can be described at first order by
the decay of low-lying collective excitations via scatter-
ing on thermal excitations [15, 31], the so-called Lan-
dau damping mechanism. It predicts an increase of the
quality factor when decreasing temperature due to the
reduction of the number of thermal excitations available
for scattering with the sound mode [32]. This perturba-
tive approach is meaningful for large enough quality fac-
tors and does not take into account interactions between
phonon modes. The solid line in Fig. 3b corresponds to
Landau prediction for a 2D system [23]. It shows an
overall good agreement with our data, even close to Tc

where it gradually looses its validity. Finally, above Tc,
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FIG. 4. Observation of standing waves in the box poten-
tial. Contribution of the three lowest-energy modes to the
amplitude of the density modulation: j = 1 (circles), j = 2
(squares), j = 3 (diamonds). The solid lines are Lorentzian
fits. The two insets show the resonance frequencies νj and
the full widths at half maximum Γj resulting from these fits.
The solid lines in the insets are linear fit to the data and the
shaded areas represent the uncertainty on the fitted slope.
From the slope c/(2Ly) of the fit to the resonance frequen-
cies, we find c = 1.90(9) mm/s. For this specific experiment,
the length of the cloud is Ly = 57(1) µm and the degree of
degeneracy is T/Tc = 0.41(7).

we measured low quality factors, showing that the ob-
served sound mode are strongly damped, in agreement
with the predictions of the collisionless sound mode [29].

In the highly degenerate regime, the low damping rate
allows us to observe standing waves. To study them, we
modulate sinusoidally the amplitude of the potential cre-
ating the dip of density on one edge of the box [33]. After
≈1 s we extract, for each frequency ν of the excitation,
the amplitude of the (time-dependent) density modula-
tion induced on the cloud (see Ref. [18] for details). We
show in Fig. 4 the contribution of the three lowest-energy
modes to the amplitude of the modulation as a function
of the excitation frequency. For each mode j we observe
a clear resonance peak centered at a frequency νj . We
display in the insets the resonance frequencies and width
of the modes. The νj ’s are equally spaced, as confirmed
by the linear fit. In addition, the right inset shows the
widths of the peaks. They also increase approximately
linearly with j [34], meaning that the quality factor as-
sociated to these peaks is almost the same, as expected
for Landau damping.

We focus in this work on a weakly interacting Bose
gas which features a large compressibility compared to
liquid helium or strongly interacting Fermi gases. A nat-
ural extension of this work would thus be to investigate
second sound propagation for increasing interactions [13].
It would also be interesting to investigate first sound, e.g.
by applying a localized temperature excitation [5]. Dur-
ing the completion of this work we were informed that

a related study with a homogeneous 3D Fermi gas was
currently performed at MIT [35].
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