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Impact of the electrostatic interaction on the diffusion of small polyelectrolytes in charged
colloidal suspensions

Caterina Dolcea, Guillaume Mériguet∗,a

aSorbonne University, CNRS, Laboratoire PHENIX, Paris, France

Abstract

This work investigates the impact of the presence of charged obstacles, consisting of charged silica nanoparticles, on the diffusion
of short polyelectrolytes, from the simple propanoate to longer polyacrylate. In the range of volume fraction studied (φ < 0.2),
the increase of the volume fraction of the obstacles leads to a linear decrease of the diffusion coefficient. The data show that the
decrease is significantly larger than what is expected for a diffusion only restricted by the pure obstruction of the obstacles. The
electrostatic origin of this reduced diffusion is confirmed by the study of the system with the addition of salt and the change of pH,
since the addition of salt screens the interaction between obstacles and diffusers, and the change of pH modifies their charge. To
further investigate the phenomenon, the diffusion coefficient is computed using a cell-model to solve Smoluchowski equation of
diffusion in the presence of a screened Coulomb potential between the diffuser and the obstacles. A semi-quantitative agreement is
found between the cell-model and the experimental data. Finally, the perspectives and limitations of the model are discussed.
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1. Introduction

The diffusion in crowded media is a challenging issue since
the interactions between the diffuser, obstacles and solvent
have to be considered. This phenomenon occurs in various con-
texts, ranging from intracellular biological processes [1–8] or
porous media [9], polymer composites [10, 11], colloidal slur-
ries or glasses [12], fuel cell membranes [13] and gels [14]. To
address this issue in such complex media, the resort to a sim-
pler model system is a valuable first step. The investigation of
the dynamics of a polymer chain in a dispersion of particles
acting as crowders can then be used as a first model to reveal
the mechanisms at play.

To understand the dynamical behaviour of polymer-particle
composites, a significant number of studies have investigated
the diffusion of either the particles [15, 16] or the poly-
mer [11, 17, 18]. In the latter studies, the polymer chains
are neutral and large compared to the obstacles consisting of
nanoparticles. In many situations of interest, the diffusion of
rather small charged species in a dispersion of obstacles has
to be considered, e.g. the diffusion of small proteins in the
cytoplasm or the diffusion of small organic matter in slurries
of mineral particles. The effect of the electrostatic interac-
tion on the diffusion of such objects still poorly known. How-
ever, the interaction between the diffuser and the obstacles
can significantly and non monotonously alter the dynamics of
the diffuser [19, 20]. Besides, the notable effect of electro-
static interaction on the diffusion of small ions [21] and small
molecules [22] has already been evidenced, but the question
remains open for larger polyelectrolytes.

The aim of the present study is therefore to shed some light
on the effect of the electrostatic interaction on the diffusion

of small polyelectrolytes dispersed in charged colloidal disper-
sions. After recalling the main results concerning the diffusion
of molecules or colloids in concentrated suspensions, we ad-
dress the diffusion of variable size polyacrylate in suspensions
of charged silica nanoparticles. We focus on the self-diffusion
of polyelectrolytes small compared to the nanoparticles so that
we can assume that the conformation of the chain does not sig-
nificantly change while they diffuse. In this preliminary investi-
gation, we will restrict the study to systems where the crowding
is not so strong (maximum volume fraction of the obstacles the
order of φ = 0.2) and explore the long-time regime by diffusion
NMR [23, 24] that probes micrometer length scale, far larger
than the nanoparticles size. In order to assess the effect of the
electrostatic interaction, the influence of the ionic strength and
of the pH of the solution are considered. Finally, we compare
our experimental findings with a cell model developed to in-
clude the effect of the electrostatic interaction and discuss its
limitations and possible valuable outcomes.

2. Background

The description of self-diffusion in crowded systems poses
considerable theoretical problems, since this phenomenon de-
pends on multiple parameters such as the geometry of the sys-
tem, the concentration and size of the obstacles, and the inter-
action between the diffusers and the obstacles, either direct or
indirect via hydrodynamic coupling [25–30]. In these systems,
the observed decrease of the self-diffusion coefficient may be
ascribed to two main mechanisms. The first mechanism is
the consequence of the volume occupied by the obstacles and
hence inaccessible to the diffusers. As a result of this obstruc-
tion effect, the diffusion path length is increased which leads to
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interactions between diffusers and obstacles, which may either
increase or decrease the self-diffusion coefficient [19, 20].

The diffusion in concentrated colloidal dispersions has been
investigated extensively by theoretical methods [32, 33] and
numerical simulations such as Brownian Dynamics [34–36],
Stokesian dynamics [37] and Multi-Particle Collision Dynam-
ics [38, 39]. In the case of hard spheres without hydrodynamic
interactions, a decrease of the diffusion coefficient compared
to the diffusion coefficient in the absence of obstacles, D◦, is
observed. It can be described to the first order in the volume
fraction of obstacles φ as

D = D◦
[
1 − αφ

]
(1)

with a value of α = 2 [32, 33]. When hydrodynamic interac-
tions are included, there is a relative enhancement of the diffu-
sion coefficient of the order of 5 to 8% compared to computa-
tions without hydrodynamic interactions [40–42].

While the dispersions of colloidal particles of the same type
has been extensively investigated, the long-time self-diffusion
of charged colloidal particles in mixtures have been hardly
studied. Nägele et al. used the Generalized Langevin Equa-
tion [43–45] without hydrodynamic interaction or a mode-
coupling scheme that includes the effect of hydrodynam-
ics [46]. The authors used a repulsive screened Coulomb po-
tential, and found that if the particles bear like charges, the in-
crease of the radius of the larger particle or the increase of the
charge leads to a decrease of the diffusion of both particles. In
the present systems, the diffusers are smaller than the obsta-
cles, the small particle diffusion is then expected to exhibit a
significant dependence on the large particle concentration.

The aforementioned theoretical or numerical methods can
contain high complexities in terms of interaction potential but
also of hydrodynamics, however their implementation and use
are time consuming. In the present study, we will take ad-
vantage of the difference of diffusion coefficients between the
smaller polyacrylate and the larger silica particles, and consider
the latter obstacles as immobile in a first approximation.

The diffusion of small molecules or ions in a dispersions of
fixed obstacles was addressed by Wang who derived an expres-
sion for the effective diffusion coefficient of solvent molecules
as a function of the volume fraction of identical spheroidal
obstacles to study the self-diffusion of water in protein solu-
tions [47]. Later, with the use of cell models to solve Fick’s
equation [27, 48], the initial expression of Wang was corrected.
Venema et al. extended the previous studies to colloidal crys-
tals and examined the effect of crystal structure of the obstacles
on the diffusion of the molecules [49]. Using another method
to solve the diffusion equation, they determined the low-φ de-
pendence of the diffusion coefficient as

D = D◦
[
1 −

φ

2
+
φ2

4
−
φ3

8
+
φ4

16

]
(2)

Below φ = 0.2, the high-order terms in equation 2 are smaller
than 1 %, which is the order of magnitude of the experimen-
tal error of the method used in the present study (PFG-NMR).
As a result, the behaviour of the diffusion of a small molecule
in a dispersion of monodisperse uncharged obstacles is well
described in this regime by a linear decrease with the volume
fraction (equation 1) with α = 1

2 .

Beyond the investigation of pure obstruction, the advantage
of cell models is that an interaction potential between the dif-
fuser and the obstacles can straightforwardly be included by
solving the Smoluchowski equation. For example, Bell and
Dunning [50] and later Chan and Halle [51] have used the
Poisson-Boltzmann interaction potential to investigate the dif-
fusion of counter-ions. The same method was used to investi-
gate the counter-ion diffusion in different systems and geome-
tries, linear polyelectrolytes [52, 53] or hydrogels [54]. To
overcome the limitations of Poisson-Boltzmann for multivalent
counterions, Bratko and Lindman successfully used the modi-
fied Poisson-Boltzmann (MPB) potential to describe the diffu-
sion in highly charged micellar systems [55].

Beyond the determination of the diffusion of small polyacry-
late in dispersions of charged silica particles and the assess-
ment of the influence of the electrostatics, one of the purposes
of this work is to test the applicability of a cell model descrip-
tion based on Bell’s steady state approach [48] with a screen
Coulomb potential.

3. Experimental methods and cell model

3.1. Experimental

3.1.1. Materials
The monomer (n = 1), propanoic acid (Alfa Aesar, 99%), the

dimer (n = 2), glutaric acid (Alfa Aesar, 99%) and the trimer
(n = 3), 1,3,5-pentanetricarboxylic acid (TCI, > 98%) were
used as received. The longer polyelectrolytes, sodium poly-
acrylate or PAANa, [-CH2-CH(COONa)-]n, of varying molec-
ular weights (Mw = 2.1 and 15 kg mol−1, respectively n = 22
and 160 [56]) were purchased from Sigma-Aldrich. During
the preparation of the samples, the concentration was corrected
from the initial water content of the different products.

The nanoparticles used in this work as obstacles are sil-
ica nanoparticles. Ludox LS colloidal silica (30 wt %, Ro =

8 nm) aqueous suspensions were provided by Sigma-Aldrich.
The dispersions have then been purified by a dialysis pro-
cess. The commercial suspensions are loaded in Spectra/Por
molecular porous membrane tubings (molecular weight cut-off:
6 − 8 kg mol−1, pore size ' 2 nm) and immersed in aqueous
solutions with a weight fraction of 2 % of Poly(ethylene gly-
col) (35 kg mol−1). The evolution of the purification process
of silica suspensions has been monitored by measurements of
the electrical conductivity of the external bath during 5 days.
At the end of the process, the concentration of ions is close to
8 × 10−3 mol L−1.

The stability of the polyelectrolyte–silica mixtures was
checked with Dynamic Light Scattering, Laser Doppler Elec-
trophoresis and NMR measurements which are described in the
supplementary material. The short term stability of the suspen-
sions was sufficient to perform the diffusion measurements in
non-aggregated suspensions.

Titrations were performed to determine the charge of the
particles and polyelectrolytes. Acid-base titrations of the
polyelectrolytes and oligomers were carried out in a previous
study [56]. The details of the titrations and the determination
of the effective charge of the silica nanoparticles are given in
the supplementary material.
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3.1.2. Nuclear Magnetic resonance diffusion experiments
(PFG-NMR)

NMR measurements were performed on a Bruker Avance
DRX 500 NMR spectrometer operating at 499.76 MHz for 1H.
The spectra were recorded in a 90% H2O – 10% D2O mix-
ture (residual HOD, peak at 4.7 ppm) for locking purpose. The
sample temperature was controlled by a Bruker BCU and set to
298.0 K. A low power pre-saturation pulse of water signal was
used during the recycle delay to attenuate the solvent signal. To
obtain the diffusion coefficient, the pulsed field gradient (PFG)
stimulated echo sequence BPP-LED (ledbpgppr2s Bruker se-
quence) with a water pre-saturation was used [23, 57].

The gradient pulses were sine-shaped and their duration δ
was 5 ms. The diffusion delay ∆ was 0.200 s and the field
gradient amplitude g was varied with 16 increments, from 2 %
to 80 % of the maximum amplitude (57 × 10−2 T m−1). To
obtain each spectrum, sixteen scans were accumulated and for
each sample four spectra were acquired.

The measured intensity I(b) depends on the diffusion co-
efficient D and on the diffusion sensitivity factor b, b =

γ2g2δ2(∆ − δ/3 − τ/2), where γ is the gyromagnetic ratio
and τ (400 µs) is a recovery delay after the gradient pulse.
The absolute value of the gradient g was calibrated with the
measurement of the self-diffusion coefficient of HOD in D2O
(DHOD = 1.902 × 10−9 m2 s−1 [58, 59]).

3.2. Cell Model description
In order to study the self-diffusion of ions in the electric

fields of spherical particles, Bell [48] proposed to apply a weak
macroscopic gradient of tagged diffusers and to solve Smolu-
chowski equation in the stationary state:

0 = ∇2c(~r, t) + ∇
[
c(~r, t)∇ψ̃(~r)

]
(3)

where c is the concentration of the tagged diffuser and ψ̃ =

ψ/kBT is the reduced interaction potential between the obsta-
cles and the diffusers. In the present study, the diffuser can
be far larger than a simple ion and the best suited interaction
potential is then the screened Coulomb potential (SCP) [60]:

ψ̃(r) = `B
zpeκRp

1 + κRp

zoeκRo

1 + κRo

e−κr

r
(4)

where zie and Ri are respectively the effective charge (see
supplementary material) and the radius of the object (the in-
dices p and o stand respectively for the polyelectrolyte dif-
fuser and the nanoparticle obstacle), `B = e2/4πε0εrkBT and
κ−1 = 1/

√
8π`BI the Bjerrum and Debye lengths of the medium

of a ionic strength I.
To solve Smoluchowski equation (equation 3), a spherical

cell with a radius Rc is considered at a center of which a spher-
ical charged obstacle of radius Ro is placed. The corresponding
volume fraction of obstacles can then be easily evaluated as:

φ =

(
Ro

Rc

)3

(5)

Bell [48] has shown that for the following boundary condi-
tions of the interaction potential:

ψ̃(r = Rc) = 0 ;
dψ̃
dr

(r = Rc) = 0 (6)

the diffusion coefficient writes

D
D◦

=
χ(Rc)〈
e−ψ̃

〉 = χ(Rc)
4
3πR3

c∫ Rc

Ro

e−ψ̃(r)4πr2dr
(7)

where χ is the solution of the following first order differential
equation:

r
dχ
dr

+ χ(r)
(
1 + χ(r) − r

dψ̃
dr

)
= 2 (8)

χ(Ro) = 0 (9)

The boundary condition (equation 9) comes from the impene-
trability of the obstacle which corresponds to a zero flux con-
dition at this boundary. Unfortunately, there are only a limited
number of cases for which either the function χ or the integral
〈exp(−ψ̃)〉 exhibit an analytical expression apart from the hard
sphere case. Equation 8 was then solved numerically by the
Fehlberg fourth-fifth order Runge-Kutta method, with degree
four interpolant using MapleTM software [61].

4. Results and Discussion

In highly concentrated or porous media, the self-diffusion
may become complex and exhibit unusual behaviors [62–64].
The dependence on time of the mean squared displacement can
either deviate from linearity (anomalous diffusion) or display
more than one linear regimes in the case of diffusers being tem-
porally trapped in pores. For the systems under study, only
usual Gaussian diffusion was observed. This was checked by
varying the diffusion delay ∆ in the NMR pulse sequence.

4.1. Effect of the volume fraction
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Figure 1: Diffusion coefficient of the propionate (n = 1, +), glutarate (n = 2,
�), 1,3,5-pentanetricarboxylate (n = 3, *) and polyacrylate (n = 22, N, n =

160, •) versus the volume fraction of silica LS at pH = 8.

As shown in Fig. 1, the increase of the volume fraction of
obstacles causes a linear decrease of the diffusion coefficient of
all studied diffusers for the range of volume fraction studied.
The data in Fig. 1 can then been fitted with a linear dependence
of the diffusion coefficient (equation 1).
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The parameter α equals 0.5 in the case of the linear approx-
imation of the pure obstruction model in the limit Rp � Ro,
but it is close to 2 for colloidal particles of the same size. In the
first row of Table 1, the slope α of the linear fit are reported (the
errors are the standard deviation values issued from the fitting
procedure).

The deviation of the data from the pure obstruction
model (α = 0.5) increases with the molecular weight of the
diffusers, as the increase of the parameter α reported in Ta-
ble 1 points out. Jönsson et al. have suggested [27] for an anal-
ogous system, that the difference might be due to properties
such as the size of the diffuser and the interaction between dif-
fusers and obstacles, that are not considered in their model.
Both effects become more significant as the volume fraction of
obstacles increases and the size of diffuser increases. For the
oligomers however, the minimum size ratio is of the order of
Rp/Ro ∼ 1/16 which means that the interaction effect is the
most important.

No apparent difference in the relative slope α is observed
for n = 2 and n = 3. The interaction between the diffuser
and the obstacles seems unchanged despite the increase of the
charge of the diffuser. This observation may be ascribed to
the effect of the electrostatic condensation for the largest of
the three oligomers. The maximum effective charge for the
three oligomers can been estimated using the formula proposed
by Ramanathan, who used Poisson-Boltzmann equation in the
limit of small radius compared with the Debye length κRp �

1 [65, 66].

Zmax =
2Rp

`B
ln

1
κRp

(10)

The values found are respectively Zmax = 1.4, 1.6, and 1.7,
which can be compared with the structural charges (1,2 and 3
respectively). For the two smallest molecules, the structural
charges are close to the calculated maximum charge but for the
latter a significant decrease is observed leading to a Zmax for
n = 3 very close to the n = 2 case due to a significant counter-
ion condensation that can be expected due to its high charge
density. The effective interaction for n = 3 and n = 2 diffusers
and the obstacles are therefore similar which is the reason why
their diffusion decrease does not noticeably differ.

4.2. Comparison with the cell-model
In this paragraph, we apply the cell model with the screened

Coulomb potential (SCP) to estimate the diffusion of the vari-
ous carboxylate molecules with the charge of silica particles at
pH = 8. The volume fraction of obstacles varied between 0
and 0.2 and the slope of the diffusion coefficient was deter-
mined and compared with the experimental results of Table 1.

The Debye length used for the calculation was κ−1 = 2 nm.
The simulated system was at pH= 8, where the charge of the
silica nanoparticles of radius Ro = 8 nm is Zeff = −119 (see
supplementary material for the determination). The charge
of the diffusers are respectively z = −1, for the propanoate
ion, z = −2 for the glutarate ion and z = −3 for the 1,3,5-
pentanetricarboxylate ion. As mentioned before, these ions are
considered to be point-like (Rp ' 0). For the polyelectrolytes,
the effective charge was calculated taking into account the ef-
fect of the condensation of counterion to yield the following

n 1 2 3 22 160
αexp 1.2 ± 0.2 1.9 ± 0.2 1.9 ± 0.2 2.0 ± 0.1 2.7 ± 0.1
αSCP 0.99 ± 0.02 1.37 ± 0.02 1.57 ± 0.02 2.43 ± 0.04 5.51 ± 0.07

Table 1: Slope α of the linear fit for experimental data and the calculated data
with the cell model with screened Coulomb potential (SCP) for various poly-
acrylate lengths (n is the degree of polymerization).

parameters PAA n = 22: z = −8 and Rp = 1.2 nm; PAA
n = 160: z = −53 and Rp = 2.6 nm [56].

The values of the initial slopes calculated by this
method αSCP are reported in Table 1, together with the slopes
extracted by the linear fit of the experimental data αexp.

The cell model with the screened Coulomb potential gives
the correct trend and order of magnitude of the deviation of
the diffusion coefficient. However, the agreement is only semi-
quantitative since the model fails to satisfactorily reproduce the
values of slope observed. The computed correction is too weak
for the small molecules but too large for the larger polyelec-
trolyte. The smaller diffusers are able to more easily explore
the region where the screened Coulomb potential approxima-
tion fails, that is to say where the real electrostatic potential
is higher than the linearized Poisson-Boltzmann version. For
these ions, the use of the MPB potential as suggested by Bratko
and Lindman [55] seems more suitable. For the larger diffusers,
additional effects can be involved, since these particles are not
only larger but, also flexible which might enhance their abil-
ity to diffuse. Finally, their diffusion coefficient is not so small
compared to the one of the obstacles.

Even if the cell-model with the screened Coulomb potential
does not achieve an entirely satisfying description of the ob-
served results, it is still a valuable benchmark. In what follows,
we will vary the other parameters of the interaction potential to
assess their respective influence.

4.3. Changing the interaction
To further explore the role of the interactions, we will now

modulate the electrostatic repulsion. The addition of salt acts
on the range of the repulsion and the change of pH affects the
amplitude.

4.3.1. Screening by salt addition
The electrostatic interaction can be screened with salt ad-

dition, hence reducing the range of the electrostatic repulsion
by decreasing κ−1. The diffusion coefficients of the PAANa
(n = 22 and n = 160) are studied as a function of the vol-
ume fraction of obstacles, in the presence of an added mono-
valent salt, NaCl. In Fig. 2, the diffusion coefficients of the
PAA (n = 160) with 0.1 mol L−1 of added NaCl are reported
as a function of the volume fraction of silica LS together with
the diffusion coefficients without added salt. The diffusion co-
efficient exhibit higher values at 0.1 mol L−1, than the system
without added salt. For all volume fraction of obstacles, the
self-diffusion of the PAANa is higher in the presence of salt.
Because the salt is screening the electrostatic interactions in the
system, the effect of the salt on the PAANa intra-chain interac-
tions, have to be separated from the effects between PAANa
and silica nanoparticles.

Without obstacles, the increase of the diffusion coefficient is
caused by the screening of the intra-chain interactions of the
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Figure 2: Diffusion coefficients of the PAANa (n = 160, concentration
0.7 wt%) versus the volume fraction of silica in a salt-free solution (•), and
0.1 mol L−1 NaCl (◦). Inset: relative diffusion coefficient. The dashed line is
the pure obstruction model (equation 1). T = 298 K, pH ≈ 8.

PAANa, which shrinks the chain otherwise stretched by the
electrostatic repulsion. However, in the presence of obstacles,
we have to consider the effect of the salt on the diffuser-obstacle
interaction.

To isolate the effect on the dynamics caused by the screen-
ing of the polyelectrolyte–silica interaction, the data have been
normalized by the diffusion coefficient without obstacles (see
Fig. 2 inset) and fitted as before to extract the slope. In the inset
of Fig. 2, an increase of the diffusion coefficient of the polyelec-
trolyte in the presence of added salt is observed. The relative
diffusion coefficient with 0.1 mol L−1 of added salt get closer
but is still far from the pure obstruction behaviour (dashed line).

The values of the slopes α, extracted from the fit, are re-
ported in Table 2 for the longer chains. For both polyelec-
trolyte sizes, the slope α decreases with the addition of salt,
i.e. the diffusion coefficient of the PAANa increases. When
salt is added, the effective range of the electrostatic repulsion,
the Debye length κ−1, is reduced from 1.7 nm without added
salt down to 0.95 nm for 0.1 mol L−1 NaCl.

n 22 160
added salt (mol L−1) αexp αSCP αexp αSCP

0 1.9 ± 0.1 2.43 ± 0.04 2.7 ± 0.1 5.51 ± 0.07
0.1 1.3 ± 0.1 1.22 ± 0.01 2.2 ± 0.2 2.43 ± 0.03

Table 2: Slopes, α of the linear fit (equation. 1) of the experimental diffusion
coefficient with or without added salt and the calculated diffusion with the cell
model with screened Coulomb potential (SCP) .

The slopes were also calculated with the SCP cell-model
where the screening length was changed to κ−1 = 0.95 nm,
while keeping the other parameters constants. The correspond-
ing slopes are reported in Table 2. The decrease of the De-
bye length indeed makes the diffusion of polyelectrolyte faster
thanks to the diminished range of repulsion. In addition, for
this highly screened regime the agreement of the slopes calcu-
lated with the SCP cell-model and the experimentally measured
one improves. Finally, even with this notable concentration
of salt added and the ensuing screening of the interaction, its
consequence on the diffusion still differs significantly from the

pure obstruction.
To investigate further the effect of the salt addition, the dif-

fusion coefficient of the PAANa (n = 160), at a fixed obstacle
concentration (φ = 9%), has been studied as a function of the
added salt concentration (Fig. 3). As in the polyelectrolyte sus-
pension without obstacles (data also reported in Fig. 3), the
addition of salt enhances the diffusion coefficient of the poly-
electrolyte. However, in the presence of silica particles, the in-
crease of the diffusion coefficient is slightly higher than in the
absence of silica obstacles, since the silica-PAANa repulsions
are also screened.
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0-1
0  m

2  s
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)
 

0.50.40.30.20.10
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 n = 160 + silica (ϕSiO2
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Figure 3: Diffusion coefficients of the PAANa (n = 160, concentration
1.5 wt%) in a silica LS suspension (φ = 9%), as a function of the molarity
of NaCl of the solution. The lines are guides to the eye. T = 298 K, pH ≈ 8.

The main change in the diffusion coefficient occurs below
0.1 mol L−1 of added salt where the ratio between the screen-
ing length κ−1 and the radius of the obstacle Ro is higher. For
larger concentrations of added salt, a plateau behavior is ob-
served since the diffuse layer of ions around the particle tends
to be thin compared to the diameter of the particle (κRo � 1).

The impact of the addition of salt on the diffusion of the
propanoate in the presence of silica nanoparticles was studied
with a similar procedure (data not shown). For this diffuser,
equivalent to one monomer of the polyacrylate, no intramolec-
ular interactions are present and only the effect of salt addition
on diffuser-obstacle interaction can be investigated. It was ob-
served that, contrary to the larger PAANa chains, the diffusion
coefficient decreases with the addition of salt. This effect on
the diffusion of the propanoate can be ascribed to the interac-
tion with the added electrolyte [67] which seems to be larger
than the effect of the change of screening length around the
obstacles.

4.3.2. Changing the charges with pH
In this section, the charge of the particles and diffusers are

modified via the change of the pH value of the suspension. As
a result, the predominant electrostatic repulsion at high pH val-
ues can be progressively weakened by decreasing the pH to
reach a state of uncharged obstacles and diffusers for low pH
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values. For these low pH values, the regime of pure obstruction
is expected if no specific adsorption occurs.
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Figure 4: Diffusion coefficient of PAANa (n = 160, w ∼ 0.7 %) vs pH, without
obstacles (◦), with silica LS (φ = 3 % u), and silica LS (φ = 9 % n). T =

298 K.

In Fig. 4, the diffusion coefficient of the PAANa (n = 160)
as a function of the pH is reported for three systems: without
obstacles, and with obstacles at two volume fractions φ = 3%
and φ = 9%. All the diffusion coefficients exhibit a sigmoidal
behaviour with the pH. As observed previously, the diffusion
coefficient decreases with the concentration of obstacles what-
ever the value of pH. This sigmoidal shape is present even in
the absence of obstacles due to the change of conformation of
the polyelectrolyte with its protonation state depending on the
pH value. This change was extensively studied in a previous
study [56]. For a fixed volume fraction of obstacles, the de-
creases of the diffusion coefficient depends on the pH value: it
is stronger at high pH (close to 25 % for φ = 9%), and achieves
the lowest value at low pH (around 10 % for φ = 9%).

At high pH, the charged diffuser is repulsed by a charged ob-
stacle with like charge, whereas at low pH values, the diffuser
is mainly affected by the physical volume of the obstacle, since
both the diffuser and the obstacle are uncharged.

In the low pH limit, the diffusion coefficient in the presence
of the silica nanoparticles decreases by 2 % for φ = 3% and
by 11 % for φ = 9%, compared to the value of the diffusion
coefficient without nanoparticles. In this pH range, the elec-
trostatic repulsion vanishes but due to its own size the poly-
electrolyte center of mass cannot explore all the volume. A
simple way to take into account this effect is to rescale the vol-
ume fraction into an effective volume fraction corresponding
to the volume accessible to the center of mass of the diffuser as
φ′ = φ(1+Rp/Ro)3 where Rp is the radius of the diffuser and Ro
the radius of the nanoparticle. We can use a rescaled version
of equation 1, D = D◦[1 − 1

2φ
′] , to compute the decrease of

diffusion in the hypothesis of a pure obstruction. At pH=2, the
radius of the PAA with n = 160 is 1.8 nm [56] and the com-
puted decrease are respectively 2.7 % for φ = 3% and 8.2 %
for φ = 9%. The diffusion coefficient is then in fair agreement
to the pure obstruction behavior. Besides, a weak adsorption at
low pH of the neutral diffuser on the neutral surface of the par-
ticles cannot be completely ruled out. This adsorption is pre-

vented at high pH by the strong electrostatic interaction [68].

4.4. Going further with the SCP cell-model

So far we have tried to apply the cell-model with the
screened Coulomb potential to our experimental findings. This
model can however be used in a wider range of systems. For
example, in Fig. 5, the relative diffusion coefficient of a point-
like ion of charge z = −1 was computed as a function of the
effective charge of the obstacle Zeff and a volume fraction of
10 %. For an uncharged particle, the pure obstruction behavior
is observed, but according to the sign of the charge the change
of the diffusion coefficient differs strongly.

1

0.8

0.6

0.4

0.2

D/D0

-1000 -500 0 500 1000
Zeff

Figure 5: Relative diffusion coefficient of a point-like anion (z = −1), κ =

1 nm−1, Ro = 8 nm and φ = 10 %.

For co-ion (Zeff < 0), a monotonous and rather moderate de-
crease is observed. This was the domain studied in our samples
where the diffuser and the obstacles bear charges of the same
sign. The decrease can then be explained by the increase of
the repulsion with the increase of the absolute value of Zeff .
For counter-ions (Zeff > 0), the evolution of the relative diffu-
sion coefficient with the charge of the obstacle appears to be
completely different: for low Zeff there is small increase of the
diffusion coefficient, followed by a steep decrease. This non-
monotonous dependence can be explained as follows. When a
small attraction is present (small Zeff) the probability of having
a diffuser close to the surface of the obstacles increases and the
diffusion paths are then shorter, i.e. the diffusion is faster. If
the attraction is higher, the diffuser is trapped in the vicinity of
the obstacle and the diffusion is strongly hindered. Such non-
monotonous behavior has already been observed for the diffu-
sion of ion in nanoporous media [21] or for the diffusion of
particle among larger attractive spheres [20]. Even if the inves-
tigation of this behavior is appealing, the experimental prepa-
ration of systems where significant but small attraction exists
is difficult since the colloidal stability is no longer ensured. In
addition, for diffusers close to solid surfaces, the faster spin re-
laxation makes the determination of small diffusion coefficients
by NMR difficult.
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5. Conclusion

The addition of charged obstacles in a polyelectrolyte sus-
pension causes a linear decrease of the diffusion coefficient
of the polyelectrolyte for volume fractions of obstacles be-
low 20 %. The observed decrease is higher for larger and more
charged particles. Of the two effects responsible for this de-
crease, obstruction and interaction, the major one is the repul-
sive electrostatic interaction. It is clearly evidenced by the ef-
fect of a change of salt concentration or a change of pH value of
the suspension. The resolution of a Smoluchowski equation for
the diffusion in a screened Coulomb potential with the use of
a cell model derived from [48], yield only a semi-quantitative
agreement with the experimental results. The model predicts
the trend and the effect of salt addition. Therefore, a more elab-
orate description is required to fully reproduce the phenomenon
which would include, for example, the dynamics of the obsta-
cles and the resulting hydrodynamic effect or even the internal
flexibility of the diffusers. Such descriptions are unfortunately
very demanding due to their complexity. However, the use of
a simpler cell model description is still a promising tool and
benchmark to investigate the effect of interaction on the diffu-
sion in crowded media. It gives some hints to design experi-
mental systems even if they are challenging to prepare.

6. Acknowledgements

This study was funded by Sorbonne University. The authors
thank Dr. Isabelle Correia (Sorbonne University) for the NMR
facilities and technical assistance.

References
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R. Klein, in: Trends Colloid Interface Sci. V, volume 84 of Progress in
Colloid & Polymer Science, Steinkopff, Darmstadt, 1991, pp. 377–380.

[45] J. L. Arauz-Lara, H. Ruiz-Estrada, M. Medina-Noyola, Tracer Diffu-
sion in Colloidal Mixtures, J. Colloid Interface Sci. 171 (1995) 127–133.
doi:10.1006/jcis.1995.1158.
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[56] C. Dolce, G. Mériguet, Ionization of short weak polyelectrolytes: when
size matters, Colloid Polym. Sci. 295 (2017) 279–287. doi:10.1007/
s00396-016-4000-x.

[57] D. Wu, A. Chen, C. Johnson, An Improved Diffusion-Ordered Spec-
troscopy Experiment Incorporating Bipolar-Gradient Pulses, J. Magn.
Reson. A 115 (1995) 260–264. doi:10.1006/jmra.1995.1176.

[58] L. G. Longsworth, THE MUTUAL DIFFUSION OF LIGHT AND
HEAVY WATER, J. Phys. Chem. 64 (1960) 1914–1917. doi:10.1021/
j100841a027.
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