
HAL Id: hal-01992814
https://hal.sorbonne-universite.fr/hal-01992814v1

Submitted on 24 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Kinetic Signature of Cooperativity in the Irreversible
Collapse of a Polymer

Vittore F Scolari, Guillaume Mercy, Romain Koszul, Annick Lesne, Julien
Mozziconacci

To cite this version:
Vittore F Scolari, Guillaume Mercy, Romain Koszul, Annick Lesne, Julien Mozziconacci. Kinetic
Signature of Cooperativity in the Irreversible Collapse of a Polymer. Physical Review Letters, 2018,
121 (5), pp.057801. �10.1103/PhysRevLett.121.057801�. �hal-01992814�

https://hal.sorbonne-universite.fr/hal-01992814v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Kinetic signature of cooperativity in the irreversible collapse of a polymer

Vittore F. Scolari,1, 2, ∗ Guillaume Mercy,1, 2 Romain Koszul,1, 2 Annick Lesne,3, † and Julien Mozziconacci3, ‡

1Spatial Regulation of Genomes, Genomes & Genetics Department, Institut Pasteur, Paris, 75015, France
2UMR3525, Centre National de la Recherche Scientifique, Paris, 75015, France
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We investigate the kinetics of a polymer collapse due to the formation of irreversible crosslinks
between its monomers. Using the contact probability P (s) as a scale-dependent order parameter
depending on the chemical distance s, our simulations show the emergence of a cooperative pearling
instability. Namely, the polymer undergoes a sharp conformational transition to a set of absorbing
states characterized by a length scale ξ corresponding to the mean pearl size. This length and the
transition time depend on the polymer equilibrium dynamics and the crosslinking rate. We confirm
experimentally this transition using a DNA conformation capture experiment in yeast.

The collapse dynamic of a polymer chain has motivated
multiple theoretical and experimental investigations [1–
10]. The seminal work of de Gennes, considering a col-
lapse caused by solvent quality reduction with no effects
of topological constraints, predicted a continuous confor-
mational transition through successive crumpling stages
commonly called the “expanding sausage model” [1].
Grosberg et al. proposed a two-stage model, where a
fast collapse is followed by a slow unknotting of topolog-
ical constraints through reptation [2]. The meta-stable
intermediate state, called “fractal-globule”, preserves the
fractal features of a coil while being compact as a glob-
ule. The predicted existence of meta-stability was exper-
imentally confirmed by Chu et al. [3]. The stability of
the fractal globule has been further investigated in the-
oretical studies which quantified the relaxation of this
state towards an equilibrium globule. [11, 12] As an-
other description of polymer collapse, Buguin et al. in-
troduced the concept of pearling through the existence of
a characteristic size, there explained by nucleation theory
[4]. Pearling has been subsequently studied in different
works [5–8, 10]. More recently Bunin and Kardar pro-
posed an effective model of polymer collapse, consisting
in a cascading succession of coalescence events of blobs
actively compressed in a central potential [9].

All these studies investigate the collapse of a polymer
under a deep quench: i.e. starting from a equilibrium
conformation, interactions between all the monomers or
between the monomers and an external potential are
abruptly changed and the system relaxes to a new equi-
librium state. All the memory about the collapse pro-
cess is lost in this final state. In contrast, we here study
the collapse dynamics of a chain when it is caused by
the cumulative effect of irreversible cross-links between
monomers. In this case, cross-links cannot be undone
and the final state depends on the collapse dynamics.
This process has important applications in material sci-
ence (e.g. vulcanization) and in molecular biology (e.g.
cell fixation)

In order to describe the system, we consider here a
scale-dependent order parameter: the contact probabil-

ity curve Pt(s), defined as the mean number of crosslinks
present at time t between two monomers at a chemical
distance s. This order parameter has two important ad-
vantages: it reflects the appearance of local structures
such as pearls, and it is a direct observable in the chro-
mosome conformation capture experiments described at
the end of this letter.

We first describe the in silico dynamics. We run a re-
jection kinetic Monte Carlo simulation [13, 14] reproduc-
ing the Rouse phenomenology on 2048 beads connected
initially by a linear chain of links of maximum length
b. Each time two non-linked beads come in close vicin-
ity (i.e. their distance fall less then rint = b/64), a new
link is made with a probability p reflecting the crosslink-
ing rate (details in Supplementary materials (SM) §I.A).
These links are then treated exactly as the links between
consecutive monomers in the chain.

In the absence of crosslinking, the correlations of bead
positions along time and along the chain satisfy the Rouse
scaling relations with coefficients Ct and Cs [15]:
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FIG. 1. Kinetics of the pearling transition (simulation). (A)
Time evolution of the contact probability curve Pt(s) at fixed
crosslink probability p = 0.1, displayed as a superposition of
semitransparent plots obtained at increasing simulation time t
(black arrow); the resulting color density is given in the inset.
A crossover at a length ξ arises at large enough times. Error
bars are smaller than the thickness of the line. (B) Evolution
of γ0, the short-distance slope of the log-log plot of the Pt(s),
as a function of the rescaled time variable φ, for different
values of p. Inset: snapshots of the time evolution of the
polymer conformation (p = 0.1).
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FIG. 2. Quantitative features of the pearling transition (sim-
ulation). (A) (Upper panel) asymptotic curve P∞(s) and
(Lower panel) its local slope γ∞(s) and pearling length ξ, for
different crosslink probabilities p. Inset: example of a pearled
state (p = 0.1). (B) (Upper panel) asymptotic curve P∞(s)
and (Lower panel) its local slope γ∞(s) for different polymer
dynamics, parameterized by the Rouse coefficient DR. Inset:
monomer mean square displacement (MSD) as a function of
time, whose intercept yields a measurement of Ct, see Eq. 1.

〈∣∣∣~R(0, t0)− ~R(0, t+ t0)
∣∣∣2〉 ∼ Ct · t1/2,〈∣∣∣~R(s0, 0)− ~R(s+ s0, 0)
∣∣∣2〉 ∼ Cs · s. (1)

After thermal equilibration of the chain, crosslink-
ing is introduced as a succession of irreversible and
configuration-dependent changes in the chain topology.
As a proxy for steric constraints, we limit the crosslink
events to a maximum number per bead, Nmax, known as
the monomer functionality, and stop the simulation once
this number is reached for all the beads. Nmax is equal
to 4 in figures if not otherwise specified.

Given this dynamics, the contact probability
Pt(s; p, Cs, Ct) is a function of s, the crosslink probability
p, the Rouse coefficients and the elapsed time t from the
crosslinking onset. At constant p, the time evolution
of this curve displays a transition from the equilibrium
contact probability, scaling as ∝ s−γ with γ = 3/2, [16],
to an asymptotic shape P∞(s) displaying a crossover
between two different scaling behaviors at short and
long chemical distances (fig. 1A). This shape and the
crossover length ξ reflect the population average features
of the absorbing states reached by the polymer at
crosslink saturation. The exponent γ0(t), corresponding
to the value at short distances of the local exponent
γ(s; t) defined from the discrete differential

γ(s; t) = −∆ ln[P (s; t)]

∆ ln[s]
, (2)

presents a sharp decrease in time (fig. 1B, cyan symbols).

We first investigated the effect of the crosslink prob-
ability p on the asymptotic curve P∞(s) (fig. 2A, up-
per panel). The crossover length ξ can be estimated as
the middle point in the transition of the asymptotic ex-
ponent γ∞(s) from short-distance to large-distance val-
ues (fig. 2A, lower panel). This length ξ corresponds to
the average length of the polymer segments captured in
the pearls, and will hereafter be referred as the pearling
length. Individual pearls were identified by clustering
together monomers on the contact graph using the Lou-
vain algorithm and their size was computed in order to
confirm that ξ indeed reflects the average number of
monomers in pearls. (see suppl. fig. 5).

The characteristic length ξ could also be recovered
from the mean squared distance between monomers as
a function of the chemical distance s. For s > ξ,
γ∞(s) = 3/2, consistent with the initial equilibrium state
of the polymer, whereas γ∞(s) tends inside the pearls to
a limiting value γlim < 1 at small enough s.

The length ξ scales with the crosslink probability p as
ξ ∝ p−δ, with δ = 0.4 (fig. 3A), indicating that the extent
along the chain of the crosslink-induced collapse is para-
doxically more prominent for small p, i.e. low crosslinking
rate. Indeed, conformation changes of polymer loops of
size greater than ξ are diffusion-limited, while for smaller
loops, Rouse diffusion is faster than the crosslinking reac-
tion. In this latter reaction-limited regime, many confor-
mational fluctuations and contacts can occur and be fixed
by crosslinks, producing pearls of mean size ξ. Based on
this qualitative picture, we propose a mean-field calcula-
tion of the dependence of ξ in p. The relaxation time for
a fixed loop of size s scales as:

τR(s) = D−1R · s
2, with DR =

π3

4

(
Ct
Cs

)2

, (3)

(detailed derivation in SM §II.C.4) while the average du-
ration τcross needed to crosslink contacting beads is in-
versely proportional to the crosslink probability:

τcross ∝ p−1. (4)

Writing that the pearling length ξ emerges from the com-
petition between these two dynamical processes yields:

ξ(p) ∝ p−δ, (5)

with δ = 1/2 correctly recapitulating the decrease of ξ
at increasing p. We here assumed that the dynamics is
consistent with Rouse diffusion during the pearling for-
mation and collapse. However, Rouse diffusion is not
expected to apply to the mesh into what the initially lin-
ear polymer is transformed after enough crosslinks, which
may explain the different value δ = 0.4 measured in the
simulations (fig. 3A). With the same argument we also
predict that ξ varies with the dynamical properties of the
polymer. Simulations actually show that variation of the
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FIG. 3. Dependence of the transition dynamics on the kinetic
parameters (simulation) (A) Variation of the pearling length ξ
with the crosslink probability p. (B) Variation of the pearling
length ξ with the Rouse coefficient DR. (C) Time evolution of
γ0 at different DR, Eq. 3 at fixed p = 0.1. (D) (Lower panel)
Mean cumulative number µ of crosslink events and (Upper
panel) its normalized variance σ2/σ2

max as a function of φ,
and (Right panel) scatterplot of µ and γ0. (E) Scatter plot of
the pearling length ξ and the transition time t∗; dashed lines
are plotted using Eq. 8. (F) Evolution of γ0 as a function of
φ for different values of the monomer functionality Nmax.

Rouse diffusion coefficient DR has a dramatic effect on ξ
(fig. 2B). For small DR, ξ is small and crosslinking has
mostly a local effect. When DR increases, longer poly-
mer segments can reach their equilibrium conformation
between two crosslink events so that ξ becomes larger.
In the line of the above calculation, we expect a scaling

ξ(DR) ∝ D1/2
R , (6)

which is well reproduced in the simulations (fig. 3B).
Our simulation moreover shows that the collapse hap-

pens abruptly. The short-distance exponent γ0 presents
a sharp decrease at a time t∗, which we call the pearling
time. Before this transition, t� t∗, γ0 coincides with the
exponent at long distances, 3/2, as expected for an equi-
librium state; only after the transition a smaller exponent

is observed, with a limiting value γlim < 1 depending on
the kinetic parameters. t∗ depends on the crosslink prob-
ability with a scaling t∗ ∝ p−0.8 prompting to define a
re-scaled variable φ = p0.8 · t. The evolution of γ0 as a
function of φ re-scales at any p into a single transition
curve (fig. 1B). The scaling of the transition time t∗ can
also be explained with the above mean-field argument:
as t∗ emerges from pearling (see polymer snapshots along
the transition curve in fig. 1B), it is equal to the relax-
ation time of pearls of mean size ξ: t∗ = τR(ξ). From
Eq. 3,

t∗ ∝ p−2δ, (7)

and φ∗ = p2δ ·t. As predicted by the above argument and
confirmed in the simulation, the transition time does not
depend on the Rouse diffusion coefficient DR (fig. 3C).
The pearling transition is the result of the cooperative
effect of multiple crosslinks, that takes place only after
relaxation of loops with length s < ξ. This effect is high-
lighted in fig. 3D, lower panel, that shows the accelera-
tion of crosslink events at the transition. This process
is accompanied by the decrease of γ0 (3D, right panel)
and a large increase of crosslink number variability, due
to the fluctuation in the size and time of pearl formation
and consistent with a phase transition (3D, upper panel).
Collecting the results from simulations performed at vari-
ous values of crosslink probability p and fixed Rouse diffu-
sion coefficient DR, the transition points in the plane de-
fined by transition time t∗ and pearling length ξ (fig. 3E)
satisfy the Rouse scaling relation:

t∗ = D−1R · ξ
2; (8)

that fully recapitulates the interplay between the pearling
time, the pearling length and the polymer dynamics. We
finally determine the influence of steric constraints on
the final state by changing the monomer functionality
Nmax. While ξ and t∗ do not depend on Nmax, the
pearl formation and final internal conformation do, as
shown by the time behavior of γ0. After a transition in
t∗, this short-distance exponent transiently goes toward
0 for large enough values of Nmax before plateauing to
an asymptotic value γlim varying from 0.3 to 0.7 when
Nmax varies (see fig. 3F and suppl. fig. 6). Examination
of the conformational trajectories shows that this behav-
ior can be explained by a two-stage dynamics taking place
after the transition in t∗. The first stage is the forma-
tion of densely connected pearls (in red on the snapshots
of fig. 1A) linked by stretched linkers containing fewer
monomers. In these pearls, virtually any monomer can
contact any other monomer and γ0 strongly decreases. A
slower process then kicks in: the diffusion-limited crum-
pling of the stretched linkers between adjacent pearls (see
the snapshots in fig. 3F). Since in the stretched linkers
mostly neighboring monomer are able to come into prox-
imity, the contribution of this collapse to the p(s) is such
that γ0 mildly increases.
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FIG. 4. (A) Experimental contact probability curves P exp(s)
for various crosslinker concentrations c, displayed as a super-
position of semitransparent plots (see Fig. 1A). (B) Evolution
of the experimental slope γexp

0 as a function of the re-scaled
time variable ψ = c · t (see fig. 1B). The color discriminates
the experiments belonging to the two modalities for γexp

0 , the
dashed line is a guide for the eyes.

In summary, our simulation has shown how the inter-
play between the polymer Rouse dynamics and the rate
at which crosslinks are made induces a cooperative phase
transition to pearled conformations with characteristic
scale ξ. We thus obtained a two-stage pearling kinetics,
what has already been described in the literature, how-
ever with some significant differences in the underlying
mechanisms. In our irreversible model is not compati-
ble with a simple nucleation and growth process: in the
nucleation-inspired model of Buguin et al. [4] pearls cre-
ated with a minimal size of ξ grow continuously until the
overall polymer collapse. We can also exclude knotting
effects: Grosberg et al. [2] focused on the role of knots in
the conformational relaxation and predicted a dense glob-
ule with a fractal dimension of 3 and a relaxation through
reptation. In contrast, we neglect volume interactions
which are a necessary element for knot stability. In order
to see if the appearance of a specific length scale depends
on the fact that we used phantom chain, we performed to
extra simulation taking explicitly into account steric ef-
fect. We found in this case that the pearling dynamics of
the transition is unchanged (see suppl. fig. 7). We also
recovered the local formation of a crumple globule-like
state in each pearls with γ0 = 1 The emergence of the
characteristic length ξ however excludes the fractality of
the absorbing conformations. The scale depend behav-
ior observed in our simulation reflects the presence of two
different dynamics: reaction-limited pearling at short dis-
tances along the chain, diffusion-limited collapse at large
distances.

Experimental approaches in chromosome biology have
been recently renewed by chromosome conformation cap-
ture (3C) that uses a succession of crosslinking, restric-
tion, religation and sequencing steps to measure contact
frequencies along a DNA molecule in vivo. This tech-
nique centrally exploits the unique opportunity offered by
the DNA heteropolymer to have a single sequence iden-
tifier at each loci (for long enough identifiers) and so to
derive contact probability curves from crosslink counts.

In the seminal paper introducing the genome-wide 3C
technique, Hi-C, Lieberman-Aiden et al. [17] derived the

contact probability curve P (s) from crosslink counts, as a
function of the genomic distance s. In the range between
1 and 10 millions base pairs (bp), these authors fitted
the resulting curve with a scaling relation P (s) ∝ s−γ ,
with a value of γ close to 1 compatible with the value
expected for the fractal-globule state. However, an ex-
ponent of 0.75 has also been reported at shorter scale
in two human-cell studies, and other out-of-equilibrium
mechanisms were invoked to explain this alternative ex-
ponent: the tension globule [18] or the extrusion of loops
by molecular motors such as condensins [18–20]. While
these models can have important implications on the role
of chromosome folding in cells, they do not take explic-
itly into account the potential distortion that the DNA
polymer can undergo during the initial step of the exper-
iment, consisting in chemically crosslinking DNA with
formaldehyde. This crosslinking step prompted us to ex-
ploit this experimental technique to check the collapse
scenario described in our simulations.

In order to start from configurations that are the clos-
est to an simple homopolymer, we used synchronized
yeasts that are not replicating nor dividing. We per-
formed Hi-C experiment at different formaldehyde con-
centrations c and exposure times t in order to observe
the evolution of the polymer conformation during the
crosslink-induced collapse. Not knowing the reaction or-
der, we cannot establish an exact mapping between kon
and c, so we used a simple ansatz, ψ = c · t, for the re-
scaled time variable. The experimental curves P exp(s)
cluster around two different mean-curves differing by
their slope at short distances γexp0 (Fig. 4A). When plot-
ting this exponent as a function of ψ, we observe a sharp
transition (Fig. 4B) as predicted by the simulations. Two
differences are nevertheless worth discussing. Before the
transition, the short-distance exponent of yeast chromo-
somes is not equal to 1.5 as in the simulations (fig. 1B),
but to 1 (0.05 s.d.). This value might either correspond
to an effect of volume interactions during the early phases
of pearling collapse or to an in-vivo special organization
of the DNA in chromosomes, potentially induced by the
regular wrapping of DNA around the nucleosomal pro-
tein spools. For distances above 10 kb these constraints
weaken and the chain follows a more typical random walk
with an exponent closer to 1.5. After the transition, γexp0

is equal to 0.7 (0.06 s.d.), corresponding to the value
observed for Nmax = 1 in our simulations. This value
is likely explained by strong steric constraints prevent-
ing a crosslinked locus to contact other loci. The precise
estimation of ξ was impaired by the higher biological, ex-
perimental and statistical noise on P (s) at increasing dis-
tance s so that we could not measure experimentally the
dependency of ξ on the crosslinker concentration. Never-
theless, the experiment clearly demonstrate that a poly-
mer experiencing a crosslink-induced collapse undergoes
a sudden transition. It also confirms that inside pearls, at
length scales lower than ξ, the polymer conformation in
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the absorbing asymptotic state is very compact, with an
exponent γ0 lower than 1, whereas the polymer topology
remains unchanged at longer length scales.
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