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ABSTRACT Identification of sleep stages is a fundamental step in clinical sleep analysis. Existing automatic
sleep staging systems ignore two major issues: 1) Most of existing automatic sleep staging systems are
using numerical classification methods without involving medical knowledge. These kinds of systems are
not yet understood and accepted by physicians. 2) Individual variability sources are ignored. However,
individual variability is observed in many aspects of sleep research (such as polysomnography recordings,
sleep patterns, and sleep architecture). In this paper, a hybrid expert system is proposed tomimic the decision-
making process of clinical sleep staging in accordance with themedical knowledge by using symbolic fusion.
To formalize the medical guideline and knowledge, thresholds are used for translating the sleep events into
symbols and the sleep event’s threshold dependencies are analyzed for fully understanding the thresholds
dependencies among different sleep stages and subjects. Meanwhile, the differential evolution algorithm is
adopted to automate the setting-up of thresholds that are used in the symbolic fusion model and to provide
personalized thresholds, which allows taking the individual variability into consideration. The robustness
and clinical applicability of the proposed system are evaluated and demonstrated on a clinical dataset. The
dataset is composed of 16 patients (nine males and seven females) and scored by physicians. Only 5% of
the dataset is used for the training process to obtain the personalized thresholds. Then, these personalized
thresholds are passed to the classification process, and the overall accuracy on the identification of five
sleep stages reaches 80.09%. Using a small dataset for the training process, the proposed system not only
drastically reduces the training set but also achieves favorable results compared with most of the existing
works.

INDEX TERMS Knowledge-based system, symbolic fusion, personalization, automatic sleep staging
system.

I. INTRODUCTION
Sleep consumes around one-third of our lives. However,
sleep disorders involving signs and symptoms like exces-
sive daytime sleepiness, irregular breathing or increased
movement during sleep, difficulty in sleeping, and abnormal

sleep behaviors are affecting more and more people [1], [2].
For the diagnosis and treatment of sleep disorders,
an overnight polysomnographic (PSG) test including elec-
troencephalogram (EEG), electrooculogram (EOG), elec-
tromyogram (EMG), is usually done via a technician by
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placing sensors on the patient’s body. Based on recorded
PSG signals, a detailed analysis and interpretation will be
provided by a physician with recommendations for the diag-
nosis and treatment. Sleep staging, as a fundamental step
of PSG interpretation, is usually visually performed by the
physician according to the American Academy of Sleep
Medicine (AASM) manual, considered as the international
reference guidelines in sleep medicine. Based on the AASM
manual, each 30 seconds of recordings— called epoch— can
be classified into five different sleep stages, including wake-
fulness (stageW), Non-Rapid EyeMovement (stages N1, N2,
and N3) and Rapid Eye Movement (stage R) [3].

Clinical sleep staging is a time-consuming task. Nor-
mally, physicians need 1 to 4 hours to visually score an
overnight PSG recording into different sleep stages. Mean-
while, inter-rater variability concerns also exist due to subjec-
tive interpretation and decision by different physicians. In [4],
80.6% and 82.0% inter-rater agreements were reported by
using Rechtschaffen & Kales (R&K) (old reference guide-
lines for sleep study) and AASM (new reference guidelines
for sleep study), respectively. In order to reduce the burden
of physicians, automatic sleep staging systems have attracted
extensive attention. Numerous attempts have been under-
taken to automate the interpretation of PSG recordings.

Regarding the existing automatic sleep staging systems,
they can be roughly categorized into two types, namely
machine learning-based systems and knowledge-based expert
systems. In machine learning-based systems, a wide range
of typical machine learning methods have been applied
for the sleep staging, like Decision Tree (DT) [5]–[7],
Support Vector Machine (SVM) [8]–[10], Artificial Neural
Network [11], [12], etc. Meanwhile, the combinations of two
machine learning methods have also been explored in [13]
and [14]. Besides these methods, deep learning methods
like Convolutional Neural Networks (CNN) [15]–[17], Long
Short-Term Memory (LSTM) [18] are increasingly used for
the sleep stages classification in recent years. Most of these
studies emphasize the importance of selecting a suitable
classifier or suitable parameters for the network to improve
the accuracy of the classification. Thus, they may gain bet-
ter or competitive performance in the sleep staging field.
However, they may ignore the consideration or acceptance
from the physician or the medical perspectives. Without tak-
ing medical knowledge or physicians experience into con-
sideration, machine learning methods are used to learn the
patterns between features and corresponding stages classes.
The pattern recognition is usually established by interaction
with a set of training data. Patterns used in the classification
of sleep stages are mainly dependent on the features extracted
from raw data. Insignificant patterns may be selected inde-
pendently of medical knowledge and without validation from
physicians. Moreover, the resulting predictive model is elab-
orated so that the application of the model to input data
generates the same answer as an expert, but without any
consideration of the rules that should be applied to link input
data and decision appropriately. Hence, physicians cannot be

easily convinced by these kinds of systems without involving
any medical knowledge; thus, these kinds of systems are not
really used by physicians in clinical practice.

To be compliant with the sleep knowledge or international
sleep guidelines, knowledge-based expert systems have also
been investigated. These studies dedicated to modeling the
medical knowledge by undertaking distinct formalisms, like
symbolic fusion framework [19]–[21]. Compared with the
machine learning systems, these expert systems may lose
some competitive in terms of the performance, which mainly
because not all the medical knowledge and expert experi-
ence can be exhaustively formalized. While these kinds of
expert systems conform to the decision-making process of
the visually PSG interpretation, which can be understood and
validated by the physicians. Meanwhile, preliminary studies
of using symbolic fusion framework have proved their possi-
bility and feasibility in sleep staging applications [19]–[21].
However, there still exist several issues which need to be
addressed in order to enrich this knowledge-based sleep stag-
ing system: 1) Thresholds were used to translate the sleep
events into symbols. While manual interpretation of these
thresholds was adopted and the sleep event’s threshold depen-
dencies were ignored; 2) Not all the sleep events described
by AASM manual were implemented; 3) Pre-processing of
PSG signals and smoothing of Hypnogramwere not included.
In comparison to machine learning-based methods, symbolic
fusion rigorously obeys the medical guidelines from the sleep
events extraction to the decision through the modelization of
the inference framework. From the physician’s perspective,
symbolic fusion-based sleep staging system can be easily
understood and validated by translating and formalizing the
AASM guidelines into computer logic.

However, individual variability sources were not taken
into account in both machine learning-based methods and
symbolic fusion-based method. While individual variabil-
ity was observed in many aspects of sleep research (such
as PSG recordings, sleep patterns, sleep architecture, etc.).
To improve the accuracy of the sleep staging system, indi-
vidual variability should be taken into consideration. Is it
possible to have a combined system which is able to compute
the symbolic fusion thresholds automatically and to take the
individual variability into consideration?

In this paper, a hybrid expert system is proposed based
on the symbolic fusion. It aims to assist the physicians
in sleep analysis and diagnosis. To conceive this system,
firstly, a detailed sleep event’s threshold dependencies anal-
ysis is performed to fully understand the thresholds used
for translating the sleep events into symbols. Secondly,
to compute and automate the thresholds setting-up procedure,
an automatic thresholds setting-up method using differential
evaluation algorithm is evaluated. Finally, the hybrid expert
system composed by combining symbolic fusion model and
differential evolution algorithm is put forward. The new
paradigm of the proposed system allows an automated per-
sonalized sleep staging by taking into account the individual
variability.
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The rest of this paper is organized as follows: Section II
describes an existing symbolic fusion-based sleep staging
system. Section III analyzes the thresholds and their depen-
dencies on sleep stages. Section IV shows how a differential
evolution algorithm could be used to compute thresholds
value for the symbolic fusion model and how it needs to be
set-up. Section V shows how we have taken into account the
individual variability. Section VI shows the overall hybrid
expert system by combining the symbolic fusion and the dif-
ferential evolution algorithm. Based on the proposed system,
a personalized sleep staging system is presented. Section VII
presents the evaluations of the personalized sleep staging sys-
tem. Followed by a brief discussion on the results which can
be found in Section VIII. At last, the conclusion is presented
in Section IX.

II. SLEEP STAGING SYSTEM BASED ON
SYMBOLIC FUSION
In this section, a brief description of symbolic fusion and
symbolic fusion-based sleep staging system is presented. It is
followed by the analysis of the limitations in the existing
symbolic fusion-based sleep staging system.

Symbolic fusion is an efficient decision-making technique
involving interdisciplinarymethods among signal processing,
artificial intelligence, inference, statistics and so on. It has
been widely applied in image processing [22], [23] or med-
ical analysis [24], which proved it to be efficient to fuse
information from different sources.

The three-level Dasarathy architecture allows to abstract
information using symbolic fusion. Three layers are con-
sidered: Data, Features, and Decision. Inference rules fuse
information from one level to the next level so that, at the
end, we can take a decision.

A. SYMBOLIC FUSION-BASED SLEEP
STAGING SYSTEM (SF-SSS)
An existing system based on symbolic fusion has
been designed to realize the classification of sleep
stages [19], [20], which follows Dasarathy architecture,
as shown in Fig. 1. It starts from the extraction of sleep
events (digital parameters) from raw PSG signals and goes
up-to high-level symbolic interpretation of feature param-
eters. Finally, rules are used to make the decision. Digital
parameters, symbolic interpretation, and rules in SF-SSS are
inspired by international guidelines in sleepmedicine. A brief
introduction is presented below, more details can be found in
our previous work [19], [20].

1) DATA FUSION
In data fusion, nine digital parameters are extracted using
time-domain, frequency-domain, and non-linear analysis.
These parameters are used to symbolize the sleep events
which are described in the AASM manual. In AASM,
sleep events like sleep spindle, K complex, chin EMG
tone, eyes movement, etc. are described for guiding the
physicians to perform manual interpretation of sleep stages.

FIGURE 1. Framework of symbolic fusion-based sleep staging system.

These sleep events can be visually observed from the
polysomnographic curves. To model the symbolic fusion
framework which obeys the medical guideline from the
sleep event extraction to the decision-making, the digi-
tal parameters are extracted in the data fusion to sym-
bolize the sleep events. As mentioned in our previous
work [20], nine digital parameters, namelyEEGLowWaveEn-
ergy,EEGSleepSpindles,EEGLWProportion,EEGThetaPro-
portion,EEGStability,EOGEyeMovement,EOGCorrelation,
and EMGMovementActivity were extracted. These digital
parameters were used to symbolize the sleep events, like sleep
spindle, K complex, chin EMG, etc. that described in AASM
to characterize the sleep events for distinguishing different
sleep stages. A detailed description of each parameter was
described in [20].

2) FEATURE FUSION
In feature fusion, digital parameters are transformed into
symbolic features using thresholds. Nine digital parameters
are transformed into 24 features via 15 thresholds as shown
in Table 1. These thresholds are inspired by the medical

TABLE 1. Thresholds used in SF-SSS model.
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knowledge guidelines AASM manual. E.g. in the AASM,
the chin EMG activity is described as three different seman-
tic descriptions, namely High, Normal and Low. Thus, two
thresholds are used to transform the EMGActivity digital
parameter into three symbols (High, Normal and Low).

3) DECISION FUSION
In decision fusion, inference method is used to aggregate
symbols in order to recognize one of the sleep stages. In this
way, we can consider having an expert system for each sleep
stage described by symbols aggregation. Each expert system
is executed one after the other [W, N2, N3, R]. The execution
of one of the expert systems depends on the result obtained
by the previous system. As the expert system recognizes its
stage, the execution of the remaining expert systems will not
be performed. If any system expert recognizes a sleep stage,
the N1 stage will be selected for exclusion.

Stage N1 is considered as a transition between wake and
sleep. It occurs upon falling asleep and during brief arousal
periods within sleep and usually accounts for 2 – 5% of total
sleep time. The detection of N1 is always a problematic aspect
of the sleep stages in both clinical sleep staging and automatic
sleep staging system. Only 63.0 % inter-scorer reliability
for stage N1 is reported among different scorers in [25].
Moreover, finding a significant feature that could separate
N1 from W, N2, N3, and R, is rather difficult for automatic
sleep staging system, because N1 is a transition phase in the
changes of wakefulness and other sleep stages. In this paper,
a classifier for stage N1 is proposed as shown in Fig. 2.
It is proposed under the guideline of AASM and the med-
ical knowledge and experience provided by the physicians
while using existing digital and feature parameters. Once
EMGActivity is Low, EEGSleepSpindles is Not Confident,
EEGStability is Not Confident, EEGLowWaveEnergy is Low
and EEGKComplex is Low then this epoch can be considered
as stage N1.

FIGURE 2. Classifier for stage N1 using symbolic fusion.

B. LIMITATIONS OF SF-SSS
In [19] and [20], interpretations of digital parameters into
their symbolic features are performed manually by authors
via thresholds. Thresholds are widely applied in decision

support systems, not only in [19] and [20] but also in [26]
and [27], for transforming digital parameters into high-level
features — linguistic or symbolic — to realize interpreta-
tion included in the inference process under the guideline of
medical knowledge. While in clinical practice, boundaries of
linguistic or symbolic features are very flexible. Physicians
may adjust the boundaries for each linguistic or symbolic
feature according to their experience and patient information.
However, as far as we know, there is no fully satisfying
automatic setting - up thresholds method in the existing
automatic sleep staging systems. Manually predefined values
of thresholds have been widely used due to the following
reasons:
• Thresholds dependencies should be carefully
considered;

• Building a mathematical model or a threshold func-
tion in setting-up thresholds is very challenging as it
requires a set of data with sufficient quantity and ade-
quate quality;

• There is a lack of uniformity between subjects, how take
it into account?

The following part of the paper shows how we have
addressed these limitations and found a solution that can
generate the hybrid expert system.

III. SLEEP EVENT’S THRESHOLD
DEPENDENCIES ANALYSIS
Before analyzing which algorithm is better for the thresholds
computation, we need to understand what are the thresh-
olds dependencies in order to know how many thresholds
are needed. For that, in this section, thresholds dependen-
cies among sleep stages are discussed. In the analysis of
thresholds dependencies among sleep stages can help us to
understand whether same thresholds can be used in different
sleep stages or different thresholds are required for different
sleep stages.

In this section, we describe how to define and use thresh-
olds to transform digital parameters into the symbolic inter-
pretation of feature parameters. According to AASM rules,
we analyze how it is possible to generate different symbols
from one sleep event through thresholds.

A. DESCRIPTION IN AASM
Taking chin EMG as an example, there exist several rules in
AASM which are described below.
• Rule E3.c Score epoch as stage W when Irregular,
conjugate rapid eye movements associated with nor-
mal or high chin muscle tone.

• Rule F.N3 During stage N1, the chin EMG amplitude
is variable, but often lower than in stage W.

• Rule I.2b Score stage R sleep in epochs with the follow-
ing phenomena: low chin EMG tone for the majority of
the epoch.

In AASM, chin EMG/chin muscle tone has been men-
tioned in three rules for guiding physicians to score stage W,
N1 and R respectively.
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B. FROM AASM TO SF-SSS MODEL USING THRESHOLDS
In order to formalize these rules into SF-SSS model,
the description of chin muscle tone, the chin EMG ampli-
tude and chin EMG tone in AASM are assumed as the
same sleep event which represents the chin EMG activity in
SF-SSS. Data Fusion, Feature Fusion and Decision Fusion on
chin EMG activity are described as follows.
• Data Fusion of chin EMG activity
In SF-SSS, digital parameter EMGActivity is extracted
by using themean absolute value of the chin EMG signal
as shown in (1), where x(t) is the chin EMG signal.

EMGActivity = mean (abs (x (t))) (1)

This parameter can be used to indicate the activity level
of chin EMG, which can be used as an indicator of
the chin muscle tone during sleep as shown in Fig. 3.
It shows the digital parameter EMGActivity of subject
3774 as an example. For stage W, the digital parameter
EMGActivity is relatively high as shown in black box; for
stage N1 and R, EMGActivity is relatively low as shown
in green and pink boxes respectively.

FIGURE 3. Digital parameter: EMGActivity.

• Feature Fusion of chin EMG activity
In feature fusion, thresholds are used to transform dig-
ital parameters into symbolic interpretation of feature
parameters. To build the correspondence between sym-
bolic interpretation of feature parameter with AASM
manual, three symbolic interpretations of feature param-
eters are used: High, Normal and Low.
To transform EMGActivity into symbolic interpretation
of High, Normal and Low, two thresholds EMGTh1 and
EMGTh2 are used in Fig. 4. Values of digital param-
eter EMGActivity higher than EMGTh1 are interpreted
as High, values between EMGTh1 and EMGTh2 are
interpreted as Normal, values lower than EMGTh2 are
interpreted as Low.

• Decision Fusion of chin EMG activity
In decision fusion, rules inspired by AASM to make
decisions are shown below.
For stage W: EMGActivity is Normal or High (in addi-
tion to other required criteria).
For stage N1: EMGActivity is Low (in addition to other
required criteria).

For stage R: EMGActivity is Low (in addition to other
required criteria).

In SF-SSS model, digital parameters (e.g.EMGActivity)
in the low-level, interpretation (e.g.High, Normal, Low) and
decision rules in the high-level are inspired from AASM.
However, in the medical guideline, there is no defini-
tion or description of the process for transforming low-level
digital parameters into high-level symbolic interpretation.
In other words, from the medical guideline, there is no
definition or description for guiding the setting-up of these
thresholds to realize the interpretation, physicians may adjust
these thresholds according to their experience. The setting up
of the thresholds are the simulation of the decision-making
process of the physician for translating the sleep events into
the corresponding semantic symbols. To better understand the
thresholds, dependencies of thresholds on sleep stages are
discussed in the following parts.

C. DEPENDENCIES OF THRESHOLDS ON SLEEP STAGES
In SF-SSS model, nine digital parameters are transformed
into 24 features via 15 thresholds as shown in Table 1. Take
EMGActivity as an example, two thresholds EMGTh1 and
EMGTh2 are used to distinguish three different symbolic fea-
tures: High, Normal and Low as shown in Fig. 4. Then, these
symbolic features are used in classifying stage W, N1 and R.
In previous work [19], [20], [28], [29], values of EMGTh1
and EMGTh2 are the same for each stage without considering
thresholds dependencies.

However, in practice, we observed with physicians that the
threshold values for transforming the same digital parameter
into a same symbolic feature for two different sleep stages
are different. E.g. for classifying stage N1, 0.8 and 0.6 can be
considered as the appropriate values for thresholds EMGTh1
and EMGTh2 respectively, as shown in Fig. 4. While for
classifying stage W and R, decreasing EMGTh2 value can
allow more precise classification results by reducing mis-
classified stages of stage W and R. 0.55 and 0.38 are con-

FIGURE 4. Thresholds for EMGActivity.
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sidered to be more suitable for classifying stage W and R,
respectively. So that, thresholds dependencies exist and val-
ues of EMGTh2 for classifying stage W, N1 and R should
be different. As for EMGTh1, from the technical point of
view, no matter how we adjust EMGTh1, it has no impact
on the classification result for stage W, N1 or R. EMGTh1 is
unnecessary for SF-SSS model, and in the view of the com-
plexity of SF-SSS, EMGTh1 can be subtracted. Thus, three
thresholds are required by taking thresholds dependencies on
sleep stages into consideration. Fig. 5 presents the appropriate
threshold EMGTh2 of EMGActivitywe observed and verified
with the physician for each stage (stage W, N1 and R) of the
16 subjects.

FIGURE 5. Threshold EMGTh2 of EMGAcitivity visually observed and
verified with physicians.

D. DETERMINATION OF THRESHOLDS CONFIGURATION
In this paper, only the digital parameterEMGAcitivity is taken
as an example for the thresholds dependencies analysis. For
the remaining eight digital parameters, thresholds dependen-
cies are also analyzed. By taking these thresholds dependen-
cies into consideration, the number of thresholds which need
to be set-up for each stage is listed in Table 2. E.g. to clas-
sify stage W, five digital parameters are extracted and five
corresponding thresholds are required in transforming these
digital parameters into different symbolic features. For stage
N1, N2, N3, and R, the number of thresholds needed to be
set-up are 6, 8, 7 and 8 respectively. Totally 34 thresholds are
required to be set-up.

After figuring out the number of thresholds that need to
be set-up while considering the thresholds dependencies,
a method to compute the thresholds setting-up is required and
proposed in the next section.

IV. THRESHOLDS SETTING-UP FUNCTION
Stochastic Search Algorithms (SSAs) have been widely used
in solving combinatorial optimization problems. In [30],
SSAs have been applied to navigate through the large
parametric space of different drugs to identify optimal
low-dose drug combinations in manipulating the cellular
network toward a therapeutic goal. In [31], SSAs are used
to find optimal input variable combination for guiding the
complex system toward the desired state. Recently, SSAs
are explored to find the optimal parameters for different

TABLE 2. Thresholds configuration for each sleep stage.

machine learning models (e.g. SVM, Extreme Learning
Machine, etc.) in different applications, like the diagnosis of
Alzheimer’s disease [32], load forecasting [33], and image
processing [34].

There exists several typical SSAs, like Tabu Search, Gur
Game, Simulated Annealing, Switching Particle Swarm Opti-
mization, Differential Evolution and Cross Entropy, each
algorithm has its own pros and cons. Instead of build-
ing a mathematical model or a threshold function from
scratch, new solutions to solve thresholds setting-up problems
have been presented in [28] and [29] by using stochastic
search algorithms. The thresholds setting-up problems can be
described as a combinatorial optimization problem that aims
at finding the optimal thresholds combination among possible
thresholds combinations space regarding the objective value
of sleep staging systems. Among the typical SSAs, Differen-
tial Evolution is adopted.

A. DIFFERENTIAL EVOLUTION MODEL
Differential Evolution (DE) was proposed by Stron and
Price [35] in 1997. As an effective and efficient stochastic
optimization technique, it has been successfully applied in
diverse domains [30], [36].
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In this paper, DE was applied due to the following advan-
tages: 1) DE can mimic natural biological evolution and
provide a fast and stable convergence. 2) It is less sensitive
to the initial population. 3) It is a parallel search method.
4) It can improve objective function value iteratively. To deal
with optimization problems, DE starts with a set of initial
population (as parents) which is usually drawn randomly
from the uniform distribution within the variable space. Then
DE operators (mutation and crossover) are applied consecu-
tively to each individual in the population to produce another
population (as offspring). Both populations are then evaluated
using a fitness (objective) function. The subjects who obtain
the higher values of fitness (objective) function survive for
further reproduction, evaluation, and selection until the ter-
mination criterion is met.
A brief procedure description of DE is introduced as fol-

lows, more details of DE can be found in [35].
• Initialization
As a population based search algorithm, DE starts with
the initial population vector Xi,G =

{
x1i,G, x

2
i,G, . . . ,

xDi,G
}
, where the index i denotes the ith individual of the

population (i ∈ {1, 2, . . . ,NP}), NP denotes population
size,D is the dimension of the population, andG denotes
the generation to which the population belongs. The
initial population is generated using (2), where xLj , x

U
j

denote the lower and upper limits of the variable of
the jth dimension (j ∈ {1, 2, . . . ,D}), and rand(0, 1)
represents a uniformly distributed random value within
[0, 1].

x ji,0 = rand(0, 1)× (xUj − x
L
j )+ x

L
j (2)

• Mutation
Then, Vi,G+1 =

{
v1i,G+1, v

2
i,G+1, . . . , v

D
i,G+1

}
, as a

mutant vector, is generated according to (3). The
indexes r1,r2,r3 are mutually exclusive integers ran-
domly chosen within the range [1,NP] and they are all
different from base index i. Mutation Scale Factor F
is a real and constant factor belonging to [0, 2] which
controls the amplification of the differential variation.

Vi,G+1 = Xr1,G + F ×
(
Xr2,G − Xr3,G

)
(3)

• Crossover
In order to increase the diversity of the DE population,
crossover is introduced. A crossover vector Ui,G+1 =(
u1i,G+1, u

2
i,G+1, . . . , u

D
i,G+1

)
is formed. Among the vec-

tor, each variable is generated using (4), where randb(j)
is the jth evaluation of a random number generator which
belongs to ∈ [0, 1], rnbr(i) is an integer randomly gen-
erated from [1,D], and Crossover RateCR is a crossover
constant that belongs to [0, 1]. The crossover vector
takes the variable vji,G+1 from the mutation vector when
the generated random number is equal or less than the
CR and also guarantees at least one variable is from the

mutation vector.

uji,G+1 =

{
vji,G+1 if randb(j) ≤ CR or j = rnbr(i)

x ji,G otherwise
(4)

• Selection
To decide whether individual can become a member
of Generation G + 1 or not, greedy criterion is used
by assessing the value of the objective function f on
Ui,G+1 and Xi,G as shown in (5), where f is the objective
function for evaluating the individuals of the population.

Xi,G+1 =

{
Ui,G+1 if f

(
Ui,G+1

)
≥ f

(
Xi,G

)
Xi,G otherwise

(5)

B. DIFFERENTIAL EVOLUTION IMPLEMENTATION
To compute the thresholds automatically, the way to imple-
ment the differential evolutionmodel into the symbolic fusion
system is proposed. As shown in Fig. 6, Automatic Thresh-
olds Setting-Up (ATSU) is mainly involving the following
steps:

FIGURE 6. Automatic thresholds setting-up model by fusing differential
evolution into symbolic fusion.

• Step 1. Initialization:Determine several control param-
eters: population size, mutation scale factor, crossover
rate. Generate initial population (initial thresholds com-
binations). Details of the selection of these control
parameters are explained in [?].

• Step 2. Assessment: The population is assessed by
an objective function. In this step, the performance of
different thresholds combinations on SF-SSS is evalu-
ated by comparing the whole Hypnogram that analyzed
by the physicians with the Hypogram generated using
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SF-SSS with different thresholds. F-Measure is used to
assess the performance, as shown in (6), which provides
a balance between precision and recall.

F −Measure = 2×
Precision ∗ Recall
Precision+ Recall

(6)

Precision (also called positive predictive value) is the
ratio of all positive predictions among the predictions,
which equals to (TP/(TP + FP)). Recall (also known
as sensitivity or true positive rate) is the ratio of pos-
itive predictions among true events, which equals to
(TP/(TP + FN)). TP, FN, and FP are used to evalu-
ate how good the observations (predictions) reflect the
actual events for a classification. TP are observations
which were correctly predicted. FN are observations
considered as negative where the actual events are posi-
tive. FP are observations labeled as positive where the
actual events are negative. In the assessment, feature
fusion and decision feature are needed to be performed
in each iteration. However, regarding the data fusion,
it can be performed only once to extract digital param-
eters at the beginning and to be reused in each itera-
tion, because different thresholds combinations have no
impact on it.

• Step 3. Check: Verify whether the terminate condition
is satisfied or not. If one of the terminate conditions —
for instance, objective function reaches the desired value
(F-Measure≥0.98) or iteration reaches the pre-defined
maximum iteration number (G = 100) — is satisfied,
then the procedure stops and the optimal population
(optimal thresholds combination) is given.

• Step 4. Mutation and Crossover: Generate the provi-
sional population by mutation and crossover operations.

• Step 5. Selection: Evaluate the objective function of the
provisional population. Compare objective function of
the initial population with the objective function of the
provisional population to generate new population (new
thresholds combinations).

• Step 6. Repeat: Repeat from step 2.
For the symbolic fusion framework, totally five stage-

specific expert systems are established for classifying stage
W, N1, N2, N3, and R. For each specific expert system,
the number of thresholds needs to set-up is 5, 6, 8, 7,
and 8 respectively, as shown in Table 2. To illustrate, for
stage W, totally 5 thresholds needed to be set-up and the
detailed thresholds setting-up procedure can be described as
follows. Initially, the thresholds combinations are generated
randomly. Then these thresholds combinations are passed to
the specific expert system and evaluated by assessing the
F-Measures on the classification results of the specific expert
system. Based on the calculated F-Measures, the terminate
conditions are checked. Once one of the F-Measures reaches
0.98 or the iteration number reaches the pre-defined value
(G = 100), then the procedure stops. Otherwise, provisional
thresholds combinations will be generated by applying muta-
tion and crossover operations. For the provisional thresholds

combinations, they will be passed to the specific expert sys-
tem for evaluating the impact of the thresholds combina-
tions on the symbolic fusion framework by calculating the
F-Measures. Then the F-Measures of provisional thresholds
combinations are compared with the F-Measures of initial
thresholds combinations to select new thresholds combina-
tions for the next generation. The new thresholds combina-
tions will repeat the aforementioned procedure until one of
the terminate conditions is satisfied. After mixing the differ-
ential evolution into symbolic fusion, the analysis of control
parameter and training set selection of differential evolution
is described as follows.

1) CONTROL PARAMETER SELECTION OF
DIFFERENTIAL EVOLUTION
There are three main control parameters of DE: Popula-
tion Size (NP), Mutation Scale Factor (F) and Crossover
Rate (CR). Details of each control parameter are described as
follows and the range of these control parameters are listed
in Table 3:

TABLE 3. Main control parameters of differential evolution.

• Population Size (NP) : NP may play a crucial role in
the efficiency and effectiveness of DE. Large popula-
tion size potentially increases the population diversity.
However, when the computational budget is limited,
increasing the population size implies to decrease the
number of iterations (generations).

• Mutation Scale Factor (F) : F controls the amplifi-
cation of the differential variation. Too small F values
increase the risk of premature convergence (i.e. con-
verge to an undesirable point), while too large F values
decrease the convergence speed that degrades DE effi-
ciency and may result in early termination.

• Crossover Rate (CR) : CR controls the number of
components inherited from the mutant vector; it can be
interpreted as a mutation probability. Small CR values
can boost convergence speed when a few decision vari-
ables are interacting with each other. In turn, large CR
values are more effective when lots of decision variables
are interacting.

The selection of appropriate parameters can affect the
efficiency of the ATSU model. Due to the variability of the
underlying mathematical properties of different problems,
a fixed set of control parameters that suits well for one
problem or a class of problems does not guarantee that it will
work well for another class, or range of problems [37]. That
is, the selection of control parameters is problem dependent.
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To ensure the performance of ATSU, selection of control
parameters is extremely important.

To select the appropriate control parameters, the trial-
and-error approach, is widely used. Several sets of control
parameters are tested, then appropriate control parameters are
selected based on the average performance of the problem.

In this paper, three different population sizes (NP = 5D,
10D and 500, where D is the number of thresholds which
differs for each stage), three different values of mutation
scale factor (F = 0.5, 1 and 1.5), three different values of
crossover rate (CR = 0.1, 0.5 and 0.9) are analyzed to select
optimal control parameters for DE. Fig. 7 shows F-Measure
dependence on generation number for classifying stage W
with population size 5D as an example. Due to the stochas-
tic ability of DE, F-Measure in Fig. 7 is the mean values
of 20 independent runs. As F increases, the convergence
speed decreases. Among the three different values of F (0.5,
1 and 1.5), 0.5 provides the best convergence speed as shown
in Fig. 7. For the same NP and F= 0.5, CR= 0.9 is relatively
better than CR = 0.1/0.5. Population size with 10D and
500 came to the same results (as F increases, the convergence
speed decreases).

FIGURE 7. DE control parameters selection: NP = 5D.

FIGURE 8. DE control parameters selection.

In order to evaluate the impact of different population sizes,
Fig. 8 shows the comparison among different NP and CR
when F= 0.5. Large population size potentially increases the
population diversity and may provide fast convergence speed.

However, it also increases the computational time.NP= 500,
F = 0.5, CR = 0.5/0.9 have faster convergence speed than
others. For NP = 500, F = 0.5, CR = 0.1 almost have same
convergence speed as NP = 5D/10D, F = 0.5, CR = 0.9.
According to the simulation results, in order to balance

F-Measure and computational complexity,NP= 5D,F= 0.5,
CR= 0.9 can be suggested as optimal parameters which have
less computational complexity compared to NP = 500 and
have slightly better convergence speed than NP = 5D,
F = 0.5, CR = 0.1/0.5.

2) PARTIAL PHYSICIAN SLEEP STAGING SCORING
(TRAINING SET EPOCH SELECTION)
Until now all the Hypnogram scored by the physician was
used for the assessment objective step, in order to evaluate
and select the control parameters of the differential evolution
model. Thus, it could not help the physician in the PSG read-
ing if she/he always needs to score all the recorded signals
and the automation process loses its meaning. We need to
find the minimum number of epochs scored by the physician
that is enough to compute the threshold by the differential
evolution model and for which the evaluation of the overall
sleep staging is good enough (F-Measure greater than 70%).
We named this the training set of epochs needed by the
differential evolution model. The training set is absolutely
necessary to learn the optimized value of thresholds used in
the symbolic fusion model for each patient. Different sizes
of the training set are analyzed to select the optimal one.
Table 4 illustrates the corresponding Recall, Precision, and
F-Measure of evaluation set for each sleep stage using 5%,
10%, 15% and 20% as the training set, respectively.

TABLE 4. Recall, precision and F-Measure of evaluation set in accordance
to different training set.

The epochs are selected in equal part at the beginning,
middle and at the end of recorded signals. As the size of the
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training set increases, Recall, Precision, and F-Measure on
the evaluation set are marginally increased. For the stage W,
N1, N2 and N3, using 5%, 10%, 15% and 20% as the training
set, the recalls are slightly higher than the corresponding
precisions. It indicates that for these stages with different
training set, the classifier finds more false positives than false
negatives. For the stage R, using 10%, 15% and 20% as
the training set, the precisions are slightly higher than the
corresponding recall. To balance the recall and precision of
the stages, F-Measure is used for the evaluation. In this paper,
for physicians to consume less time in scoring training set,
5% can be considered as the optimal value for the training
set. By using the 5% as the training set, the F-Measures of
most stages like stage W, N2 and N3 are higher than 70%.
Meanwhile, it consumes the minimum time for the physician
to score in comparison with using 10%, 15% and 20% as the
training set.

V. INDIVIDUAL VARIABILITY: DEPENDENCIES OF
THRESHOLDS ON SUBJECTS
After determining the number of thresholds, the dependence
of thresholds on subjects has been taken into account. The
analysis of thresholds dependencies among subjects can
help us to understand whether generalized thresholds are
sufficient or specific thresholds for different subjects are
required. Individual variability exists in many aspects of
sleep. To investigate the thresholds dependencies on subjects,
another subject 55341 is taken as an example. For subject
55341, EMGTh2 = 0.1 can be considered as appropriate
thresholds values in classifying stage W as shown in Fig. 9.
Values of EMGTh2 between subject 3774 and 55341 are
quite different because of the individual variability of chin
EMG signals. In the previous visual analysis in Fig. 5,
we observed that thresholds are different among the sixteen
subjects. Meanwhile, to verify this observation, threshold
EMGTh2 of EMGActivity is calculated using ATSU proposed
in this paper, as shown in Fig. 10. Both visual thresholds
setting-up method and automatic thresholds setting-up using
Differential Evolution prove that thresholds dependencies on
subjects exist.

FIGURE 9. Thresholds for EMGActivity (stage W) of patient 55341.

In other words, the symbolic fusion model for the sleep
staging is based on generic rules, but the calculation of these

FIGURE 10. Threshold EMGTh2 of EMGAcitivity calculated by ATSU.

thresholds takes the individual variability into consideration.
To set-up these thresholds with the differential evolution
model, partial scoring of epochs by the physician is required.
In this way, the individual variability is taken into account
indirectly, whichmakes a personalized sleep staging possible.

VI. HYBRID EXPERT SYSTEM: THE NEW PARADIGM
Based on the symbolic fusion model and differential evolu-
tion algorithm, a hybrid expert system conception is proposed
as shown in Fig. 11. We resume in this section how the
system works. Firstly, several epochs (5%) will be selected
and analyzed by a physician (Hypnogram generation). Based
on the selected epochs, thresholds can be set-up using the
differential evolution algorithm. Then, these thresholds are
used to score all remaining epochs by using the symbolic
fusionmodel and full Hypnogram can be generated at the end.

FIGURE 11. Workflow of hybrid expert system.

The proposed system was named as a hybrid expert system
because the differential evolution algorithm is mixed in the
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symbolic fusion model for computing the thresholds, mean-
while, the symbolic fusion is integrated inside the differen-
tial evolution algorithm for evaluating the impact of these
thresholds. The proposed expert system is implemented and
evaluated using Matlab R2016a (The MathWorks, Inc.).

Details of the hybrid expert system for personalized sleep
staging by applying the workflow shown in Fig. 11 is pre-
sented below.
• Pre-processing and Personal Epoch Selection:
pre-processing is designed to eliminate noise and
artifacts. According to AASM manual, band-pass
filters with a cut-off frequency of 0.3–35 Hz,
0.3–35 Hz and 10–100 Hz are suggested to perform
pre-processing filtering of curves for EEG, EOG, and
EMG respectively [3]. As recommended by AASM,
a Butterworth band-pass filter between 0.3 Hz and 35 Hz
is designed for EEG and EOG; a Butterworth band-pass
filter between 10 Hz and 100 Hz is designed for EMG.
Meanwhile, a band-stop filter with a cut-off frequency
of 50 Hz is adopted for EMG to eliminate power-line
artifacts. By applying filters proposed in pre-processing,
it can effectively eliminate some noise and artifacts like
movement artifacts and power-line artifacts.
Personal Epoch Selection is performed for selecting
epochs for the partial physician scoring. The number
of epochs that need to be selected is investigated in
Section IV-B2.

• Physician Partial Scoring: epochs that selected in the
Personal Epoch Selectionwill be scored by the physician
to generate the partial Hypnogram.

• Automated Thresholds Setting-Up: we have designed
five different classifiers, one for each sleep stage (W,N1,
N2, N3, and R). For each classifier, the optimal thresh-
olds combination is generated using the differential evo-
lution algorithm. Details are shown in Section IV-B.

• Automated Sleep Staging: by using the optimal per-
sonalized thresholds combination for each sleep stage
classifier, we are able to apply the classification on
the remaining PSG recording. Hence, the classification
results for each stage can be obtained, which followed
by a smoothing function. The smoothing function is
proposed to consider the temporal effects of sleep stag-
ing process, and to detect and correct false sleep tran-
sitions. In smoothing, temporal contextual information
and sleep transitions are considered.
Temporal Contextual Information Smoothing: in
smoothing, we implement generally accepted smoothing
rules: the ’’3-minutes rule’’ [38]. If a sequence of six
epochs has only one epoch (isolated sleep stage) scored
differently from the others (major sleep stage), such as,
if the major sleep stage is R/W, then the isolated sleep
stage is changed into the major sleep stage R/W.
Sleep Transitions Detection and Correction: it is
designed to detect and correct the impossible transitions,
meanwhile, provide the warning on the irregular tran-
sitions. As for the sleep transitions, we verified with

physicians about the likelihood of occurrence of the
transitions. Impossible Transitions are the transitions
will never happen, like W to N3, N1 to N3 and R to
N3; irregular Transitions are the transitions that rarely
happen, like N3 to N1.

VII. EVALUATIONS OF THE PERSONALIZED HYBRID
EXPERT SYSTEM
In this section, the dataset for evaluating the personalized
hybrid expert system is introduced. Meanwhile, results of the
personalized hybrid expert system are presented.

A. DATASET DESCRIPTION
In this paper, overnight PSG signals were recorded in
La PitiÉ-Salpêtrière Hospital (AP-HP) in 2016. PSG record-
ings were segmented into 30s epoch and manually scored
into five different sleep stages (W, N1, N2, N3, and R) by
physicians using AASM manual. All the PSG signals were
recorded using the Grael HD-PSG device including three
EEG channels (Fp1–A2, C3–A2 and O1–A2 according to
the international 10âĂ"20 standard system), two EOG hor-
izontal channels, and a chin EMG channel. The sampling
rates for EEG, EOG, and EMG were 256 Hz. Before going
through the PSG recording procedure, all the subjects gave
their informed consent, approved by the AP-HP, to partic-
ipate in this research. Both healthy subjects and subjects
who were suspected to suffer from sleep disorders follows
instructions to refrain from alcohol and caffeine ingestion
and avoid engaging in prolonged and/or strenuous exercise
in the daytime before study nights, the subjects underwent
one night of polysomnographic recording in a quiet, darkened
room. Total 16 subjects (9 males and 7 females) ranging from
22 to 82 years old (mean= 45.6, std= 18.1) are included and
the AHI (average number of apneas and hypopneas per hour
of sleep) ranges from 0 to 40.2 (mean = 22.0, std = 16.1).

B. PERFORMANCE OF THE PERSONALIZED
HYBRID EXPERT SYSTEM
To provide a more robust estimate of the sleep staging per-
formance as compared to the simple agreement percentage
and give an overall evaluation of all the stages, Cohen’s
Kappa coefficient κ is estimated, as shown in (7). po is the
relative observed agreement among proposed system and
experts analysis, and pe is the hypothetical probability of
chance agreement. If results from the proposed system are
in complete agreement with expert analysis then κ = 1.
If there is lower agreement among personalized hybrid expert
system classification results and experts analysis other than
what would be expected by chance, then κ ≤ 0.

κ =
po − pe
1− pe

; (7)

As suggested by Landis and Koch [39], Kappa values
of 0.21–0.4 indicate fair agreement, 0.41–0.6moderate agree-
ment, 0.61–0.8 substantial agreement, and 0.81–0.99 almost
perfect agreement.
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TABLE 5. Performance of low and high AHI group.

To figure out a suitable epoch number that needs to be
scored by the physician, different percentage (5%, 10%, 15%,
and 20%) of whole recordings to set-up the thresholds are
evaluated in this paper. As experimental results presented
in Table 4, by using the 5% as the training set, the F-Measures
of stages like stage W, N2 and N3 are higher than 70%,
which do not show a significant reduction in comparison with
using 10%, 15%, and 20% as the training set. Meanwhile,
it consumes the minimum time for the physician to score.
In this paper, in the consideration of consuming less time
for the physician to score, for each subject, 5% of the whole
epochs are randomly selected as the training set to provide
personalized thresholds for scoring the remaining epochs.
The average accuracy of these sixteen subjects is 80.33%
with the standard deviation of 6.77%, and it had an average
kappa of about 0.71 with the standard deviation of 0.10,
as shown in Table 5.Moreover, by selecting 5% as the training
set, the overall identification of the five sleep stages of all
the subjects can still achieve over 80%, as the confusion
matrix presented in Table 6. The recalls for all the stages,
except stage N1, are higher than 80%. The precisions of stage
W, N3, and R reach over 80%. The Cohen’s Kappa coef-
ficient also shows a substantial agreement (0.7224). There-
fore, in this paper, we suggest 5% can be considered as the
optimal value for the training set which consumes less time
for the physician to score the training set. Meanwhile, it still
can reach a comparable and favorable performance (overall
accuracy is about 80%) in comparison with the inter-scorer
variability among different physicians (overall accuracy is
about 80.6%-82%) [4]. While, if a short-time PSG recording
is required to be analyzed (e.g. if we only need to analyze
1 hour PSG recordings), then the size of training set should
be increased to ensure that there are enough epochs for the
training step instead of only selecting 5%. However, if the
physician dedicates to obtaining a higher accuracy, more
epochs can be scored and used in the training process, and
the result would be also improved. The balance between the
consuming timing in scoring the partial epochs and accuracy
of the classification can be adjusted by different physicians
according to their exact requirements.

In this paper, the dataset contains both healthy subjects
and subjects who suspected to suffer from sleep disorders,
which spans a wide range in apnea-hypopnea index (AHI).
To investigate whether the difference in the performance of
these subjects is related to the AHI or not, the results are
also analyzed and presented in two groups, namely low AHI
group (AHI < 5) and high AHI group (AHI ≥ 5), as shown

in Table 5. The mean accuracy is decreased to 73.70% for
High AHI group, while the mean kappa can still achieve
0.6. It indicates that the proposed system can still achieve
a substantial agreement with the manual analysis from the
physician for the High AHI group. To fully understand why
the accuracy and the kappa coefficient of High AHI group
are lower than Low AHI group, we go through the sleep
architectures of high AHI subjects. A high percentage of
the stage N1 is observed in the High AHI group, which is
in accordance with the observation in [40] and [41]. In the
clinical observation study, the sleep architecture changes in
sleep apnea patients in comparison with normal subjects.
An increment of stage N1 is observed in the sleep apnea
patients. To figure out whether the overall decrement in the
performance of the High AHI group is caused by the incre-
ment of stage N1, the correlation coefficient between the
percentage of stage N1 and the accuracy for all the subjects
is calculated. A negative coefficient -0.9154 is obtained. The
correlation coefficient presents, as the percentage of stage
N1 increases, the accuracy of the performance decreases.
This is mainly due to the poor classification performance of
stage N1 (overall accuracy for stage N1 is less than 20%),
as shown in Table 6. However, the detection of N1 is always
themost problematic aspect of the sleep stages in both clinical
sleep staging and automatic sleep staging system. In the
proposed system, the poor classification performance of stage
N1 is mainly because of some of the sleep events which can
characterize the stage N1 like vertex sharp waves are not yet
extracted and fused in the proposed system. However, these
sleep events would be involved in the proposed system in
the future. Thus, for enhancing the classification performance
of stage N1, more sleep events and rules should be taken
into consideration in our further work, which would also
potentially improve the performance of High AHI group.

C. PERFORMANCE OF VARIOUS CLASSIFICATION MODELS
To compare the proposed personalized hybrid expert sys-
tem with various machine learning classification methods,
several typical models like, DT, random forest (RF), dis-
criminant analysis (DA), SVM, k-Nearest Neighbors (kNN)
are implemented on the same database by using the
nine digital parameters we extracted for the personalized
hybrid system. In order to assess the performance of these
classifiers, subject-dependent training process and k-fold
cross-validation are used. The data of each subject is ran-
domly partitioned into k subsets. Among these k subsets,
k-1 subsets are used as training set, the remaining one subset
is retained as the validation dataset for testing the model.
The cross-validation process is repeated k times, the overall
performance is averaged on these k times results. In this
paper, we adopt k folds cross-validation for evaluating the
classification models instead of using 5% of the data as
the training set is mainly due to the following reasons: 1.
Using only 5% of the data as the training set may result
in over-fit models and may bias the classification results.
However, k folds cross-validation offers a relatively unbiased
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TABLE 6. Confusion matrix of the dataset using the personalized hybrid expert system.

result by randomly split the data into k folds and repeat
the cross-validation process k times to provide an averaged
performance. 2. The functionalities of the training process
are totally different in the proposed method and machine
learning methods. In the personalized hybrid expert system,
the training process is used to find the optimal personalized
thresholds and then pass these thresholds to the model and
realize the sleep staging of the remaining dataset. While
in the machine learning models, the training set is used to
train the model and to learn the pattern between features and
corresponding sleep stages classes. The accuracies of various
classification models with 2, 5 and 10 folds cross-validation
are presented in Table 7. All the implementation of these clas-
sifiers is carried out using Statistics and Machine Learning
Toolbox of Matlab. For the decision tree model, the stan-
dard CART algorithm [42] is used to generate the decision
trees. Meanwhile, the Gini’s diversity index is adopted as the
splitting criterion and the maximal number of decision splits
is set to 20. Random forest, as proposed by Breiman [43],
is an ensemble of decision trees, where each tree is trained
by a different subset of the training dataset. In this paper,
the number of trees in the random forest is set to 20. For
the discriminant analysis model, a popular Linear Discrim-
inant Analysis (LDA) [44], also known as Fisher’s Linear
Discriminant is adopted in this paper. It searches for a linear
combination of features to distinguish the class from others.
For a multi-class classification with SVM [45], one-vs-all
approach combined with a linear kernel function is applied.
It constructs 5 SVMmodels. Each classifier is trained to sepa-
rate one class from the remaining 4 classes. For the kNN [46],
the Euclidean distance metric is used with k neighbors equal
to 1 to 6. In this study, the highest accuracy value for kNNwas
obtained when k= 5, as presented in Table 7. More details of
these classifiers can consult [47].

With the number of folds increase, the accuracy of each
classification model also slightly increases. Compared with
DT and LDA classification models with 10 folds cross-
validation, the proposed hybrid expert system achieves favor-
able results while using only 5% as the training set to
obtain the personalized thresholds. While RF, SVM, and
kNN outperform the proposed system in terms of the overall

TABLE 7. Accuracy of various classification models.

accuracy, which mainly due to the following reasons. 1) RF,
SVM, kNN, and the proposed system adopts different mod-
els/frameworks. For the proposed system, it dedicates to
emulating the decision-making process of the expert. While
for the machine learning methods, they learn the patterns
between features and corresponding stages classes from the
training set. Thus, the resulting predictive model is elaborated
and insignificant patterns may be selected independently of
medical knowledge. 2) The different training process of the
proposed method and machine learning methods. In this
paper, we adopt k folds cross-validation for evaluating the
machine learning models instead of using 5% of the data as
the training set. Meanwhile, for machine learning methods,
the training set is used to train and generate a predictive
model. While in our method, the training set is used to fig-
ure out the personalized thresholds for realizing the personal-
ized sleep staging process. In the training process, the model
itself will not be modified in our proposed method. However,
the proposed system applies the knowledge-based model and
mimics the clinical sleep staging process which would be
easily understood and validated by physicians. Meanwhile,
the proposed system can achieve a favorable result while
using only 5% as the training set.

VIII. DISCUSSION
In clinical sleep analysis, the interpretation of PSG is man-
ually performed by the physician in scoring the polysomno-
graphic curves by applying the AASM manual. Meanwhile,
due to the individual variability (like polysomnographic
recordings, sleep pattern, sleep architecture, etc.) among sub-
jects, the PSG interpretation is normally done by the physi-
cian while considering the subject’s dependence like subject
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profile, the shape of sleep patterns, etc. Moreover, for the
patient who diagnosed with sleep disorders, to set-up the
follow-up treatment plan or to assess the therapeutic effi-
cacy, continuous overnight PSG tests may be required. Thus,
the PSG test and interpretation may need to be performed
more than once for the same subject. To be compliant with
the medical guideline while considering individual variability
and guide for the follow-up treatment for a patient, a person-
alized sleep staging method is required. In this paper, a hybrid
expert system conception for sleep staging is proposed by
combining symbolic fusion and differential evolution algo-
rithm. The proposed system is targeted for helping physicians
in clinical sleep analysis, it mimics the clinical sleep staging
process by translating AASM and medical knowledge into
computer logic which can be understood, accepted and vali-
dated by physicians according to their knowledge and experi-
ence. In the proposed system, only several epochs are needed
to be selected and analyzed by a physician. Then thresh-
olds can be set-up based on the selected epochs and partial
Hypnogram that scored by the physician using ATSU model
which involves differential evolution algorithm. Finally, these
thresholds are used in scoring the remaining epochs by sym-
bolic fusion and full Hypnogram can be generated at the end.
Based on this conception, personalized sleep staging system
is implemented and evaluated.

In previous studies, machine learning-based systems and
knowledge-based expert systems have been explored to auto-
mate the sleep staging process [5]–[21], [48]. The over-
all accuracies of the related studies were in the range
of 54.6% to 92.23%. The training sets applied in the machine
learning-based systems were in the range of 50% to 97% of
the whole dataset. Several typical machine learning meth-
ods and symbolic fusion-based method which mainly based
on the single EEG or multi-channel signals for classify-
ing sleep into different stages are listed and summarized
in Table 8 for the comparison. Several public databases
(e.g. the Sleep-EDF database, MIT-BIH Polysomnographic
database, the Cleveland Children’s Sleep and Health Study,
the Cleveland Family Study, etc.) were used for evaluating
the models. However, for these public databases, old med-
ical guideline (R&K manual) was used as the gold stan-
dard for scoring the polysomnographic data. Several studies
applied AASM manual as the gold standard for scoring their
databases, while these databases were relatively small and
do not offer a public access. Moreover, for most of the
studies, the subject-independent approach and a relatively
larger training set were used to establish the models for sleep
staging. In this paper, only 5% data of each subject was used
as the training set to generate the personalized thresholds for
the further classification. Meanwhile, the proposed hybrid
expert system was evaluated on a clinical database which
applied the new medical guideline as the gold standard for
scoring the polysomnographic data.

Among the state of the art, the approaches that aimed
at representing symbolic qualitative rules or using a hybrid
system or focusing on personalized measures or applying

the symbolic fusion-based expert framework were discussed.
In [12], adaptive neuro-fuzzy inference systems (ANFIS),
which implemented fuzzy inference systems in the frame-
work of adaptive networks, have been applied for the sleep
stages classification. It applied 10-fold cross-validation and
the overall accuracy reached 92.23%. The implemented fuzzy
inference system can act as a symbolic qualitative approach
by using a set of if-then rules. These if-then rules can be
used to express the qualitative aspects of human knowledge
and reasoning process. While these rules were generated
automatically from the learning process of the training data
and the number of rules was relatively large (for each sleep
stage, on average, 176± 28 rules were generated and pruned).
In [14], a hybrid sleep staging system was proposed, which
mainly involved two parts, namely a random forest classifier
and correction rules. It applied a typical machine learning
method, random forest, to realize the classification of five
sleep stages. Then, a Markov model-based correction rules
were applied to the classification results for the consideration
of the dynamic characteristic of sleep transitions. In essence,
this hybrid expert system combines two machine learning
methods without the requirement of much prior knowledge.
In [48], a personalized feature scaling method was proposed
to normalize the features before passing the features to the
machine learning models. It personalized the features as
follows. Firstly, the distribution of a feature was calculated.
Then, the upper and lower limits of the distribution of a
feature were determined. The upper and the lower limits
defined an interval containing most of the extracted measured
values of a subject. The absolute measured values were then
normalized with respect to the individual interval defined by
the upper and lower limits. This way, each feature of a subject
was standardized into the range of [0, 1] by a personalized
range of measured values. In fact, it is a kind of normalization
method to scale the feature into the range of [0, 1] by a
personalized range of measured values, which totally differs
from our proposed system by taking individual variability
into consideration. In [21], a knowledge-based decision sys-
tem for automatic sleep staging based on symbolic fusion was
proposed. A new five-abstraction-layers framework of sym-
bolic fusion, as an extension of the framework introduced by
Dasarathy, was presented. Meanwhile, a TuringMachine-like
decision process to handle sleep stages transitions was pro-
posed. The overall accuracy reached 54.60%. While in our
work, we were focusing on proposing a hybrid expert sys-
tem, which adopted a typical three-level Dasarathy model
and considered the individual variability by using differential
evolution algorithm to set-up personalized thresholds. Both of
these two papers were based on the symbolic fusion model,
while one adopted a new five-level architecture and one used
a classical three-level architecture. Meanwhile, two papers
were focusing on two different perspectives, one explored
the sleep transitions decision method, one dedicated to han-
dling the individual variability concerns. However, these two
papers can also be integrated together to generate a compre-
hensive knowledge-based expert system.
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TABLE 8. Comparison with existing works.

For most of the machine learning methods, the accuracy
can achieve over 80% [9], [10], [12]–[14], [16]–[18], while
for the knowledge-based method, the accuracy can only
achieve around 54.6% to 76% [19]–[21]. The relatively high
performance of the machine learning-based methods may
mainly due to the exhaustive learning process from the train-
ing set. The training sets for the machine learning methods
are relatively large. While the knowledge-based systems are
compliant with the sleep knowledge or international sleep
guidelines, which can be understood and validated by the
physicians. These expert systems may lose some competitive
in terms of the performance, which mainly because not all
the medical knowledge can be exhaustively formalized. How-
ever, it also worth to mention that comparing performances of
the different methods is complicated, since the datasets used
are different, patient profiles are different, epochs selection
may also be different. Simply comparing the accuracy of
the studies may not fair. In this paper, a knowledge-based
symbolic fusion framework is adopted. Only 5% data of each
subject is required to generate the personalized thresholds
for the further classification. It also provides a personal-
ized solution for sleep staging for the consideration of the

FIGURE 12. Recall, precision and F-Measure using different thresholds
setting-up methods of EMGTh2.

individual variability instead of simply normalizing/scaling
the features. In our previous work [20], Manual Thresholds
Setting-Up (MTSU) was adopted in the symbolic fusion
framework to transform digital parameter into linguistic fea-
tures and the overall accuracy was 76%. Fig. 12 presents the

VOLUME 7, 2019 1789



C. Chen et al.: Towards a Hybrid Expert System Based on Sleep Event’s Threshold Dependencies

corresponding recall, precision and F-Measure using differ-
ent thresholds setting-up methods for setting-up EMGTh2.
It has been proved that using ATSU proposed in this paper
can achieve higher performance in comparison to MTSU
in terms of recall, precision, and F-Measure. In this paper,
an ATSU model is proposed and it is computationally effi-
cient. It consumes approximately 0.2 sec for each iteration
on a server with 2xXeon E5-2640 CPU, 12 cores and 128 GB
RAM. Thus, a maximum of 20 sec is required to find the
optimal personalized thresholds. Moreover, compared with
previous works, the proposed hybrid expert system reached
an acceptable and favorable result while using only 5% of
the dataset for the training process.

In comparison to existing works, this paper presents a
novel automated personalized sleep staging method. To the
best of our knowledge, it is the first study of automatic
sleep staging system which considers the individual vari-
ability. The contributions of this paper can be concluded as
follows. Firstly, the proposed system adopts a three-level
symbolic fusion framework, it is compliant with the sleep
medical guidelines from the sleep events extraction to the
decision-making process. By applying this knowledge-based
framework, the proposed system can be understood, accepted
and validated by physicians according to their knowledge and
experience. Secondly, to take the individual variability into
consideration, the differential evolution algorithm is explored
and integrated with the symbolic fusion framework. Instead
of reducing the individual variability by simply normalizing
the raw signal or the features that extracted from the raw
signal, the proposed system offers a personalized method
that can overcome the concerns of the individual variability.
Thirdly, only a few epochs need to be scored by the physicians
for setting-up the personalized thresholds. In comparison to
most of machine learning methods which need a relatively
large training set (i.e. the training set normally among 50% to
80% of the whole data), only a few epochs need to be scored
for setting-up the personalized thresholds. Finally, the pro-
posed system is evaluated a clinical dataset which involves
both healthy subjects and patients with sleep disorders. The
overall accuracy on the clinical dataset is over 80% and the
kappa coefficient is 0.7224. It can reach a comparable and
favorable result in comparison with the inter-scorer vari-
ability among different physicians (overall accuracy about
80.6%-82%) [4].

However, there are some limitations of the proposed sys-
tem: 1) Not all the sleep events and rules described in the
AASM have been involved. 2) The proposed system was val-
idated on a relatively small dataset. 3) Several epochs need to
be selected and scored by the physician. Thus, our study could
still be improved by taking the following points into consider-
ation: 1) Proposed system can still be enhanced by involving
more sleep events and rules described by AASM. E.g. for
the classification of stage N1, the recall and precision are
relatively lower than others stages. This would be improved
by involving and fusing more sleep events, like vertex sharp
waves in the proposed system. Meanwhile, the proposed

system can still be strengthened by improving the identifi-
cation accuracy of sleep events. E.g. as the confusion matrix
presented in Table 6, the precision of stage N2 is less than
80%. To improve the precision of stage N2, the identification
accuracy of sleep events (i.e. sleep spindle or K complex) that
used to characterize the stage N2 can be further enhanced.
2) More subjects should be involved and sleep efficiency
difference between healthy subjects and patients with sleep
disorders can be also researched. Meanwhile, by involving
more subjects, the robustness and reliability of the proposed
system can be further validated. 3) Only a few epochs need
to be scored by the physician for setting-up the personalized
thresholds. At present, these epochs are selected randomly to
verify the performance of the proposed system, nevertheless,
from the clinical perspective, score a single epoch out of the
context may be a little bit challenge. In the further work,
successive epoch selection would be taken into consideration.
A preliminary step supporting the selection of epochs to be
scored by the expert needs to be investigated.

IX. CONCLUSION
In this paper, a hybrid expert system conception for sleep
staging was proposed by combining symbolic fusion and dif-
ferential evolution algorithm. Symbolic fusion was designed
for extracting sleep events and formalizing sleep rules from
medical guideline and knowledge; differential evolution algo-
rithm was dedicated to realizing automatic optimization of
the thresholds combination that was used in the symbolic
fusion model to transform digital parameters into symbolic
features. Based on this conception, personalized sleep staging
system was implemented and evaluated while taking individ-
ual variability into consideration. The overall accuracy and
kappa coefficient on the identification of five sleep staging
using the proposed hybrid expert system to overnight PSG on
16 subjects have achieved 80.09% and 0.7724, respectively.
In the future, the proposed system can still be enhanced
by involving more sleep events and rules that described by
AASM. Meanwhile, other stochastic search algorithms, like
switching particle swarm optimization algorithm can also
be explored and investigated in the hybrid expert system.
Furthermore, the proposed system can be extended to real-
ize complete personalized sleep disorders analysis and be
integrated into an embedded system to realize remote sleep
monitoring.
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