N. Barker, Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, vol.449, pp.1003-1007, 2007.

N. Takeda, Interconversion between intestinal stem cell populations in distinct niches, Science, vol.334, pp.1420-1424, 2011.

H. Tian, A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable, Nature, vol.478, p.10408, 2011.

S. Fre, Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice, PLoS One, vol.6, 2011.

N. Barker, Crypt stem cells as the cells-of-origin of intestinal cancer, Nature, vol.457, pp.608-611, 2009.

S. Schwitalla, Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties, Cell, vol.152, pp.25-38, 2013.

E. Sangiorgi and M. R. Capecchi, Bmi1 is expressed in vivo in intestinal stem cells, Nat Genet, vol.40, pp.915-920, 2008.

H. Yanai, Intestinal cancer stem cells marked by Bmi1 or Lgr5 expression contribute to tumor propagation via clonal expansion, 2017.
DOI : 10.1038/srep41838

URL : https://www.nature.com/articles/srep41838.pdf

S. Fre, Notch signals control the fate of immature progenitor cells in the intestine, Nature, vol.435, pp.964-968, 2005.

L. Pellegrinet, Dll1-and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells, Gastroenterology, vol.140, pp.1230-1240, 2011.

S. Fre, Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine, Proc Natl Acad Sci, vol.106, pp.6309-6314, 2009.

V. Rodilla, Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer, Proc Natl Acad Sci, vol.106, pp.6315-6320, 2009.

M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, and L. Luo, A global double-fluorescent Cre reporter mouse, Genesis, vol.45, pp.593-605, 2007.
DOI : 10.1002/dvg.20335

R. Fodde, A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors, Proc Natl Acad Sci, vol.91, pp.8969-8973, 1994.

S. V. Litvinov, M. P. Velders, H. A. Bakker, G. J. Fleuren, and S. O. Warnaar, Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule, J Cell Biol, vol.125, pp.437-446, 1994.

E. M. Garabedian, L. J. Roberts, M. S. Mcnevin, and J. I. Gordon, Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice, J Biol Chem, vol.272, pp.23729-23740, 1997.

Y. S. Kim and S. B. Ho, Intestinal goblet cells and mucins in health and disease: recent insights and progress, Curr Gastroenterol Rep, vol.12, pp.319-330, 2010.

B. F. Hinnebusch, Enterocyte differentiation marker intestinal alkaline phosphatase is a target gene of the gut-enriched Kruppel-like factor, Am J Physiol Gastrointest Liver Physiol, vol.286, 2004.

L. T. Krebs, M. L. Deftos, M. J. Bevan, and T. Gridley, The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signaling pathway, Dev Biol, vol.238, pp.110-119, 2001.

T. Ohtsuka, Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation, Embo J, vol.18, pp.2196-2207, 1999.

K. L. Vandussen, Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells, Development, vol.139, pp.488-497, 2012.

C. S. Potten, Identification of a putative intestinal stem cell and early lineage marker; musashi-1, Differentiation, vol.71, pp.28-41, 2003.

N. Sasaki, Reg4+deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon, Proc Natl Acad Sci, vol.113, pp.5399-5407, 2016.

I. M. Varndell, R. V. Lloyd, B. S. Wilson, and J. M. Polak, Ultrastructural localization of chromogranin: a potential marker for the electron microscopical recognition of endocrine cell secretory granules, Histochem J, vol.17, pp.981-992, 1985.

F. Gerbe, Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium, J Cell Biol, vol.192, pp.767-780, 2011.

F. X. Real, M. Xu, M. R. Vila, and C. De-bolos, Intestinal brush-border-associated enzymes: co-ordinated expression in colorectal cancer, Int J Cancer, vol.51, pp.173-181, 1992.

L. G. Van-der-flier, A. Haegebarth, D. E. Stange, M. Van-de-wetering, and H. Clevers, OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells, Gastroenterology, vol.137, pp.15-17, 2009.

A. E. Powell, The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor, Cell, vol.149, pp.146-158, 2012.

V. W. Wong, Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling, Nat Cell Biol, vol.14, pp.401-408, 2012.

J. Munoz, The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers, Embo J, vol.31, pp.3079-3091, 2012.

I. Ma and A. L. Allan, The role of human aldehyde dehydrogenase in normal and cancer stem cells, Stem Cell Rev, vol.7, pp.292-306, 2011.

A. Merlos-suarez, The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse, Cell Stem Cell, vol.8, pp.511-524, 2011.

A. G. Schepers, Lineage tracing reveals Lgr5+stem cell activity in mouse intestinal adenomas, Science, vol.337, pp.730-735, 2012.

T. Tanaka, A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate, Cancer Sci, vol.94, pp.965-973, 2003.

F. Ubelmann, Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin, Proc Natl Acad Sci, vol.110, pp.1380-1389, 2013.

K. S. Yan, The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations, Proc Natl Acad Sci, vol.109, pp.466-471, 2012.

H. A. Kim, Notch1 counteracts WNT/beta-catenin signaling through chromatin modification in colorectal cancer, J Clin Invest, vol.122, pp.3248-3259, 2012.

S. Asfaha, Krt19(+)/Lgr5(?) Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine, Cell Stem Cell, vol.16, pp.627-638, 2015.

E. Batlle and H. Clevers, Cancer stem cells revisited, Nat Med, vol.23, pp.1124-1134, 2017.

, SCIentIfIC REPORtS |, vol.9, 2019.

F. De-sousa-e-melo, A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer, Nature, vol.543, pp.676-680, 2017.

E. M. Schmidt, Targeting tumor cell plasticity by combined inhibition of NOTCH and MAPK signaling in colon cancer, J Exp Med, vol.215, pp.1693-1708, 2018.

M. Shimokawa, Visualization and targeting of LGR5(+) human colon cancer stem cells, Nature, vol.545, pp.187-192, 2017.

C. Metcalfe, N. M. Kljavin, R. Ybarra, and F. J. De-sauvage, Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration, Cell Stem Cell, vol.14, pp.149-159, 2014.

R. A. Irizarry, Summaries of Affymetrix GeneChip probe level data, Nucleic acids research, vol.31, p.15, 2003.

M. E. Ritchie, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, 2015.
DOI : 10.1093/nar/gkv007

URL : https://academic.oup.com/nar/article-pdf/43/7/e47/7207289/gkv007.pdf

A. Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci, vol.102, pp.15545-15550, 2005.

P. D. Thomas, Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools, Nucleic Acids Res, vol.34, pp.645-650, 2006.
DOI : 10.1093/nar/gkl229

URL : https://academic.oup.com/nar/article-pdf/34/suppl_2/W645/7623303/gkl229.pdf