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Abstract

Search-oriented conversational systems rely
on information needs expressed in natural lan-
guage (NL). We focus here on the understand-
ing of NL expressions for building keyword-
based queries. We propose a reinforcement-
learning-driven translation model framework
able to 1) learn the translation from NL ex-
pressions to queries in a supervised way,
and, 2) to overcome the lack of large-scale
dataset by framing the translation model as
a word selection approach and injecting rele-
vance feedback as a reward in the learning pro-
cess.Experiments are carried out on two TREC
datasets. We outline the effectiveness of our
approach in a retrieval task.

1 Introduction

Artificial Intelligence, and more particularly deep
learning, have recently opened tremendous per-
spectives for reasoning over semantics in text-
based applications such as machine translation
(Lample et al., 2017), chat-bot (Bordes and We-
ston, 2016), knowledge base completion (Lin
et al., 2015) or extraction (Hoffmann et al., 2011).
Very recently, conversational information retrieval
(IR) has emerged as a new paradigm in IR (Burt-
sev et al., 2017; Joho et al., 2018), in which natu-
ral conversations between humans and computers
are used to satisfy an information need. As for
now, conversational systems are limited to sim-
ple conversational interactions (namely, chit-chat
conversations) (Li et al., 2016; Ritter et al., 2011),
closed worlds driven by domain-adapted or slot-
filling patterns (Bordes and Weston, 2016; Wang
and Lemon, 2013) (e.g., a travel planning task re-
quiring to book a flight, then a hotel, etc...), or
knowledge-base extraction (e.g., information ex-
traction tasks) (Dhingra et al., 2017).

In contrast, search-oriented conversational sys-
tems (SOCS) aim at finding information in

an open world (both unstructured information
sources and knowledge-bases) in response to
users’ information needs expressed in natural lan-
guage (NL); the latter often being ambiguous.
Therefore, one key challenge of SOCS is to under-
stand users’ information needs expressed in NL to
identify relevant documents.

Formulating an information need through
queries has been outlined as a difficult task
(Vakulenko et al., 2017; Agichtein et al., 2006;
Joachims, 2002) which is generally tackled
by refining/reformulating queries using pseudo-
relevance feedback or users’ clicks. In SOCS,
there is an upstream challenge dealing with the
building of the query from a NL expression that
initiates the search session to avoid useless users’
interactions with the system. This problem could
be tackled for instance through deep neural trans-
lation models (e.g., encoder-decoder approaches)
as initiated by (Song et al., 2017; Yin et al., 2017).
However, these methods learn the query formu-
lation model independently of the search task at
hand. To overpass this limitation, (Nogueira and
Cho, 2017) have proposed a reinforcement learn-
ing model for query reformulation in which the re-
ward is based on terms of documents retrieved by
the IR system.

In this work, we propose to bridge these two
lines of work: 1) machine translation to learn the
mapping between information needs expressed
in NL and information needs formulated using
keywords (Song et al., 2017; Yin et al., 2017),
and 2) reinforcement learning to inject the task
objectives within the machine translation model
(Nogueira and Cho, 2017). More particularly,
we propose a two-step model which first learns
the translation model through the supervision of
NL-query pairs and then refines the translation
model using a relevance feedback provided by



Figure 1: Overview of our reinforcement learning-driven translation model for SOCS

the search engine. It is worth mentioning that
there does not exist SOCS-oriented dataset that
both aligns users’ information needs in NL with
keyword-based queries and includes a document
collection to perform a retrieval task. To the best
of our knowledge, TREC datasets are the only
ones expressing such constraint, but the number
of NL-query pairs is however limited. To fit with
the issue of dealing with large vocabulary and the
dataset constraint, we frame the translation model
as a word selection one which aims at identifying
which words in the NL expression can be used
to build the query. Our model is evaluated on
two TREC datasets. The obtained results outline
the effectiveness of combining reinforcement
learning with machine translation models.

The remaining of the paper is organized as fol-
lows. Section 2 details our translation model. Sec-
tion 3 presents the evaluation protocol and results
are highlighted in Section 4. The conclusion and
perspectives are discussed in Section 5.

2 Reinforcement learning-driven
translation model

2.1 Notation and problem formulation

Our reinforcement learning-driven translation
model allows to formulate a user’s information
need x expressed in NL into a keyword-based
query y. The user’s information need x is a se-
quence of n words (x = x1, ..., xi, ..., xn). To
fit with our word selection objective, the query
y is modeled as a binary vector y ∈ {0, 1}n
of size n (namely, the size of the natural lan-
guage expression x). Each element yj ∈ y equals
to 1 if word xi ∈ x exists in query y and 0
otherwise. For example, if we consider the NL
as ”Identify documents that discuss sick build-
ing syndrome or building related illnesses.” and

the key-words query as ”sick building syndrome.”,
the expected query will be formulated as follows:
y = (0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0) .

The objective of our model fθ (with θ being the
parameters of our model) is to estimate the prob-
ability p(y|x) of generating the binary vector y
given the NL expression x. Since terms are not
independent within the formulation of NL expres-
sions and queries, it makes sense to consider that
the selection of a word is conditioned by the se-
quence of decisions taken on previous words y<i.
Thus, P (y|x) could be written as follows:

p(y|x) =
∏
yi∈y

p(yi|y<i, x) (1)

This probability is first learned using a maxi-
mum likelihood estimation (MLE) on the basis of
NL-query pairs (Section 2.2). Then, this proba-
bility is refined using reinforcement learning tech-
niques (Section 2.3). We end up with the network
architecture used in the translation model.

2.2 Supervised translation model: from NL
to queries

The translation model works as a supervised word
selection model aiming at building queries y by
using the vocabulary available in NL expressions
x. To do so, we use a set D of N NL-query pairs
D = {(x1, y1), ..., (xk, yk), ..., (xN , yN )}.

The objective of the translation model is to pre-
dict whether each word xki in the NL expres-
sion xk is included in the expected query yk. In
other words, it consists in predicting the probabil-
ity p(ŷki = yki |ŷk<i, xk) that the ith element ŷki of
vector ŷk is equal to the same element yki in the
original query yk (namely, that ŷki = yki ) given
the state of previous elements ŷk<i and the NL ex-
pression xk. This probability p(ŷki = yki |ŷk<i, xk)
is modeled using a Bernoulli distribution in which
parameters are estimated through the probability
distribution.



Figure 2: Network architecture of our translation model

Let’s define for a NL-query instance (xk, yk),
f(θ,xk) =

∑
yki ∈yk

log(p(ŷki = yki |ŷk<i, xk)). The
translation model is trained by maximizing the fol-
lowing MLE over the set D of NL-query pairs
(xk, yk):

LSMT =
∑

(xk,yk)∈D
log(f(θ, xk)) (2)

2.3 Reinforcement learning
To inject the task objective in the translation
model, we consider that the process of query
building could be enhanced through reinforcement
learning techniques. Therefore, the word selection
could be seen as a sequence of choices of select-
ing word xt at each time step t. The choices are
rewarded at the end of the selection process by
a metric measuring the effectiveness of the query
building process within a retrieval task. Particu-
larly, the predicted query ŷ obtained from the bi-
nary vector ŷ is fed to a retrieval model to rank
documents. For each NL expression x (and ac-
cordingly the associated predicted query ŷ), we
dispose of a set Dx of relevant documents (also
called ground truth). We noteGT the set of n pairs
(x;Dx). With this in mind, the effectiveness of
the obtained ranking could be estimated using an
effectiveness-driven metric (e.g., the MAP). Thus,
the reward R for a generated query ŷ given the
relevance feedback pair (x,Dx) is obtained as fol-
lows:

R(ŷ) =MAP (ŷ,Dx) (3)

At the end of the selection process, the objective
function aims at maximizing the expectation of the
search effectiveness over the predicted queries:

LRL(θ) = argmax
θ

E(x;Dx)∈GT
ŷ∼fθ(x)

[R(ŷ)] (4)

where ŷ is given by the translation model fθ(x).
This objective function is maximized using gradi-
ent descent techniques (Baxter et al., 1999).

2.4 Model architecture

The model is based on an encoder-decoder build-
ing a query q̂ from the input x. Particularly, each
element xi of x is modeled through word embed-
dings wxi ; resulting in a sequence wx of word em-
beddings for input x. As shown in Figure 2, the
encoder is a bi-directional LSTM (Hochreiter and
Schmidhuber, 1997) aiming to transform the in-
put sequence wx to its continuous representation
hn. The decoder is composed of a LSTM in which
each word xi is injected to estimate the word se-
lection probability p(yi|y<i, x) using the hidden
vector hn learned in the encoder network and the
current word xi; leading to estimate probability
p(yi|y<i, xi, hn).

3 Protocol design

3.1 Datasets

Since there does not exist yet SOCS-driven
datasets including NL-query pairs, we use TREC
tracks (namely, Robust 2004 and Web 2000-
2001). In these tracks, query topics include
a title, a topic description and a narrative text;
the two latter being formulated in natural lan-
guage. To build query-NL pairs, we use the ti-
tle to form the set of keyword queries and the
description for the set of information needs ex-
pressed in NL. An example of a query-NL pair is:

Title Lewis and Clark expedition
Description What are some useful sites containing

information about the historic Lewis
and Clark expedition?

This NL-query building process results in 350
pairs in total as presented in Table 1.

We are aware that the use of TREC datasets is
biased in the sense that it does not exactly fit with
the expression of NL information need in the con-
text of conversational systems, but we believe that
the description is enough verbose to evaluate the
impact of our query building model in this ex-



TREC track collection pairs NL length avg of duplic. word in NL
TREC Robust (2004) disk4-5 250 15.333 1.108
TREC Web (2000 2001) WT10G 100 11.47 0.65

Table 1: Dataset statistics separated per document collections

ploratory work. Further experiments with gener-
ated datasets, as done in (Song et al., 2017), will
be carried out in the future.

We also analyze the issue of duplicate words
into TREC descriptions since it can directly im-
pact the query formulation process based on word
selection in the word sequence of TREC descrip-
tions. In practice, this might lead to select several
times the same word to build the query, and, there-
fore, directly impact the retrieval performance. As
shown in Table 1, the ratio of duplicate words in
TREC descriptions over the whole set of queries
is very low (1.1 duplicate words in average in each
query for TREC Robust and 0.65 for TREC Web).
This suggests that this issue is minor in the used
datasets. We, therefore, decided to skip this issue
for the moment.

3.2 Metrics and baselines

To evaluate our approach, we measure the retrieval
effectiveness of the predicted queries. To do so,
for each predicted query, we run the BM25 model
through an IR system (namely, PyLucene1) to
obtain a document ranking. The latter is evaluated
through the MAP metric.

To show the soundness of our approach
(namely, translating information needs expressed
in NL into queries), we compare our generated
queries to scenario NL feeding the natural lan-
guage information needs (TREC descriptions in
our protocol) to the IR retrieval system.

Since the objective of our model is to formulate
queries, we also evaluate the effectiveness of orig-
inal TREC titles (scenario Q). This setting rather
refers to the oracle that our model must reach.

We mentioned that before training the selection
model we transformed each x to its binary repre-
sentation y based on the presence of the words in
the ground truth query. The dataset being slightly
biased by this binary modeling, we observed that
not all the words existing in the query do exist in
x. To analyze this bias, we also compare our ap-
proach with these binary queries (scenario Q bin)

1http://lucene.apache.org/pylucene/

referring to the projection of queries Q on the vo-
cabulary available in the NL description.

We also compare our model to a random
approach which randomly selects 3 words from x
to build queries (scenario Random).

Different variants of our model are also tested:

• SMT which only considers the first com-
ponent of our model based on a supervised
machine translation approach (Section 2.2).
This variant could be assimilated to the ap-
proach proposed in (Song et al., 2017) in
the sense that the machine translation is per-
formed independently of the task objective.

• RL which only considers the reinforce-
ment learning objective function (Section
2.3) without pre-training of the supervised
translation model.

• SMT+RL which is our full model in which
we start by pre-training the model using the
supervised translation model (Section 2.3),
and, then, we inject the reward signal in the
translation probabilities (Section 2.4).

3.3 Implementation details
To transform each word xi to its vector represen-
tation wxi , we use Fasttext 2 (Bojanowski et al.,
2017) pre-trained word embeddings. The encoder
and decoders have one hidden layer with 100 hid-
den units each.

To train our model, we perform 10-fold cross-
validation. For the SMT+RL model, we start
by a pre-training using the supervised translation
model for 100 iterations. The training is then pur-
sued by 1000 iterations while including the rein-
forcement learning approach. In the latter, the re-
ward, namely the MAP metric, is estimated over
document rankings obtained by the BM25 model
in PyLucene. We use a minibatch Adam (Kingma
and Ba, 2014) algorithm to pre-train the model and
SGD for the reinforcement learning part. Each up-
date is computed after a minibatch of 12 sentences.

2https://github.com/facebookresearch/
fastText/

http://lucene.apache.org/pylucene/
https://github.com/facebookresearch/fastText/
https://github.com/facebookresearch/fastText/


Baseline TREC Robust(2004) TREC Web (2000-2001)
MAP %Chg MAP %Chg

NL 0.08925 +15.25% *** 0.15913 +12.88% *
Q 0.09804 +4.92% 0.16543 +8.58%
Q bin 0.08847 +16.26% * 0.17402 +3.22%
Random 0.01808 +468.91% *** 0.04060 +342.44% ***
SMT 0.06845 +50.27% *** 0.08891 +102.04% ***
RL 0.08983 +14.51% *** 0.16474 +9.04%
SMT+RL 0.10286 0.17963

Table 2: Comparative effectiveness analysis of our approach. %Chg: improvement of SMT+RL over
corresponding baselines. Paired t-test significance *: 0.01 < t ≤ 0.05 ; **: 0.001 < t ≤ 0.01 ; ***:
t ≤ 0.001.

NL Q Q bin SMT+RL
what are new methods of producing
steel

steel producing producing steel new methods of pro-
ducing steel

what are the advantages and or disad-
vantages of tooth implant

implant dentistry implant advantages disadvan-
tages tooth implant

find documents that discuss the toronto
film festival awards

toronto film awards toronto film awards the toronto film festival
awards

find documents that give growth rates of
pine trees

where can i find growth
rates for the pine trees

growth rates pine trees growth rates of pine
trees

Table 3: Examples of query formulation for NL queries, the original query Q, the binary version Q bin
of the original query, and our model SMT+RL.

4 Results

We present here the effectiveness of our approach
aiming at generating queries from users’ informa-
tion needs expressed in NL. In Table 2, we present
the retrieval effectiveness (regarding the MAP)
of our model and the different baselines (NL,
Q, Q bin, Random, SMT, and RL) described
in section 3.2. From a general point of view,
results highlight that in both datasets, our pro-
posed model SMT+RL outperforms the different
baselines with improvements that are generally
significant, ranging from +3.22% to +468.91%.

More particularly, the effectiveness analysis al-
lows to draw the following statements:
• The overall performance of the compared ap-

proaches generally outperforms the retrieval ef-
fectiveness of the NL baseline. For instance, on
TREC Robust, queries generated by our model al-
lows to significantly improve the retrieval perfor-
mance of +15.25% regarding information needs
expressed in NL (MAP: 0.10286 vs. 0.08925).
This result validates the motivation of this work
to formulate queries from NL expressions. This
is relatively intuitive since NL expressions are
verbose by nature and might include non-specific
words willing to inject noise in the retrieval pro-
cess.
• Our approach SMT+RL provides similar re-

sults as the Q and Q bin. Since the objective func-
tion of our model is guided by the initial query
Q transformed in a binary vector (Q bin), these
baselines could be considered as oracles. We note
however that our model obtains higher results (im-
provements from +3.22% to +16.26%) with a
significant difference for the Q bin baseline for
TREC Robust. To get a better understanding to
what extent our generated queries are different
from those used in baselines Q and Q bin, we il-
lustrate in Table 3 some examples. While queries
in Q identify the most important words leading to
an exploratory query (e.g. “steel productions”),
our model SMT+RL provides additional words
that precise which facet of the query is concerned
(e.g., “new methods of...”), and accordingly im-
proves the ranking of documents.

• Our model SMT+RL is significantly higher
than the SMT baseline which converges to a rel-
atively low MAP value (0.06845 and 0.08891 for
TREC Robust and TREC Web, respectively). This
could be explained by the fact that our datasets
are very small (250 and 100 NL-query pairs re-
spectively for TREC Robust and TREC Web) and
that such machine translation approaches are well-
known to be data hungry. Reinforcement learn-
ing techniques could be a solution to overpass this
problem since they inject additional information
(namely, the reward) in the network learning.



• The RL baseline achieves relatively good
retrieval performances. As we can see from TREC
Web, the RL model obtains a MAP of 0.16474
against 0.15913 for the NL baseline. The RL
baseline allows approaching the retrieval perfor-
mances of baselines Q and Q bin, although it
obtains lower results. This reinforces our intuition
that 1) applying machine translation approaches
should be driven by the task (retrieval task in our
context) and 2) reinforcement learning techniques
provide good strategies to build effective queries.
The latter statement has also been outlined in
previous work (Nogueira and Cho, 2017).

• The comparison of our model SMT+RL re-
garding SMT and RL baselines outlines that rein-
forcement learning techniques might be more ben-
eficial when a pre-training is performed. In our
context, the pre-training is performed using the
SMT model (Section 2.3) which helps the model
to be more general and effective before using the
reward signal to guide the selection process.

It is worth mentioning that we also trained in
preliminary experiments a state of the art transla-
tion models such as a generative encoder-decoder
RNN with attention mechanism, as done in (Yin
et al., 2017; Song et al., 2017). We did not report
the results since the model was not able to general-
ize in the testing phase over new samples from the
NL-query dataset used in the training phase. This
is probably due to the trade-off between the num-
ber of training pairs and the large size of the vo-
cabulary which is not enough represented in differ-
ent contexts. However, we believe that combining
reinforcement learning with attention-mechanism
for query-generation is promising. We let this per-
spective for future work.

5 Conclusion and future work

We propose a selection model to transform user’s
need in NL into a keyword query to increase the
retrieval effectiveness in a SOCS context. Our
model bridges two lines of work dealing with su-
pervised machine translation and reinforcement
learning. Our model has been evaluated using two
different TREC datasets and outlines promising
results in terms of effectiveness. Our approach
has some limitations we plan to overcome in the
future. First, our model is framed as a word se-
lection process that could be turned into a gener-
ative model. Second, experiments are carried out

on small datasets (250 and 100 NL-query pairs)
that could be augmented using the evaluation pro-
tocol proposed in (Song et al., 2017). In long term,
we plan to adapt our model by totally skipping
the query formulation step and designing retrieval
models dealing with NL expressions.
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