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¶Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
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Abstract

A clear understanding of the mechanisms that control the electron dynamics in

strong laser field is still a challenge that requires to be interpreted by advanced theory.

Development of accurate theoretical and computational methods, able to provide a

precise treatment of the fundamental processes generated in the strong field regime,

is therefore crucial. A central aspect is the choice of the basis for the wave-function

expansion. Accuracy in describing multiphoton processes is strictly related to the in-

trinsic properties of the basis, such as numerical convergence, computational cost, and
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representation of the continuum. By explicitly solving the 1D and 3D time-dependent

Schrödinger equation for H+
2 in presence of an intense electric field, we explore the nu-

merical performance of using a real-space grid, a B-spline basis, and a Gaussian basis

(improved by optimal Gaussian functions for the continuum). We analyze the perfor-

mance of the three bases for high-harmonic generation and above-threshold ionization

for H+
2 . In particular, for high-harmonic generation, the capability of the basis to re-

produce the two-center interference and the hyper-Raman phenomena is investigated.

1 Introduction

The optical response of a molecular system to an intense and ultrashort laser pulse is

a subject of increasing interest since the advent of the attosecond laser pulses.1 Recent ad-

vances in laser technology are continuously triggering the introduction of new time-resolved

spectroscopies, offering the opportunity to investigate electron dynamics in molecules with

unprecedented time resolution.2 For example, electronic charge migrations have been traced

in molecules using attosecond pulses,3 electron correlation effects have been also observed

in photoemission processes on the attosecond scale4,5 and above-threshold ionization (ATI)

together with high-harmonic generation (HHG) spectra have been used to explain the at-

tosecond dynamics of electronic wave packets in molecules.6,7

Despite these exciting experimental achievements, reaching a clear understanding of the

mechanisms that control the electron dynamics under the action of a strong laser field is still

a challenge that requires theoretical support.6 It is crucial to develop accurate theoretical and

computational methods capable to provide precise treatments of the fundamental processes

generated by a strong laser field.8–11

Nowadays, the electron dynamics problem in strong fields is tackled by two main fam-

ilies of methods: time-dependent density-functional theory (TDDFT) and time-dependent

wave-function methods.6,12–16 With these methods, developments have been focused on the

accurate description of electron correlation. However, because of the complexity of non-
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linear optical phenomena, such as HHG and ATI, another important aspect needs to be

carefully addressed: the choice of the one-electron basis for representing the time-dependent

wave function. In fact, a reliable description of the electron dynamics in strong laser fields

depends on the accuracy in reproducing the bound states and, even more important, the

continuum states of the molecular system considered. In addition, choosing a good basis

can improve the numerical convergence of the results and reduce the computational cost of

simulations.

Most of the proposed numerical methods in literature directly describe the system wave

function on a real-space grid17–20 or through a numerically defined grid-based basis set of

functions, as in the case of the discrete-variable representation method,21 the pseudospectral

grid method, or the finite-element method.22 Within these approaches, schemes have been

proposed to compute ATI spectra in molecules23 and to study the different molecular orbital

contributions to HHG spectra.24,25 Grid-based basis sets have demonstrated to be very accu-

rate to describe nonlinear optical phenomena. However, the computational cost can be very

high and strategies involving multi-level parallelization schemes have had to be developed.26

Another recurrent basis, in the context of ultrafast electron dynamics, is composed by

B-splines, defined as piecewise polynomial functions with compact support.27 They were first

introduced in atomic calculations by Shore28 and later extensively used to treat ionized and

excited states.29,30 B-splines have proved to be a very powerful tool to describe multiphoton

ionization processes in atoms and molecules in the frameworks of TDDFT and wave-function

methods.31–34 The success of B-splines is due to a remarkable feature: B-splines are able to

reproduce accurately both bound and continuum states. This numerical property is directly

related to their effective completeness.35 Nowdays atomic packages based on B-splines are

available36–38 and recent studies show their ability to reproduce HHG and ATI spectra of

molecules under the action of a strong laser field.39 However, new algorithms have to be

developed in order to increase the computational efficiency of complex calculations with

B-splines.
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More recently, Gaussian-type orbital functions (abbreviated as Gaussian functions in

the following), in the framework of the time-dependent configuration-interaction (TDCI)

method, have been used to calculate HHG spectra in atoms and molecules.12,40–43 The im-

portance of the cardinal number (related to the maximal angular momentum) of the basis

set and the number of diffuse basis functions was investigated.12,40 Two strategies to improve

continuum states have been studied: multi-centered basis functions12,41 and, alternatively,

Gaussian functions with exponents specially optimized to improve the continuum.42,44 This

latter strategy proved to be more efficient than using multi-centered basis functions and it

has also lower computational cost, however it remains to be tested on molecular systems.

These works permitted us to identify the best basis sets to be used in order to capture the

features of HHG spectra.

Finally, to overcome some of the limitations of the grid, B-spline, and Gaussian basis,

hybrid approaches have been proposed in the last years. For example, Gaussian functions

were used together with grid-based functions to reproduce electron dynamics in molecular

systems,45 and also Gaussian functions have been combined with B-splines for studying

ionization in H and He atoms.46,47

The aim of the present work is to compare the performance of the three families of

basis, briefly reviewed above, i.e. grid, B-splines, and Gaussians, for the calculation of HHG

and ATI spectra of the molecular ion H+
2 . This system has been chosen because it has the

advantage of having only one electron, which allows us not to bias our investigation with

possible effects due to electron correlation. Indeed, with this simple case, we can focus on

the effectiveness of the representation of the continuum states for the electron dynamics and

the computational advantages of each basis. Moreover, the presence of two nuclei in H+
2

offers the opportunity to observe intricate physical features, such as quantum interferences

in the HHG process.48–50

This article is organized as follows. In Section 2 we present the 1D theoretical model

to solve the electronic time-dependent Schrödinger equation (TDSE) with grid, B-spline,
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and Gaussian bases. In Section 3 we present and discuss the results for the 1D approach.

In Section 4 we present the 3D theoretical model to solve the electronic TDSE with grid

and Gaussian basis. In Section 5 we present and discuss the results for the 3D approach.

We compare the bound and the continuum energy spectra of H+
2 , as well as HHG and ATI

spectra for grid, B-spline, and Gaussian bases, emphasizing the advantages and disadvantages

of each representation. In particular, for HHG spectra, we investigate the capability of the

different basis to reproduce specific quantum features, such as the hyper-Raman51 and the

the two-center interference phenomena.48–50 Finally, Section 6 contains our conclusions.

2 1D theoretical model of H+
2

The electronic TDSE for a 1D model of H+
2 is given by, in atomic units (au),

i
∂

∂t
ψ(x, t) =

[
Ĥ0(x) + Ĥint(x, t)

]
ψ(x, t), (1)

where ψ(x, t) is the time-dependent electron wave function. Here, Ĥ0(x) is the field-free

Hamiltonian,

Ĥ0(x) = −1

2

d2

dx2
+ V̂ (x), (2)

with a soft Coulomb electron-nuclei interaction given by

V̂ (x) = − 1√(
x− R

2

)2
+ α
− 1√(

x+ R
2

)2
+ α

, (3)

where R is the interatomic distance and α is a parameter chosen to reproduce the exact

ionization energy Ip (taken as -1.11 Ha for all the three bases employed here) of the real H+
2

molecule at a given value of R (α = 1.44 at R = 2.0 au).50

The interaction between the electron and the laser electric field E(t) is taken into account
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by the time-dependent interaction potential, which is given in the length gauge by

Ĥint(x, t) = x̂E(t), (4)

where E(t) is the laser electric field and x̂ is the electron position operator. The laser electric

field is chosen as E(t) = E0f(t) sin(ω0t) where E0 is the maximum amplitude of the pulse,

ω0 is the carrier frequency, and f(t) is a trapezoidal envelope

f(t) =

{ t/T0, 0 ≤ t < T0

1, T0 ≤ t < 9T0

10− t/T0, 9T0 ≤ t < 10T0,

(5)

with T0 = 2π/ω0. The duration of the pulse is thus τ = 10T0 (i.e., 10 optical cycles).

2.1 HHG and ATI spectra

A HHG spectrum, experimentally accessible by measuring the emission spectrum in the

presence of an intense laser field, can be calculated as the acceleration power spectrum over

the duration of the laser pulse τ 52

Pa(ω) =

∣∣∣∣∫ τ

0

〈
ψ(t)| − ∇V̂ − E(t)|ψ(t)

〉
W (t)e−iωtdt

∣∣∣∣2 , (6)

where −∇V̂ −E(t) is the electron acceleration operator, as defined by the Ehrenfest theorem,

and W (t) is an apodisation function that we chose to be of the sine-square window form.

An alternative way to obtain the HHG spectrum is to calculate the dipole power spectrum

as

Px(ω) =

∣∣∣∣∫ τ

0

〈ψ(t)|x̂|ψ(t)〉W (t)e−iωtdt

∣∣∣∣2 , (7)

It can be shown that the two forms are related,12,52–54 ω4Px(ω) ≈ Pa(ω), under reasonable

conditions (see Appendix in Ref.12). The function W (t) is a sin-square window function
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chosen empirically to minimise the noise, and especially to remove the artefacts arising from

the discrete Fourier transform due to the fact that we integrate only over a limited time

duration and not from −∞ to +∞.

An ATI spectrum, which is experimentally accessible by measuring the photoelectron

spectrum of the molecule, can be calculated by spectrally analyzing the system wave function

ψ(τ) at the time τ corresponding to the end of the laser pulse. Specifically, using the window

operator method, one calculates the probability P (E, n, γ) to find the electron in the energy

interval [E − γ,E + γ] as55,56

P (E, n, γ) =

〈
ψ(τ)

∣∣∣∣∣ γ2n

(Ĥ0 − E)2n + γ2n

∣∣∣∣∣ψ(τ)

〉
, (8)

where γ and n are parameters chosen to allow flexibility in the resolution and accuracy of

the energy analysis. In our case we chose n = 2 and γ = 2× 10−3 au.

2.2 Representation of the time-dependent wave function and prop-

agation

2.2.1 Real-space grid

The time-dependent wave function is discretized on a real-space grid of N points xi separated

by a constant step ∆x = xi+1−xi, in the interval [x1 = −(N −1)∆x/2, xN = (N −1)∆x/2].

It is thus represented by the vector

ψ(x, t) ≡ (ψ(x1, t), . . . , ψ(xi, t), . . . , ψ(xN , t)), (9)

where xi = (i− 1− (N − 1)/2)∆x.

The Laplacian operator is computed with the second-order central difference formula

which gives rise to a tridiagonal matrix representation of the Hamiltonian Ĥ0.17 The TDSE

(Eq. (1)) is solved by means of the Crank-Nicholson propagation algorithm.57 The H+
2 ground
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state, computed by inverse iteration,58 is taken as the initial state for the propagation. In

addition, to avoid unphysical reflections at the boundaries of the simulation grid, a mask-type

absorber function17 was implemented with a spatial extension of 50 au.

For ATI spectra, converged results were obtained with N = 200001 and ∆x = 0.02 au,

and with a time step ∆t = 8.41× 10−4 au. For HHG spectra, we obtained converged results

with N = 160001, ∆x = 0.01 au, and ∆t = 1.35× 10−2 au.

2.2.2 B-spline basis set

The time-dependent wave function with the B-spline basis set is represented as

ψ(x, t) =
M∑
i=1

ci(t)B
k
i (x), (10)

where ci(t) are time-dependent coefficients and {Bk
i (x)} are a set of B-spline functions of

order k and dimension M . To completely define B-spline functions a sequence of knots t =

{ti}i=1,M+k must be given. Each function Bk
i (x) is defined on a supporting interval [ti, ti+k]

which contains k+1 consecutive knots, and the function Bk
i (x) vanishes outside this interval.

We have chosen the first and the last knots to be k-fold degenerate, t1 = t2 = · · · = tk = Rmin

and tM+1 = tM+2 = · · · = tM+k = Rmax, while the multiplicity of the other knots is unity.

The width of an interval is ti+1− ti = Rmax/(M−k+1).32 In our calculations we used k = 8,

M = 15008, Rmin = 0, and Rmax = 8000 au. The system was placed at the center of the box

at x = 4000 au.

ATI and HHG spectra were obtained by solving the TDSE (Eq. (1)) within the Cranck-

Nicholson propagation algorithm57 using a time step of ∆t = 1.35×10−2 au. The H+
2 ground

state was computed by inverse iteration58 and taken as the initial state for the propagation.

We did not need to use any absorber during the propagation because of the very large size

of the simulation box.
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2.2.3 Gaussian basis set

For the Gaussian basis set we followed the TDCI procedure developed in our previous work,12

and adapted it to the present 1D H+
2 model. The time-dependent wave function is represented

here as

ψ(x, t) =
∑
k≥0

ck(t)φk(x), (11)

where φk(x) are the eigenstates of the field-free Hamiltonian Ĥ0, composed by the ground

state (k = 0) and all the excited states (k > 0). The φk(x) are expanded on the Gaussian

basis set. In this work, we use uncontracted Gaussians localized on each nucleus and two

“angular momenta” (`), corresponding to odd and even functions. The basis functions are

thus of the form (x±R/2)` e−α(x±R/2)2 , where ` = 0 or 1. The Gaussian exponents α are of

two different types. The first type of exponents are optimized to describe the bound part

of the wave function. We used the uncontracted STO-3G basis set, i.e. three uncontracted

Gaussians whose exponents are taken from the STO-3G basis set with Slater exponent ζ = 1.

We take the same exponents for ` = 0 and ` = 1. The second type of exponents are optimized

for the representation of the continuum.12 They are computed with the procedure developed

by Kaufmann59 adapted to the 1D model, i.e. by optimizing the overlap between a 1D Slater

type function N
(S)
n (ζ)xn e−ζ|x| with ζ = 1 and a Gaussian function N

(G)
` (αn,`)x

` e−αn,`x
2
,

where N
(S)
n and N

(G)
` are normalization factors. Note that, in this case, the exponents used

for the ` = 0 shell and for the ` = 1 shell are different. In the following, we will denote

these Gaussian functions optimized for the continuum as K functions. To sum up, we use 3

functions with STO-3G exponents and 4 K functions for each angular momentum, localized

on each nucleus, which makes a total of (3 + 4) × 4 = 28 uncontracted Gaussian basis

functions. However when we orthonormalize this basis set, we find linear dependencies that

needs to be removed. For this we define a cutoff ε = 10−8 under which the eigenvalues of the

overlap matrix are considered to be zero, and their corresponding eigenvectors are removed

from the space. We get an orthonormalized basis set of 24 basis functions. The basis-set
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exponents are collected in Table S1 of Supporting Information. To solve the TDSE (Eq. (1))

we used the split-operator propagator with ∆t = 1.35× 10−2 au.

In order to compensate for the unphysical absence of ionization, we used the double-d

heuristic lifetime model proposed in.12 This model requires two parameters: d0 and d1 which

represent different electron escape lengths after ionization. We have chosen these parame-

ters on the basis of the rescattering model60,61 where an electron is ionized by a strong laser

field, accelerated in the continuum, and then brought back close to its parent ion where it

can recombine or scatter. From this model, d0 is equal to the maximum electron excursion

after ionization which is xmax =
√

2E0/ω4
0, while d1 < d0. In our calculations we always

used d1 = 20 au. Moreover d0 affects all the continuum states below the cutoff energy

Ecutoff = Ip + 3.17Up
60,61 (Up = E2

0/(4ω
2
0) is the ponderomotive energy of the electron) while

d1 handles the ionization for those continuum energy states above Ecutoff. This allows to

better retain the contribution of continuum states for the recombination step of the HHG

process. 1 collects the values of d0 used in this work.

Table 1: d0 values, taken as xmax, used in the double-d heuristic lifetime model for the laser
intensities employed in this work.

I (W/cm2) d0 (au)
5× 1013 23

1014 33
2× 1014 46
3× 1014 57
4× 1014 66
5× 1014 74
7× 1014 87

There is a fundamental difference between this approach and the grid and B-spline ones.

Indeed, the TDSE with the Gaussian basis set is solved in the energy space. This fact permits

to have a more direct and intuitive interpretation of the role of bound and continuum states

in HHG and ATI spectroscopies. In addition, the use of Gaussians reduces considerably the

computational time required in time propagation. This makes it a more promising tool for
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the modelisation of larger molecules.
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Figure 1: Ground-state wave function of H+
2 (at the equilibrium internuclear distance of

R = 2.0 au)
calculated using grid, B-spline, and Gaussian basis.

3 1D RESULTS AND DISCUSSION

3.1 Spectrum of the field-free Hamiltonian

The spectrum of Ĥ0 should be strictly independent on the choice of the basis set in the

limit of a complete basis set. However, because our basis sets are not complete, differences

in the eigenstates and eigenvalues from grid, B-spline, and Gaussian basis sets can arise,

especially at high-energy values. In order to investigate the behavior of the three basis sets,

the spectrum of Ĥ0 is analyzed in this section.

In (1) the ground-state wave function is shown. The three basis sets reproduce exactly

alike the ground state of the 1D H+
2 model, at the equilibrium internuclear distance of R = 2.0

au. The panel (a) of (2) shows the eigenvalues given by each basis set up to the 30th energy

state, and in panel (b) of (2) one finds the inverse of the density of continuum states which

is defined as ρ(Ej) = 1/(Ej+1 − Ej) where Ej is a positive eigenvalue. In order to compare

the three bases, the density of the states has been normalized to the length of the simulation
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box in the case of the grid and B-splines and to a constant in the case of the Gaussians.

This constant was chosen to force the first Gaussian continuum eigenvalue to match the first

continuum eigenvalue of the grid and B-splines, which are identical. For all the three basis

sets, the continuum part of the spectrum is represented as a finite number of eigenstates as,

in numerical calculations, the basis set is always incomplete. However, the discreteness of

the Gaussians is much larger than that of the grid and B-splines. The spectrum obtained

with the Gaussians starts to diverge from the grid and B-spline ones already at around the

13th state. This issue is a direct consequence of the relatively small size of the Gaussian

basis set compared to the number of grid points or B-spline functions used. Indeed, the

STO-3G+4K basis contains only 24 Gaussian basis functions whereas we used 400001 grid

points and 15000 B-splines. In principle, we could increase the number of Gaussians but this

will quickly lead to the linear dependency problem. This problem prevents us to use more

than a few tens of optimized Gaussian functions. This fact, as we will see in the following

sections, can have important consequences on the calculation of HHG and, in particular, of

ATI spectra.

To investigate the accuracy of the grid, B-spline, and Gaussian bases in the description of

continuum wave functions, we have chosen two different continuum energies, both represen-

tative of two different continuum energy regions: low energy (E = 0.06 Ha) and high energy

(E = 1.97 Ha). For each of these energies, we reported in (3) the corresponding wave func-

tions ϕE(x). For the grid, the continuum wave functions were obtained by propagating the

TDSE at the chosen positive energy E with a fourth-order Runge-Kutta algorithm,58 and

then normalized with the Strömgren procedure62.63 Instead, for B-splines and Gaussians, the

wave functions were obtained from a direct diagonalisation of Ĥ0. In this case, the resulting

continuum states were renormalized using the procedure proposed by Maćıas et al.64.65 We

verified that the Strömgren and Maćıas procedures are equivalent.66 The continuum wave

functions computed with both grid and B-spline basis sets reproduce the same oscillations

in the low- and high-energy regions of the continuum. On the other hand, Gaussians can
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Figure 2: (a) Eigenvalues of H+
2 up to the 30th eigenstate. (b) Inverse of the normalized

density of continuum states.

reproduce just a few of the oscillations. We already observed this behavior in the case of the

hydrogen atom in a 3D calculation42 where the crucial role of the K functions was pointed

out in order to obtain these oscillations (in that case a much larger basis set was employed).

Here, we want to draw the attention on the fact that Gaussians can still be reasonable in the

low-energy continuum, but become unsuitable to reproduce oscillations for high-energy con-

tinuum states. The probability of propagating an electron in one of the two regions depends

on the laser parameters used in the simulation. This fact can have important implications

in the description of HHG and ATI spectra as we will see in the following sections.
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Figure 3: (a) Spatial dependence of the even wave function ϕE(x) corresponding to E = 0.06
Ha. (b) Spatial dependence of the odd wave function ϕE(x) corresponding to E = 1.97 Ha.

3.2 HHG

HHG spectra have been calculated in the dipole and the acceleration forms for H+
2 at different

internuclear distances: R = 1.8, R = 2.0 (equilibrium distance), and R = 2.2 au for a

Ti:Sapphire laser pulse with a carrier frequency ω0 = 0.057 Ha (1.55 eV, 800 nm) and

different intensities: I = 5× 1013, I = 1× 1014, I = 2× 1014, I = 5× 1014, and I = 7× 1014

W/cm2.

In (4) we show the dipole form of the HHG spectra at R = 2.0 au for three different

laser intensities. All the three basis sets reproduce the general expected features of an

HHG spectrum: the intensity of the low-order harmonics decreases rapidly, then a plateau

region follows where the intensity remains nearly constant, and at high frequencies the
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Figure 4: HHG spectra calculated from the electron dipole at the equilibrium internuclear
distance R = 2.0 au with laser intensities: (a) I = 1014 W/cm2, (b) I = 2 × 1014 W/cm2,
and (c) I = 5 × 1014 W/cm2. Intensities I = 5 × 1013 and 7 × 1014 W/cm2 are reported
in the Supplementary Information. For each HHG spectrum, the dot-dashed lines indicate
the cutoff energies, which are given by the rescattering model as Ecutoff = Ip + 3.17Up, see
Ref.:60,61 (a) Ecutoff = 31.7ω0, (b) Ecutoff = 43.9ω0, and (c) Ecutoff = 80.5ω0. The arrow
points to the expected position of the two-center interference minimum extracted from the
recombination dipole.
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Figure 5: HHG spectra calculated from the electron dipole and the electron acceleration
at the equilibrium internuclear distance of R = 2.0 au with a laser intensity of I = 5 ×
1014 W/cm2 using Gaussian basis sets. The dot-dashed line is the cutoff energy Ecutoff =
80.5ω0 and the arrow points to the expected position of the two-center interference minimum,
extracted from the recombination dipole which is identical to the one extracted from the
recombination acceleration.

harmonic intensity decreases again. As H+
2 has a center-of-inversion symmetry, only odd

harmonics are presented in the spectrum. We estimated the cutoff energies by calculating

Ecutoff = Ip + 3.17Up, as given in the semiclassical rescattering model.60,61

We observe that the grid and B-spline HHG spectra are indistinguishable for all the

laser intensities. This fact is consistent with the analysis reported above on the spectrum

of Ĥ0 (see Section 3.1). On the other hand, the agreement between the spectra obtained

with the Gaussian basis and those obtained with the grid or B-splines deteriorates when

the laser intensity increases. This is clearly observed for the plateau region for the intensity

I = 5 × 1014 W/cm2, but also detected for the plateau and cutoff regions for the intensity

I = 7× 1014 W/cm2 (see Supplementary Information). Most of these observations are also

valid when using the acceleration form of the HHG spectrum. The only exception we found

was with the Gaussian basis set and laser intensities I = 5× 1014 W/cm2, as shown in (5),

and I = 7× 1014 W/cm2 (see Supplementary Information). For these largest intensities, the

spectrum extracted from the acceleration seems to largely underestimate the position of the

cutoff but to much better reproduce the harmonics of the plateau.
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To analyse in more details the fine structure of the HHG peaks, in (6) HHG spectra only

up to the 15th harmonics. The B-spline and the grid spectra are almost identical except

for some very small differences when the laser intensity is very high. Gaussian spectra

reproduces the features of the B-spline and grid ones, but when the laser intensity increases

the Gaussian spectrum become much more noisy.

From panel (a) of (6) it is also possible to identify another series of peaks besides those

corresponding to the harmonics. These peaks corresponds to hyper-Raman lines with po-

sition given by ω̃ ± 2kω0,67 where k is an integer and ω̃ = 6.69ω0 is the resonance with

the first excited state. We observe that the three basis sets describe with the same accu-

racy the hyper-Raman lines. Moreover, at sufficiently large laser intensity, the HHG process

dominates, and the hyper-Raman lines are not observed anymore (panel (b) of (6)).

The accuracy of the grid, B-spline, and Gaussian calculations was also investigated

through their ability to reproduce the two-center interference in the HHG spectrum. This

interference was predicted by Lein et al.50 for diatomic molecules such as H+
2 . In this model,

the electron that recombines with the ionic core can interact with either of the two nu-

clei. The two atomic centers can therefore be interpreted as coherent point sources and the

whole system can be seen as a microscopic analog of Young’s two-slit experiment. The light

emitted by each nucleus will interfere either constructively or destructively depending on its

frequency and the interference pattern will superimpose to the HHG spectrum. Since Lein’s

model has been proposed, a great number of numerical analyses came forth pointing out the

role of the internuclear distance, molecular orientation, recombination to excited states, and

laser intensity.11,48,68–75

According to Lein’s model, the position of the minimum in the spectrum is independent

from the laser intensity and can be extracted from the analysis of the recombination dipole

drec(E) = 〈ϕ0|x̂|ϕE〉 where ϕ0 is the ground state and ϕE is a continuum state at energy E

of Ĥ0. This quantity is plotted in panel (a) of (7) for R = 1.8 au and in panel (a) of (8)

for R = 2.2 au. For R = 2.0 au, we report the recombination dipole in the Supplementary
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Figure 6: HHG spectra calculated from the electron dipole at the equilibrium internuclear
distance R = 2.0 au up to the 15th harmonic with laser intensities: (a) I = 1014 W/cm2

and (b) I = 5× 1014 W/cm2. The dashed lines indicate the position of the harmonics while
the dotted lines indicate the hyper-Raman lines at position ω̃± 2kω0

67 where k is an integer
and ω̃ = 6.69ω0 is the resonance with the first excited state.

Information. The minimum described in the two-center interference corresponds to the

energy which makes the recombination dipole vanishing. We found that the corresponding

frequency is ω = 34.0ω0 for R = 1.8 au, ω = 26.4ω0 for R = 2.0 au, and ω = 20.8ω0 for

R = 2.2 au. We note that the extraction of the minimum from the recombination dipole is

straightforward for the grid and B-spline basis sets, while in the case of the Gaussian basis

only a rough estimate can be given. Lein’s model predicts the position of the minimum

at ω = π2/(2R2ω0) which gives ω = 26.7ω0 for R = 1.8 au, ω = 21.6ω0 for R = 2.0 au,

and ω = 17.9ω0 for R = 2.2 au. The underestimation of the minimum position by Lein’s
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model has already been pointed out.70 The main reasons must be searched in the different

description of the ground state and the continuum between our 1D theoretical model and

Lein’s model.

We report in panel (b) of (7) and in panel (b) of (8) the HHG spectra for R = 1.8 au

and for R = 2.2 au with I = 2 × 1014 W/cm2 and we observe that all the basis sets

reproduce the position of the minimum of the two-center interference. Also the minimum

for R = 2.0 au is very well reproduced as can be seen in (4). Another observation is that the

sharpness of the minimum depends on the laser intensity and on the internuclear distance.

We confirm the fact that the minimum is more visible for smaller internuclear distances.76

We did the same investigation considering the recombination acceleration arec(E) = 〈ϕ0| −

∇V̂ |ϕE〉 and the HHG spectrum from the acceleration. We obtained the same results (see

Supplementary Information) explained before. From these studies we deduce that all the

basis sets are capable to accurately reproduce the two-center interference.50 However, in

the case of the Gaussian basis, the acceleration seems to better reproduce the minimum

for I = 5 × 1014 W/cm2 (panel (c) of (5)) and I = 7 × 1014 W/cm2 (see Supplementary

Information).

From the detailed analysis of HHG spectra presented in this section, we conclude that

for a good performance of the Gaussian basis the laser intensity can not be “very large”.

For example, for intensity lower than I = 5 × 1014 W/cm2 we obtain correct HHG spectra

while for higher intensities only the harmonic peaks in the low-energy part of the plateau are

correct. A strategy to improve the Gaussian basis set could be to modify the cutoff ε below

which the eigenvalues of the overlap matrix are set to zero. This will change the number of

kept eigenvectors. In (9) we compare an HHG spectrum for I = 5× 1013 W/cm2 calculated

with the grid and with the Gaussian basis while changing the linear-dependency threshold

ε: ε = 10−4 (17 basis functions), ε = 10−8 (24 basis functions, which is the standard choice

throughout the article), and ε = 10−10 (26 basis functions). This analysis shows that for a

“low” intensity (I = 5× 1013 W/cm2) the quality of the HHG spectrum in the plateau and
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Figure 7: Two-center interference at R = 1.8 au: (a) recombination dipole and (b) HHG
spectrum at I = 2 × 1014 W/cm2. The arrow points to the expected position of the two-
center interference minimum extracted from the recombination dipole. The dot-dashed line
is the cutoff energy Ecutoff = 43.8ω0. E0 is the ground-state energy.

cutoff regions is not affected by the specific choice of the threshold of eigenvalues.

3.3 ATI

We calculated ATI spectra with intensities I = 5× 1013, 1× 1014, and 5× 1014 W/cm2. In

panel (a) of (10) we show the ATI spectrum with laser intensity I = 1014 W/cm2, while the

spectra for intensities I = 5× 1013 and 5× 1014 W/cm2 are reported in the Supplementary

Information.

The ATI spectrum of (10) has positive energy peaks (bound-continuum transitions)
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Figure 8: Two-center interference at R = 2.2 au: (a) recombination dipole and (b) HHG
spectrum at I = 2 × 1014 W/cm2. The arrow points to the expected position of the two-
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corresponding to the electron density ionized during the propagation, i.e. the photoelectron

spectrum, while the peaks in the negative region (bound-bound transitions) represent the

electron density remaining in the ground state and that has been transferred to excited

states. We remind that only the positive energy region of an ATI spectrum is experimentally

measurable.
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Figure 10: (a) ATI spectrum calculated at the equilibrium interatomic distance R = 2.0 au
with intensity I = 1×1014 W/cm2. (b) Photoelectron spectrum calculated with the Gaussian
basis at the equilibrium distance R = 2.0 au with intensity I = 1 × 1014 W/cm2 and three
photon energies ω0 = 1.34 Ha (black), ω0 = 1.47 Ha (red), and ω0 = 1.61 Ha (blue). The
ground-state energy (-1.11 Ha) and the continuum-state energies (0.06 Ha, 0.22 Ha, and 0.50
Ha) which correspond to transitions allowed by symmetry are displayed (magenta dots).

As already seen for the HHG spectra, the grid and B-spline basis sets describe with

the same accuracy both bound-bound and bound-continuum transitions. Their ATI spectra
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coincide and correctly reproduce the expected features of an ATI spectrum: the distance

between two consecutive ATI peaks (in the positive energy region) is constant and equal to

the energy of a photon, i.e. 0.057 Ha.

The Gaussian basis is only able to reproduce bound-bound transitions. The negative

energy part of the spectrum is quite close to the one obtained with the grid and B-splines,

while bound-continuum transitions are out of reach for the Gaussian basis set. This limitation

is due to the low density of states in the continuum. Indeed, with the basis-set parameters

used here, only six continuum states are reproduced in the energy region between 0 and 1 Ha,

as we can see in the bottom panel of (2). This low density of states is far from reproducing

the correct ATI energy distribution and explains why no more than six peaks are observed

in the positive energy region of the spectrum. The energies of the six ATI peaks correspond

to the energies of the six continuum states reported in (2). To detail more on this feature,

we plot in panel (b) of (10) the photoelectron spectrum, computed with the Gaussian basis,

after absorption of one photon and for three different photon energies ω0 = 1.34 Ha, ω0 =

1.47 Ha, and ω0 = 1.61 Ha. Together, we also plot the energy position of the ground state and

of the first continuum energies corresponding to symmetry-allowed transitions. One clearly

sees that if the photon energy matches the energy of a transition from the ground state to

one of the continuum states then we get a photoelectron peak. However, if the photon energy

does not match any transition then no ionization is observed. This crucial feature forbids

the computation of a correct photoelectron or ATI spectrum with the Gaussians basis set

used here. We believe that larger Gaussian basis sets can in principle describe ATI. Indeed,

in 3D calculations,12 one can easily produce tens of low-energy (<1 Ha) continuum states,

leading to a possible improvement of the ATI spectrum.
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4 3D theoretical model of H+
2

The electronic TDSE for a 3D model of H+
2 is given by, in atomic units (au),

i
∂

∂t
ψ(r, t) =

[
Ĥ0(r) + Ĥint(r, t)

]
ψ(r, t), (12)

where ψ(r, t) is the time-dependent electron wave function. Here, Ĥ0(r) is the field-free

Hamiltonian,

Ĥ0(r) = −1

2
∇2 + V̂ (r), (13)

with V̂ (r) the Coulomb electron-nuclei interaction.

The interaction between the electron and the laser electric field E(t) is taken into account

by the time-dependent interaction potential, which is given in the length gauge by

Ĥint(r, t) = ẑE(t), (14)

where E(t) is the laser electric field polarized along the z axis, corresponding to the H+
2

internuclear axis, and ẑ is the electron position operator along this axis. We have chosen the

same type of laser as in the 1D model (see Section 2) except that the duration of the pulse

is τ = 6T0 (i.e., 6 optical cycles). We calculated HHG spectra from the dipole as in Eq. (7).

4.1 Representation of the time-dependent wave function and prop-

agation

4.1.1 Real-space grid

Concerning the 3D calculations on a grid, we used the Octopus code which is a software

package for TDDFT calculations.26 For our calculations we have chosen the “independent

particle” option which permits to get the numerically exact solution for the TDSE in the

case of one electron. We have chosen as simulation box a cylinder with radius 50 au and
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Figure 11: HHG spectra in the dipole form at the equilibrium internuclear distance R =
2.0 au with laser intensities: (a) I = 5 × 1013 W/cm2, (b) I = 2 × 1014 W/cm2, and (c)
I = 3 × 1014 W/cm2. For each HHG spectrum, the dot-dashed line gives the cutoff energy
Ecutoff = Ip + 3.17Up given by the rescattering model60,61 which is (a) Ecutoff = 25.4ω0, (b)
Ecutoff = 43.7ω0, and (c) Ecutoff = 55.9ω0. The arrow points to the expected position of the
two-center interference minimum extracted from the recombination dipole.
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Figure 12: HHG spectra in the dipole form at the equilibrium internuclear distance of R = 2.0
au up to the 13th harmonic with laser intensities : I = 5×1013 W/cm2, I = 2×1014 W/cm2,
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the dashed line indicates the position of the harmonics and the dotted line indicates the
hyper-Raman lines at position ω̃ ± 2kω0

67 where k is an integer and ω̃ = 7.65ω0 is the
resonance of the first excited state.

height 100 au with a grid space ∆r = 0.435 au. The TDSE of Eq. (12) is solved by means of

the Crank-Nicholson propagation algorithm57,58 with a time step ∆t = 5× 10−2 au. Also in

this case to avoid unphysical reflections at the boundaries of the simulation box, a mask-type

absorber function was used with a spatial extension of 22 au.
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4.1.2 Gaussian basis set

In this case, we used the approach we developed and detailed in Ref.12,40 which consists

in solving the TDSE using the TDCI approach. For the Gaussian calculations, we used a

development version of the MOLPRO software package77 and the external code LIGHT40

to perform the time propagation using also in this case a time step ∆t = 5 × 10−2 au.

As Gaussian basis set we used a 6-aug-cc-pVTZ with 5 K functions, which we denote as

6-aug-cc-pVTZ+5K, which is the largest basis without linear dependencies. The basis-set

exponents and contraction coefficients are collected in Table S2 of Supporting Information.

To treat ionization we used a double-d heuristic model where the parameters d1 and d0 have

been chosen as in the 1D model. The value of Ip is in this case -1.10 Ha.

5 3D RESULTS AND DISCUSSION

5.1 HHG

We calculated HHG spectra in the dipole form for H+
2 at internuclear distance R = 2.0 au

(equilibrium) for a Ti:Sapphire laser with a carrier frequency ω0 = 0.057 Ha and intensities

I = 5× 1013, 1× 1014, 2× 1014, 3× 1014, 4× 1014, and 5× 1014 W/cm2.

In (11) we show the HHG spectra for three laser intensities (the spectra for the other

intensities are reported in the Supplementary Information). Both the Gaussian and grid basis

sets reproduce well the expected features of an HHG spectrum, regardless of the applied

field intensity, as already pointed out for the 1D case. However, starting from intensity

I = 3× 1014 W/cm2, the quality of the spectrum obtained with the Gaussian basis set tends

to diminish, especially in the cutoff region. For 3D calculations, obtaining a good HHG

spectrum with optimized Gaussians seems to be more difficult than for 1D calculations, due

to the computational complexity.

However, it is interesting to note that the low-energy harmonics are still well described
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when compared to the grid calculations. We show this behavior by analysing the fine struc-

tures of the peaks as shown in (12). Here, we plot the HHG spectra up to the 13th harmonic

for different intensities. For the grid calculations (panel (a)) with I = 5× 1013 W/cm2 only

the first and the third harmonic peaks are clearly visible together with a strong and large

peak at around 7.65ω0, due to the emission from the first excited state. Also in this case we

observe hyper-Raman lines at position ω̃ ± 2kω0
67 where k is an integer and ω̃ = 7.65ω0 is

the resonance with the first excited state. Observing the evolution of the harmonics and the

resonant peaks as a function of the laser intensity (from I = 5× 1013 W/cm2 to I = 5× 1014

W/cm2), the harmonics become more and more intense while the hyper-Raman lines almost

disappear. The same behaviour was already observed in the 1D model. The spectra obtained

with the Gaussian basis set show exactly the same trend as shown in panel (b) of (12).

6 CONCLUSIONS

We explicitly solved the 1D and 3D TDSE for H+
2 in the presence of an intense electric field

and we explored the numerical performance of using a real-space grid, a B-spline basis, or

a Gaussian basis optimized for the continuum. We analyzed the performance of the three

basis sets for calculating HHG and ATI spectra. In particular, for HHG, the capability

of the basis set to reproduce the two-center interference and the hyper-Raman lines was

investigated. We showed that the grid and B-spline representations of the time-dependent

wave function give the same results for both HHG and ATI. On the contrary, the performance

of the Gaussian basis is more mixed and depends on the intensity of the laser. It is possible to

optimize Gaussian functions to describe the low-energy part of the continuum. However, this

optimization is limited by the issue of linear dependencies among Gaussian functions. This

implies that for HHG the Gaussian basis can perform well up to the laser intensity I = 5×1014

W/cm2 for 1D and up to I = 2× 1014 W/cm2 for 3D. For higher intensities we have found

that only low-energy harmonics are still correct. Moreover, for 3D calculations, obtaining
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a good HHG spectrum with optimized Gaussian functions seems to be more difficult than

in 1D calculations. Despite their limitations, Gaussian basis sets can reproduce intricate

features of the HHG spectrum at low energy. Instead, in the case of ATI, Gaussian basis

sets make impossible the description of a correct spectrum.

In conclusion, from our investigation we noticed that the grid and B-spline basis sets have

very similar behavior and computational cost. These basis sets are very accurate to describe

the continuum and phenomena such as HHG and ATI. Gaussian basis sets are less efficient

to describe the continuum. The effect on ATI and HHG spectra is however different: on

one hand, ATI spectrum is not reproduced by Gaussian basis functions, on the other hand

the most important features and fine structures (minimum/resonances) at low energy of the

HHG spectrum are correctly described. A clear advantage of Gaussian functions with respect

the other basis sets is their computational cost which continues to make them interesting for

many-electron systems.
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(65) The Maćıas procedure permits to normalise L2-norm continuum states. In this method,

for a specific energy E in the continuum, we have: ψ(x) = ψL2(x)
√
ρ(E)/2, where ψL2

is the L2-norm normalized state and ρ(E) is the density of states evaluated numerically

as the number of states per energy unit as ρ(Ej) = 2/(Ej+1 − Ej−1).

34



(66) Marie Labeye, PhD Thesis, Molecules interacting with short and intense laser pulses:

Simulations of correlated ultrafast dynamics, Sorbonne Université (2018).
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(76) Risoud, F.; Lévêque, C.; Labeye, M.; Caillat, J.; Salieres, P.; Täıeb, R.; Shaaran, T.
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