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Abstract 

In this work, we study thermal conduction and convection combined effects on frequency 

response to pressure oscillations of a spray of repetitively injected drops in a combustion 

chamber. The theoretical model is based on Heidmann analogy of the so called “mean 

droplet” which is a single spherical vaporizing droplet with constant average radius, given 

that this droplet is continually fed at a stationary flow rate. The feeding comes from a source 

point placed at the mean spherical droplet centre in such a way that the injection process can 

be assumed to be isothermal (isothermal feeding regime) or adiabatic (adiabatic feeding 

regime). Drawing upon the linear decomposition of the energy conservation equation, 

approximate analytical solutions for the perturbed temperature field inside the droplet are 

obtained from some derived double confluent Heun equations. Frequency response factor of 

the evaporating mass is then evaluated on the basis of the Rayleigh criterion by means of the 

linearized equations of the gas phase. Compared to the results obtained for the previous pure 

conduction model of the same “mean droplet”, frequency response factor curves seem to be 

similar with reference to each feeding regime. Moreover, due to the radial thermal convection 

effect introduced in the present work, a frequency response factor curve with the same 

characteristic times ratio may exhibit a relatively larger frequency range for the instability 

domain. Data are found to be correlated in terms of period of pressure oscillations, 

vaporization characteristics times and of fuel thermodynamic coefficients. In the isothermal 

feeding regime in particular, due to some possible values that can be taken by a certain 

thermodynamic coefficient, high and non-linear frequency responses may appear in the 

system. 

Keywords: mean spherical droplet; frequency response factor; adiabatic or isothermal 
feeding regime; double confluent Heun equation; approximate analytical solution 
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1 Introduction 

Combustion instabilities are still being extensively studied nowadays though a great amount 

of theoretical, numerical, experimental works were devoted to their modelling and control 

during the past decades. Indeed, flow oscillations induced by external forcing or self-excited 

combustion instabilities occur in all types of combustion system (power generation engines, 

aeronautic engines and aerospace engines). A stable combustion process can be generally 

characterized by small amplitude pressure fluctuations as for example, less than about 5% of 

the mean chamber pressure for certain combustors [1]. But, interactions between the fuel 

vaporization, heat release and oscillatory flow field in combustion systems can cause 

departure from stable operating conditions. Further, fuel and operational flexibility 

requirements of new type of combustor architectures involve more complex and less 

predictable vaporization and acoustic couplings. In particular, the mechanism of spray 

combustion instabilities is hardly understood. In one hand, coupling between small acoustic 

oscillations in pressure and mass release at certain frequency levels may eventually lead to 

engine failure and other catastrophic consequences. In the other hand, particularly newer 

blends of liquid fuels can be engineered to undergo preferential instabilities leading to 

homogeneous combustion with higher efficiency [2]. In most diffusion flame models, many 

processes were pointed out as being responsible for triggering or for controlling high and 

nonlinear pressure oscillations in stable combustion chamber: combustor geometry [1], fuel 

type and composition [3], injection and atomization mechanisms [4], droplets vaporization 

characteristic times and other boundary conditions [3, 5-7], fuel/air mixing [8], ...Those 

studies are usually validated by experiments on particular practical fuels. 

 

It appears from the above discussions that theoretical models are needed, which provide more 

details on the sequence of some mechanisms leading to high and nonlinear pressure 
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oscillations occurrence in a stable combustion chamber. Considering two different fuel 

injection regimes, the present subcritical diffusion flame model includes both effects of 

process characteristics times and of fuel thermodynamic coefficients on the frequency 

response of a vaporizing spray. The evaluation of the frequency response of the vaporization 

process to pressure oscillations is mostly based on single vaporizing droplet models [3, 5, 9]. 

In other theoretical studies, as generally practised in most numerical simulations, the dynamic 

behaviour of spray vaporization is taken as a statistical consequence of the vaporization 

characteristics of each individual droplet in the array. Examples of these spray models are 

those of Harrje and Reardon [6] and of Delplanque and Sirignano [4]. Tong and Sirignano 

[10] also have examined the response of vaporizing droplets to oscillating ambient pressure 

and velocity conditions. The oscillatory rate of vaporization of an array of repetitively 

injected droplets in the combustion chamber is obtained from summation of individual 

droplet histories. In the same context, let us cite DiCicco and Buckmaster [11], Dubois et al. 

[12] and Sirignano et al. [7]. In all the above-mentioned studies, the actual changing volume 

due to the vaporization of the injected droplets has been taken into account.  

 

During the 1960s, in order to study the instabilities generated or amplified by evaporation, 

Heidmann and Wieber the first replaced in their models, the spray of repetitively injected 

drops in the combustion chamber by a mean evaporating motionless spherical droplet [13, 

14]. This mean droplet which has a constant average radius is continuously supplied with a 

stationary flow rate of the same fluid. The mean diameter of this average drop is considered 

to be invariant, as the supplied liquid compensates the evaporation. This evaporating droplet 

represents a mean spherical droplet with constant volume, at a specific location in the 

combustion chamber, and is supposed to summarize the frequency response of individual 

drops in the spray. The acoustic oscillations really affect the vaporizing droplet acceleration 
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as well as its heat and mass transfer processes by giving the droplet three-dimensional 

velocity components and also causing perturbations within the droplet temperature and 

evaporation rate. But, Heidmann and Wieber’s numerical evaluation of the frequency 

response showed that the velocity difference contributions to the vaporization rate at high and 

low values of the ambient oscillating pressure were nearly equal and thus cancelled effects 

with regard to response factor evaluation. Therefore, for an approximation the velocity 

difference effects on vaporization rate were ignored. In the present paper, adopting this 

hypothesis, we consider, the case of a velocity-stabilized mean spherical droplet representing 

a spray of repetitively injected droplets in the combustion chamber. This evaporating droplet 

with constant average radius is continuously fed by a steady flow. 

 

The main simplified assumption of Heidmann and Wieber in their model described above is 

that an infinite thermal diffusivity of the liquid phase is supposed; therefore the mean 

spherical droplet has a uniform temperature whatever the feeding process adopted. This 

classical model was reviewed and substantially refined in 2009 by Prud’homme et al. [15]. 

Their analysis, which takes into account a finite thermal diffusivity of the liquid, was equally 

based on certain other simplifying assumptions. Namely, it was assumed that the supplied 

spherical droplet centre remains adiabatic (zero temperature gradient) and that the radial 

convection effect in the energy equation due to the feeding process at the centre of the droplet 

is neglected. Explicit analytical expression was then derived for the droplet mass transfer 

function in that pure conduction case and the results were discussed. With an aim of 

extending the analytical expressions of the perturbed evaporating rate and to the temperature 

field in a spherical symmetry configuration, Anani and Prud’homme (2016) have recently 

studied the pure thermal conduction effect on the perturbed mean spherical droplet and have 

pointed out the specificity of the isothermal injection regime [16]. The results derived from 
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this case were then compared to that of the adiabatic feeding case. It was shown that, high 

and non-linear frequency responses may appear in the process when taking a particular 

thermodynamic coefficient value inferior but closer to that of a specific characteristic times 

ratio. Nevertheless this recent study remains all the same based on the simplifying 

assumption of a negligible radial thermal convection effect inside the liquid-phase. Apart 

from the pure thermal conduction model cases, no analytical solution has been found and any 

asymptotical study has been performed for the mean spherical droplet model with a finite 

thermal diffusivity.  

 

The present paper aims at contributing to that sequence of linear analysis of harmonic 

instability mechanisms in combustion chambers by analytical approaches. This new model 

takes into account thermal conduction and convection combined effects on the dynamic 

response of the mean spherical droplet with a finite thermal diffusivity. In the analysis, 

double confluent Heun equations [17] will be derived from the linearized energy conservation 

equation of the liquid phase and approximate analytical solutions of the perturbed 

temperature field inside the mean spherical droplet will be obtained for both feeding regimes. 

Based on Rayleigh criterion [18], a frequency response of the vaporization process to small 

harmonic oscillations in pressure will be evaluated for both feeding regimes.  Variations in 

the frequency response factor curves with the vaporization characteristic times ratio will also 

be presented. Results comparisons will then be made between the two different feeding 

regimes as they represent each other a specific boundary condition controlling the whole 

injection process. The mass response factor of the mean droplet model with thermal 

convection effect will be equally compared to that of the pure conduction model and results 

will be analysed.  
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2 Description of the unperturbed state 

Today’s most theoretical studies of combustion instability in liquid-fuelled engines are based 

on numerical models and simulations of single vaporizing droplet dynamic response to 

ambient pressure and/or velocity perturbations (e.g., [3, 5]). But, even while assuming certain 

simplifying assumptions, analytical approaches that include more complex aspects of the 

problem are needed to get a better understanding of the mechanism. Those approaches may 

then serve to improve the development of numerical codes as for instance Computational 

Fluid Dynamic (CFD) codes (see [19]). One of those analytical approaches can stem from 

Heidmann analogy of a spherical vaporizing droplet of constant volume. 

2.1 General assumptions 

As mentioned in the introduction, the computation of the dynamic response of the 

vaporization process to pressure oscillations is mostly based on classical spray vaporization 

models. Existing evaporation models which are applicable to modern many-droplet 

calculations as usually performed in CFD codes were reviewed by Miller et al. (1998) in [20]. 

Therein, eight sub-models were compared and efforts were made to subject theoretical 

predictions of each model to experimental scrutiny. Results show that the model based on 

non-equilibrium Langmuir-Knudsen evaporation law formulation with an infinite liquid 

conductivity should be used for general gas-liquid flow calculations. Thereby, this model is 

shown to require less computational effort than the remaining models and to provide more 

accurate predictions. The Abramzon and Sirignano model [21] is also shown to provide 

improved agreement with experimental results, compared especially to the classical rapid 

mixing model. But, their model may be costly for many-droplet simulations. However, in the 

present study, the vaporizing spray is modelled by a single mean spherical droplet. As a 

consequence, the gas-phase sub-model equations used in the present paper are those derived 

by Prud’homme et al. [15] from the Abramzon and Sirignano model. These equations are 
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briefly recalled in subsection 2.3 for a free vaporizing droplet at its unperturbed or stabilized 

state. For such a free vaporizing droplet, that is a single injected droplet during its course of 

evaporation, this state corresponds to a state of rest in an infinite atmosphere and is 

characterized by [15, 16]: constant average evaporation rate, uniform temperature of 

saturated vapour at the transient droplet surface, and equal velocities of the ambient gas flow 

and of the droplet. Below, these assumptions will be discussed in connection to the stabilized 

mean spherical droplet. Concerning the liquid phase sub-models usually used in CFD codes, 

five different groups classed in ascending complexity order were reported by Sazhin et al. 

(2006) in their comparative analysis review [22]. Among the classes, the present description 

of the supplied droplet at the stabilized state may be relevant to class four, as both finite 

liquid thermal conductivity and liquid re-circulation (restrained here to the radial convection) 

are considered for the droplet. Indeed, contrary to the classical model of Heidmann, our 

present model does not assume that the mean droplet reaches a steady and uniform 

temperature in the interior even when that droplet is in its stabilized state. From now on, all 

primed quantities will denote perturbed quantities (i.e. ' ( ) /x x x x  ) whereas all barred 

quantities will indicate mean values corresponding to the stabilized state. 

 

In the physical model, the feeding is supposed to be done at the centre of the mean droplet 

and the liquid circulation within the droplet is distributed throughout in order to maintain its 

spherical symmetry configuration. During the injection, the centre of the droplet is assumed 

to be adiabatic (zero temperature gradient) or isothermal (imposed constant temperature). 

These two thermal regimes here considered represent two different boundary conditions 

controlling the whole injection process of a spray of repetitively injected droplets into the 

combustion chamber. As an unheated spray injection process is here modelled by the 

adiabatic feeding regime at the mean droplet centre, the isothermal feeding regime at the 
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same droplet centre can be viewed as an idealized modelling of a specifically preheated spray 

injection process. Some studies have shown that the reduction in kinematic viscosity resulting 

from fuel preheating improves the combustion and emissions performance of the engine [23, 

24]. Now, this isothermal feeding regime is here taken into account by supposing the injected 

fuel at the constant mean temperature ST , ST being the spatially uniform although time-

varying temperature of saturated vapour at the stabilized mean droplet surface. Indeed, in this 

stabilized state, actual change in ST  value can be considered insignificant and ST  is almost 

equal to ST
 
since the mean droplet is maintained at a fixed size. The estimation of the 

injected fuel temperature ST
 
for the isothermal regime will be based on the liquid wet bulb 

temperature WBT  ( S WBT T ), given that, WBT  is essentially the steady state surface 

temperature achieved during evaporation of free droplets. The wet bulb temperature should 

be replaced by the boiling temperature BT  only when its estimate is unavailable [20]. 

Contrary to the classical adiabatic condition which states that the heat flux is null at the 

spherical droplet centre, the isothermal condition doesn’t assure the regularity of the heat flux 

at the droplet centre. Therefore, the spherical shape of the mean droplet is no more 

guaranteed in this feeding regime. Nevertheless, we assume for both feeding regimes that the 

mean droplet remains spherical during the feeding process. Thus, using simplifying 

assumptions, the present study aims to compare the effect of the two extreme cases bounding 

the possible range of real liquid fuel inlet temperatures on a subcritical combustion instability 

phenomenon.  

 

The stabilized mean droplet diameter is supposed sufficiently smaller (about 100 μm) than 

the wave length, so that the acoustic pressures can be assumed to be temporally undulating 

but spatially invariant [25]. The present mean droplet configuration is different from that of 
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the global equivalence ratio in the spray region by the Sauter Mean Diameter (SMD) used for 

example in [26] and can be rather linked to the Arithmetic Mean Diameter configuration. 

This choice is motivated by the analytical approach of the problem since it leads for the mean 

droplet to an energy conservation equation with fixed boundary conditions. In effect, we 

consider a stabilized mean spherical droplet, with a constant average radius Sr  within a hot 

gaseous environment of infinite extent. In these conditions, the actual instantaneous 

evaporation rate M  can be assumed nearly equal to its constant mean rate value M at which 

the feeding process is realized at the centre. During this process, the density L , the specific 

heat Lc and the thermal conductivity Lk  of the droplet will be treated as constants as assumed 

in most subcritical evaporation models [21, 27]. For the stabilized state, these fuel properties 

can be evaluated at some average temperature 00.5( )Lref WBT T T   or 00.5( )Lref BT T T 
 
as 

in [21] with 0T  denoting the injected liquid initial temperature at the chamber ambient 

pressure. The feeding is realized by the same fluid, using a point source located at the centre 

of the droplet, in such a way that thermal dilatation of the liquid phase is negligible. We will 

assume that the local feeding rate M  is distributed throughout the droplet as shown in Fig. 

1a. Out of the radial thermal convection effect inside the continuously fed droplet from its 

centre to its evaporation surface, any other convective transport or liquid recirculation 

phenomenon within the droplet will not be taken into account in the analysis. Only 

vaporization dynamics will be considered for the gas-phase near the droplet. The influence of 

combustion will be limited to imposing a stationary composition and temperature at infinity. 

The combined effects of vaporization dynamics and combustion kinetics, and their eventual 

retro-action on ambient pressure will not be taken into account here. The mean spherical 

droplet is assumed to be vaporizing in combustion gases, composed of stoichiometric 

reaction products. As already mentioned in the introduction, the gas-phase near the droplet 
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surface is supposed to evolve in the quasi steady regime and equilibrium conditions at the 

droplet/gas interface are assumed for the stabilized state. Far from the mean evaporating 

droplet, the gaseous environment is at constant temperature CT  and pressure CP . Neither 

critical nor supercritical phenomena are considered since the system pressure CP  is much less 

than the critical pressure of the liquid. Radiation and second-order effects such as Soret and 

Dufour effects are also neglected. The boundary conditions for the supplied droplet are 

shown in Fig. 1b. Subscripts L  and l  refer to liquid-phase whereas subscript S  refers to the 

condition at the droplet surface. 

 
Fig. 1 a The mean vaporizing droplet, continuously fed by a point source placed at its centre. 
b Boundary conditions for the supplied droplet: parameters  , D  and k denote respectively 
the density, the mass diffusion coefficient and the thermal conductivity of the gas-phase. The 
subscripts S  and C  refer respectively to the conditions at the droplet surface and at infinity 
(i.e. the combustion chamber) and jY  designates the mass fraction of jth species.  

 

2.2 Characteristic times 

The total mass balance of the supplied droplet is:  

                                                             
dM

M M
dt

                                                      (1) 

where M  is the stationary flow of injection and M the instantaneous flow of evaporation of 

the droplet. In a stabilized regime, one has: , 0M M dM dt   and M M .  The residence 

time of the mean spherical droplet can then be defined as the mean lifetime of an individual 

   a           M                                 b       
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vaporizing droplet in the array of repetitively injected droplets. Thus, the residence time of 

the mean droplet corresponds to the residence time of the injected liquid for the droplet as 

this time replaces the notion of the free droplet lifetime in the present situation of constant 

volume. The parameter M  being the total mass of the supplied droplet and M its mean 

value, the mean residence time is defined as the ratio v M M  
 
of the mass M and the 

stationary feeding rate M . The transfer time by thermal diffusion process is 2
T S Lr  , 

where L L L Lk c   designates the thermal diffusivity of the liquid. We can thus define the 

thermal exchange coefficient of the vaporization process as the timescale ratio 

9 v T v T       (the coefficient 9 permits to obtain later a simple expression of the 

transfer function). We will also consider the vaporization dynamic of the mean droplet in a 

pressure fluctuating flow field. Such a problem is very relevant to the analysis of combustion 

instability in liquid propellant rockets or liquid-fuelled ramjets where the pressure, velocity 

and gas flow temperature may oscillate in the frequency range of 100-15000 Hz [6]. In order 

to provide in our present study a parameter that may be used to characterize the instability 

domain for any fuel, we will consider the reduced frequency defined as 3 vu  where  is 

the pulsation of ambient pressure harmonic perturbations. 

2.3 Stabilized state equations 

Since the radial thermal convection effect is taken into account, the temperature lT of the 

liquid is a function of radial coordinate r and time t  i.e. ( , )l lT T r t and verifies:   

 2

2
0ll l L

L L L L r

r TT T k
c c v

t r r r
 

 
  

  
                                       (2) 

where 0 Sr r  with rv
 
the central injection velocity expressed as 24r Lv M r  .                                          
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Equation (2) is subject to boundary conditions 
0,

0l

t

T

r





 and ( , ) ( )l S ST r t T t for the adiabatic 

injection at the droplet centre or to (0, )l ST t T  and ( , ) ( )l S ST r t T t for the isothermal 

injection at the droplet centre. The heat LQ  transferred into the droplet is given by: 

                                          (3)  

where Q  and  are respectively the external gas heat flux and the latent heat of vaporization 

per unit mass of the liquid. This condition couples the gas and the liquid-phase solutions at the 

spherical droplet surface. 

 

The gas-phase includes a stabilized mean droplet surface in local evaporation equilibrium 

with an ideal gas mixture evolving in a quasi-steady regime. The instantaneous mass 

vaporization rate from the droplet surface can be calculated using the following equations: 

                                    2 ln 1 4 ln 1S M S T
p

k
M D r Sh B r Nu B

c
                                  (4)  

with the Spalding parameter for mass exchange )1/()( FSFCFSM YYYB   and for heat exchange 

  /( )T p C S LB c T T Q M    . The gas-phase properties are: the density  , the mass 

diffusion coefficient D , the thermal conductivity k  and the specific heat at constant pressure
 

pc . The Sherwood Sh and Nusselt Nu  numbers were introduced by Abramzon and 

Sirignano in their extended film model [21]. The mass fraction of species j  is denoted jY  and 

CT  is the ambient temperature.  The subscripts F, S, and C, represent respectively the fuel, the 

droplet surface and the conditions far from the droplet. The saturated vapour pressure

   exp /( )sat S Sp T a b T c   , (with related coefficients a , b and c ), is connected to the 

mole fraction of the droplet vapour at the droplet surface by the relation  FS sat Sp X p T , 

where p  is the ambient pressure, jX  the mole fraction of species j  for the ideal gas mixture. 

2

,

4
S

l
S L L

r t

T
r k Q Q M

r
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Then, we can relate the mass fraction FSY of the droplet vapour at the droplet surface to the 

mole fraction FSX : 

                                                   
F

FS FS
F FS A AS

Y X
X X



 

                                                (5) 

where j  is the molecular weight of species j  (the gaseous mixture is made up of fuel 

species F  and diluted species A  while the liquid is of only fuel species F ). Given that 

temperature and concentrations are not constant in the environment of the droplet, the 

averaged properties can be evaluated at some reference temperature  S r C ST T A T T   and 

composition  F FS r FC FSY Y A Y Y   , where 1 3rA   will be chosen. The calculations for 

linear analyses were performed [15] with both Sherwood and Nusselt numbers taken equal to 

2 and Lewis number taken equal to unity. 

3 Linear Analyses for Small Perturbations 

Our objective is to build an approximate analytical model of reference for the harmonic 

perturbations in pressure. To this end, we will supplement the previous developments of the 

models of the continuously fed spherical droplet [13-16] by taking into account the not yet 

studied radial thermal convection effect on the process, for both adiabatic and isothermal 

feeding cases. 

3.1 Linear analysis of the liquid-phase equations 

The velocity perturbation is assumed equal to zero. The wave pulsation accounts for the 

acoustic influence on the evaporation rate and the internal temperature perturbations since all 

the derived solutions are functions of the reduced frequency 3 vu  . Introducing then small 

harmonic perturbations of pulsation  of the form      ˆ' expf f f f f r i t   , the 

ambient constant pressure Cp p will take the perturbed form  ˆ' expCp p i t . We set
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     ' ˆ( , ) ( , ) ( , ) ( , ) expl l l l lT r t T r t T r t T r t T r i t    and  ˆ ( )expL LQ Q r i t   . Equation 

(2) can then be transformed to:  

   2

2

1
0

3

l
l

lT

d TdT
i T

d d


 

  
  

                                                    
(6)

 

where, instead of the radial variable r ( 0 Sr r  ), l̂T is rather taken as a function of the 

reduced radius variable
 

Sr r 
 
( 0 1  ).  In connection with  , the boundary conditions 

in the adiabatic feeding regime are : 

 



 
0

0

(1)

l

l S

dT

d

T T














                        (7) 

and become in the isothermal feeding regime: 

                                                           



 
(0) 0

(1)

l

l S

T

T T

 



                           (8) 

 

We now consider the two conjugate complex numbers    
1

2
0 1 2 Ls i      and 

   
1

2
0 1 2 Ls i     , 0s  and 0s  being the two complex roots of the characteristic equation 

2 0Li s   obtained from Eq. (6) when neglecting the convective term
1

3
ldT

d 
. In the 

adiabatic centre case a solution of Eq. (6) can be sought in the form of 

   0( ) ( ) 1 cosl ST G s r      while in the isothermal feeding case a solution will be sought 

in the form of    0( ) ( ) 1 cosl ST H s r     , with G and H referring to functions to be 

determined. Therefore, using in the neighbourhood of 0  , the second-order truncated 

expansions of sine and cosine functions that are  0 0sin S Ss r s r   and 

   2

0 0cos 1 2S Ss r s r  , we deduce that the functions G  and H  must respectively 

verify the following second order equations:  

 

2
2

2

( ) 3 ( )
2 0

d G d G

d d

  
  

    
 

               (9) 

and 
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2
2 2 2 2

02

( ) 3 ( )
2 2 ( ) 0S

d H d H
s r H

d d

    
  

     
 

               (10) 

Equations (10) and (9) are respectively a double confluent Heun equation and its degenerate 

case. By using the boundary conditions Eq. (7) in the adiabatic centre regime, an approximate 

analytical solution of Eq. (6) can be expressed: 

   

  
0

2
0

3 1
exp 1 1 cos

2ˆ ( )
1 cos

S S

l
S

T s r

T
s r


 




  
   

  
                                                   

(11) 

Adopting now the notation of the Maple manual, a particular solution of Eq. (10) over the 

open range 0 1   (isothermal feeding case) can be expressed as: 

      
3

2 2 2
2 1 2 3 4H exp( 3 ) HeunD , , , , 1 1C x x x x         where 2C is an arbitrary 

constant and     2 2
1 2 3 4HeunD , , , , 1 1x x x x    is the double confluent Heun function 

with the corresponding four parameters: 1 0x  ,  2 2
2 9 24 4x iu      , 

  2
3 3 8 3 2x iu   and  2 2

4 9 24 4x iu     . We recall that the parameter 3 vu   

is the reduced frequency previously defined in subsection 2.2.  Finally, by using the boundary 

conditions in the isothermal feeding regime i.e. Eq. (8), an approximate analytical solution of 

Eq. (6) can be expressed in the form: 

  

  

2

0 1 2 3 4 2

5

2
0

0, 0

3 1 1ˆ exp 1 1 cos HeunD , , , ,ˆ ( ) 2 1
, 0 1

1 cos

S S
l

S

T s r x x x xT

s r



   







                   
 

          (12) 

Since it oscillates indefinitely as it approaches 0   by the positive direction, the 

approximate analytical solution of the isothermal centre case presents an essential 

discontinuity at 0   contrary to that of the adiabatic centre case Eq. (11) which is rather 

regular at 0  .  In fact, neither the continuity nor the regularity of the function l̂T  at this 

centre point do intervene in the calculation of the mass response factor which is of our 
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concern, but only the regularity conditions at the droplet surface 1   are needed. These 

regularity conditions are well verified by both approximate solutions Eq. (11) and Eq. (12). 

Thus, for both feeding regimes, the flow condition at the droplet surface Eq. (3) which now 

reads 
1

ˆ
ˆ4 l

S L S L

dT
r k T Q

d







   can apply to the derived approximate solutions. That leads to: 

                                                       ˆ ˆ4 ,L S L S SQ r k T E u T                                        (13) 

where E  is a function of u  and  . Hence, we found for the adiabatic feeding case: 

        
0 0 0 0

0

sin( ) 2 cos( ) 3cos( ) 2 3
,
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whereas for the isothermal feeding case, calculations yield:  
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(15) 

with   
1

2
0 1 3 2Ss r i u   ,   

1

2
0 1 3 2Ss r i u   , 3 vu  and v T    . 

3.2 Linear analysis of the gas-phase equations 

We will now recall the linearized equations for the liquid/gas interface used in [15, 16]. At 

the stabilized state, any thermodynamic variable f  of the gas-phase has a uniform 

distribution f . Introducing small harmonic perturbations    ˆ' expf f r i t , we look for 

the relation between the imposed chamber perturbation  ˆ' expCp p i t  and the resulting 

mass flow rate perturbation  ˆ' expM M i t  . From the equations of the gas-phase (see 

subsection 2.3), it was deduced that [15]: 

           ˆ ˆ ˆ
1 S C

iu
M b T p

iu
 


                (16) 

with 3 vu  ,  ˆ' expM M M M i t      and: 

                                                       ˆ ˆˆL C SQ M ap µT                             (17) 
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where  ˆ expL L L L LQ Q Q Q Q i t      as 0LQ  . The coefficients involved in Eq. (16) 

and Eq. (17) are expressed as follows:  
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In these expressions,   stands for the isentropic coefficient (assumed to be constant), the 

function   equals the quantity   AC FS F AS FS FC F FS A ASY Y Y Y Y X X      and the latent 

heat is given in the form: 2 2( )S F Sb RT T c   with R  denoting the universal gas constant. 

3.3 Mass response factor 

The response factor N  is expressed as the ratio of the magnitude of heat or mass perturbation 

to the magnitude of the pressure perturbation and thus, includes phase relations. The reduced 

pressure perturbation is defined as  'p p p p  , and the resulting reduced heat or mass 

perturbation is  'q q q q  . The response factor N  is thus defined as: 
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          (18) 

where the double integral value is calculated over a given period of time t  in a finite volume 

V . For sinusoidal oscillations which are uniform over a finite volume, the response factor 

can be reduced to  ˆ ˆ cosN q p  , where q̂  and p̂ are the moduli and   the phase 

difference between 'q  and 'p . We now consider the complex transfer function  ˆ ˆCZ M p 

whose expression here is brought about using Eq. (13), Eq. (16) and Eq. (17): 
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The parameters
 

 3A ab     and 3B   are thermodynamic coefficients related to 

the fuel physical properties with L Sc T   . The mass response factor N  can equally be 

deduced as the real part of the transfer function Z . From now down this paper, we will 

consider and call “response factor”, the reduced response factor, which is the real part of the 

transfer function Z  : 

                                                                 N
Z


                                                         (20)  

The response factor is assumed positive when the vaporization rate and the chamber pressure 

are either above or below their mean values. But when the vaporization rate and the chamber 

pressure are on the opposite sides of their means it is then assumed negative [18]. Hence, the 

phase difference   between the vaporization rate and the chamber pressure, defined as

 arg Z  , appears to be a key parameter in pressure-related-oscillations analyses. This 

phase angle was shown to remain insensitive to the chamber mean pressure magnitude [3]. 

We now briefly recall, concerning the pure conduction model of the spherical mean droplet 

[15, 16], that the complex transfer function Z
 
has the same expression as laid in Eq. (19). In 

that model, the expression of the function E  for the adiabatic injection case was 

   0 0, 1 cothS SE u s r s r    whereas for the isothermal injection case calculations yielded 

   0 0, 1 tanS SE u s r s r    with the same parameters as in the present model:

  
1

2
0 1 3 2Ss r i u   ,   

1

2
0 1 3 2Ss r i u   , 3 vu  and v T    . 

4 Results and discussion 

As for the pure conduction models [15, 16], calculations and curves are performed in the 

present analysis with the thermodynamic coefficients 10A  and 100B  . These values of A  

and B  correspond approximately to orders of magnitude of values encountered in the 

classical fuels [28]. With respect to the two feeding regimes, the treatment of the data will 
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consist to relate the mass response factor to the effects respectively of the radial thermal 

convection and of the process characteristic times and again of the thermodynamic 

coefficients A and B . Figure 2 shows, for both adiabatic and isothermal feeding regimes, 

response factor curves as functions of the reduced frequency 3 vu  for arbitrary values of 

the exchange coefficient v T    . For comparison purposes, corresponding response factor 

curves in the pure conduction model are reproduced in Fig. 3.  

4.1 General remarks 

In the adiabatic centre regime (Fig. 2), the response factor curve shows always a positive 

response region corresponding to instability domain. As in the pure conduction model (Fig. 

3), a typical response factor curve arises from zero at the lowest frequency, exhibits a peak 

value around a fixed reduced frequency 3pu   and then decreases and later on takes negative 

values at higher frequencies. The cut-off reduced frequency cu , corresponding to a zero 

response factor, is to be considered as a critical frequency since it divides the frequency 

response into regions of destabilizing and stabilizing influences. When   increases from 1 

on, the critical frequency cu tends to decrease quickly first, then reaches a minimum value for 

  about 30 and then again begins to increase very slowly to finally attain a limit frequency 

value slightly greater than 55  (Figs. 2c and 2e). In fact, in this feeding regime, and even for 

the pure conduction model, once 150  , all the response factor curves tend to collapse into 

a single line (Figs. 2e and 3e).  

 

Concerning the isothermal centre regime, as in the pure conduction model, existence of cut-

off frequency cu depends closely on values of  . When   increases from 1 to a value about 

200, the critical frequency cu varies quite quickly between 20 and a value about 65, then 

completely vanishes on the layout for higher values of   ( 225  ). Compared with the pure  
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Fig. 2 Influence of reduced exchange coefficient   on the response factor  N Z   for 

the mean spherical droplet model with thermal convection effect; 10A  and 100B  . a 
Adiabatic centre. b Isothermal centre. c Adiabatic centre. d Isothermal centre. e Adiabatic 
centre. f Isothermal centre 

   a                                      b 

   

   c                                       d 

 

   e                                         f 
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Fig. 3 Influence of reduced exchange coefficient   on the response factor  N Z    for 

the mean spherical droplet model without thermal convection effect (pure conduction model); 
10A  and 100B  . a Adiabatic centre. b Isothermal centre. c Adiabatic centre. d Isothermal 

centre. e Adiabatic centre. f Isothermal centre 

     a                                          b 

 

      c                                         d 

 

      e                                          f 
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conduction model, the critical frequency values are greater whereas the positive peak value 

stand always at about the same frequency 3pu  . Also, for the model with consideration to 

thermal convection effect, the peak value grows very quickly and seems to tend to infinity for 

a value of   about 200. In fact, larger peak values growing beyond the unity value appear for 

100 200  . Especially, for   about 200 the frequency response curve for isothermal 

feeding regime asymptotically diverges from unity to infinity, along the vertical line passing 

at pu . But curves for higher values of   ( 225  ) show negative response factors for all 

frequencies. This behaviour is globally similar to that observed in the pure conduction model 

(Figs. 2f and 3f) except that more large values of critical frequencies cu and greater relative 

exchange coefficient   appear in the present model.  

 

In both adiabatic and isothermal feeding regimes, the frequency response curves are quite 

similar for relatively small values of the exchange coefficient (0 1  ) as shown in Figs. 2a 

and 2b, except that the isothermal feeding regime presents more large cut-off frequency 

values and consequently more large instability domains. For both regimes, the peak responses 

seem to be at a same specific frequency pu , which is relatively unaffected by the variation of 

 . The main differences in the frequency response for the isothermal injection regime 

compared with the adiabatic one are the larger peak values of the response factor at the 

particular frequency pu
 
and the absence of a positive response region when 225  . 

4.2 Effects of the radial thermal convection 

First, in the adiabatic feeding regime, when 0 1  , response factor curves of the mean 

spherical droplet model with thermal convection effect show, against all expectations,  lower 

cut-off frequencies than that of the pure conduction model (Figs. 2a and 3a). This fact can be 

readily related to the nature of the adiabatic feeding regime since, in this regime, the thermal 

wave propagation from the droplet surface to its centre is counterbalanced by the radial 
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thermal convection effect from the droplet centre to the surface. When the exchange 

coefficient   is low, that is v T  , the thermal convection effect can be considered more 

important than that of the thermal conduction, and being in the adiabatic feeding regime, the 

temperature gradient 


lT





 is null at the droplet centre. To the contrary, given that 


lT





 is well 

above 0 at the droplet centre in the isothermal feeding regime, the thermal convection will 

rather help the mean spherical droplet to quickly hold its thermal equilibrium, favouring 

therefore the thermal wave penetration inside the droplet and the vaporization rate response.  

 

 Considering again the adiabatic feeding regime, a response factor curve shows necessary a 

cut-off frequency cu depending on the value of the exchange coefficient  . In this feeding 

regime, calculations show that  

                            (21) 

when   , that is T v   (the thermal convection effect is no more dominant).  

Therefore the critical frequency tends to a constant value 4 14 10 36cu AB A B     (

55.7  for 10A   and 100B  ). These values can be compared with the limit values obtained 

in the same feeding regime for the pure conduction models, which are [29]: 

                                          

2 4

2 2 2 4
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(22) 

and  cu A AB B    ( 33.3  for 10A   and 100B  ) when    . In fact, once 1  , 

the radial thermal convection effect strongly affects the process by extending considerably 

the positive response domain even if this convection effect remains unimportant in the 

system.  

2 4

2 2 2 4

(4 14 10 36)

36 24 4 (37 24 4 )
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B B B B u u
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Considering now the isothermal feeding regime, the response factor curve may show negative 

response for all frequencies provided that   is sufficiently large ( 225  ). This fact is 

confirmed by theoretical consideration since, in this feeding regime, calculations give:  

                                                                   
2

21

N u

u





                                                        (23) 

when   . Indeed, in this feeding regime, the limit function (23) is identical to that of the 

pure conduction model of the mean spherical droplet and even to that of the pastille-shaped 

droplet model with or without respect for the thermal convection effect [29]. In short, in both 

adiabatic and isothermal regimes, the taking into account of the thermal convection effect 

once 1  , strongly affects the mass response factor by enlarging notably, whenever it exists, 

the scope of the instability domain. 

4.3 Effects of process characteristic times 

It has been shown (1994) that, in the frequency range of interest in ramjet combustion 

instabilities (100-8000 Hz), the droplet lifetime and the period of pressure oscillation can be 

of the same order of magnitude [7]. Indeed, in accordance with previous studies of the mean 

spherical droplet in the adiabatic feeding regime and even through the analysis of the pastille-

shaped droplet subjected to the same regime [13-16, 29], the response factor peak value 

always occurs at the same reduced frequency of about 3u  , that is 3 3p vu    or 1v

. Now, in isothermal centre cases (Figs. 2b, 2d, 2f and 3b, 3d, 3f), a positive peak value of the 

response factor, when it exists, appears around the same frequency pu . According to Rayleigh 

criterion, this reduced frequency 3 3p vu   , at which the droplet lifetime (injected liquid 

residence time v ) matches the period of pressure oscillations1  , induces a positive peak 

response factor because it favours mass transfer in phase with pressure oscillation. Thus, 

regardless of the type of the feeding regime, whenever positive responses appear in the 
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system, the vaporization rate can fully respond to the acoustic oscillations only when the 

droplet lifetime equals the period of ambient pressure oscillations.  

 

Following Rayleigh criterion, the combined effect of the three process characteristic times 

(thermal diffusion time 2
T S Lr  , droplet residence time v  and period of pressure 

oscillations1  ) can be envisaged in the light of the well-known time-lag model [4, 6, 7]. 

Figure 4 shows, for both adiabatic and isothermal feeding regimes, phase-angle curves as 

functions of the reduced frequency 3 vu  for arbitrary values of the exchange coefficient

v T    . It appears that, all the above-mentioned trends concerning Fig. 2 are readily 

confirmed by the curve profiles obtained in Fig. 4. In the adiabatic feeding regime (Fig. 4a) 

phase-angle curves collapse in a single line once 1  , accounting therefore for response 

factor curves profiles obtained in Figs. 2a, 2c, 2e. More importantly, the phase-angle curves 

unique cut-off frequency can be precisely approximated to the peak frequency 3 3p vu    

at which the vaporization rate oscillates perfectly in phase with the acoustic pressure ( 0   ). 

The curve profiles observed for the isothermal feeding regime (Fig. 4b) are also highly 

suggestive, in comparison with the profiles obtained in Figs. 2b, 2d, 2f. Indeed, considering

200  , the phase lag decreases from 2  to a slightly inferior value when the frequencyu

increases from 0 to about the peak frequency pu . And then,   increases slowly till the 

maximum value of , expressing therefore a progressive damp of instability in the system. 

Now, for 250   ( 200  ), the phase-lag curve exhibits, about the frequency pu , an 

instantaneous change from the extreme value   to the other extreme value  , accounting 

therefore for the intriguing changes noted in the related response factor curves profiles (Fig. 

2f). In practice, the residence time depends on the mean droplet diameter size, the thermal 

diffusion time depends on the propellant diffusivity, and the period of the oscillation can be 
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related to the shape of the combustion chamber. The judicious choice of these parameter 

values in agreement with the above results may permit to obtain more stability in propellant 

combustion systems. 

Fig. 4 Influence of reduced exchange coefficient   on phase lags   of vaporization rate with 
regard to acoustic pressure for the mean spherical droplet model with thermal convection 
effect; 10A  and 100B  . a Adiabatic centre. b Isothermal centre 
 
4.4 Effects of the thermodynamic coefficients A  and B   

Unlike the adiabatic feeding case, curves in the isothermal feeding regime (Fig. 2f) show 

intriguing changes in their profiles, once   gets superior to a certain value d . An explanation 

given above indicates a rapid realisation of the thermal equilibrium inside the mean droplet in 

the isothermal feeding regime, and then suggests possible influences of fuel physical 

properties effects in the system. From this point of view and in order to determine the specific 

value d , the ratio 3Tx u   
 
may be particularly useful in this analysis in as much as 

the residence time v  does not intervene in it. But, the thermal diffusion time T  and the 

pulsation of the oscillating wave   intervene. Therefore, taking this ratio negligible at the 

fixed peak frequency 3 3p
p pu     

 
comes to taking the thermal transfer time by diffusion 

T negligible compared to either the oscillation period 1p p  or the residence time p
 . 

   a                                        b 
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Thence, as in [16], an estimation of the complex transfer function Z  (Eq. (19)) can be 

obtained in the neighbourhood of 0x  by a limited expansion according to the ratio x u   

while assuming u  closer to 3pu  . As this ratio can be supposed negligible in the expression 

of the complex transfer function Z  provided that   is taken sufficiently large, the second-

order truncated expansion in the neighbourhood of 0x   in the isothermal centre regime 

implies: 
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2 2
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2 2





  
 
   
 

                                                     (24) 

But, in the adiabatic centre regime, the approximation gives: 

                                                             
 

  
iu A-3

Z
1+iu B+3

                                                      (25) 

In the isothermal feeding regime, the specific value of  , around which intriguing changes of 

response factor curve profiles are observed, can be deduced from expression (24) by 

cancelling the denominator, that is, by taking 2 3d B    ( 203  for 100B  ). These results 

confirm the important role played by the thermodynamic coefficient 3B  
 
by making, in 

correlation with  , high and nonlinear triggering of instability a possibility. A similar case of 

correlation was sufficiently highlighted in the analysis of the mean droplet pure conduction 

model [16] where d  has also been evaluated ( d B   for 100B  ). Moreover, depending on 

the feeding regime, expressions of the complex transfer function Z  in Eq. (24) and (25) may 

serve to furnish estimations of peak values of response factor curves by means of their real 

parts. Recent studies as that of Hsiao et al. (2011), of Lafon et al. (2014) and of Sirignano 

(2015) [3, 5, 30] show that the rapid variations of fluid thermodynamic properties near the 

critical mixing point are the major factor contributing to an abrupt change observed in 

droplets response. In fact, effects of fluid thermodynamic properties are rather connected to 



29 
 

critical and supercritical vaporization processes through recent publications on this subject. 

But, the present study of the mean spherical droplet show that, an abrupt variation in the 

evaporating mass frequency response can occur even in a subcritical vaporization of a 

specifically preheated fuel. These results may be particularly beneficial for instability control 

in preheated and/or premixed fuel combustion systems. 

5. Conclusions 

Combined effects of thermal conduction and convection on frequency response of a 

vaporizing spray to pressure oscillations were studied. As in the classical Heidmann 

configuration, the mean spherical droplet allowed us to evaluate the mass transfer response to 

pressure oscillations. Two thermal forcing types were considered: constant temperature 

(isothermal injection regime) or zero temperature gradient (adiabatic injection regime). 

Approximate analytical solutions were derived for mass response factor whereby differences 

and similarities between the two forcing regimes were determined. Considering both types of 

the injection regime, comparisons were also made with the pure conduction model of the 

mean spherical droplet. 

 

Important differences as well as similarities were observed between the cases analyzed. We 

have found that whenever the response factor has positive values pointing to instability, the 

maximum value is always reached at a particular reduced frequency. This particular 

frequency matches the period of the ambient pressure harmonic disturbances with the 

residence time of the mean spherical droplet. In the adiabatic feeding regime, assumed with 

or without thermal convection effect, the response factor peak values are shown to be almost 

constant relatively to the variation of the exchange coefficient. But, in the isothermal feeding 

case, response factor peak values vary abruptly by tending first to positive infinity when the 

exchange coefficient approaches a specific value while remaining lower than it, and then, to 
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negative infinity once the exchange coefficient gets superior to this value. The latter is shown 

to be closely correlated with a certain thermodynamic coefficient that relates to fuel physical 

properties. These trends can be readily shown by using a phase-angle representation as 

mainly practiced in most time-lag models. Apart from these main differences, we saw that, 

for the exchange coefficient tending to zero, response factor curves are quite similar in both 

adiabatic and isothermal feeding regimes depending on the taking into account or not of the 

thermal convection effect.  

 

This study has shown that, with or without taking into account the radial thermal convection 

effect in isothermal injection cases, particular correlations of the exchange coefficient with 

parameters depending on fuel physical properties may be a plausible cause for high frequency 

response occurrence in combustion chambers. Theoretical and experimental studies are still 

needed to clarify these issues, since the adiabatic and isothermal feeding regimes here 

considered are the extreme cases of a more generalized injection regime that combines the 

two thermal forcing types. However, the present linear analysis has the advantage to provide 

dimensionless parameters that may be used to characterize and examine the dynamic 

behaviour of the vaporization process for any fuel. The physical results obtained may also 

help to interpret or predict the occurrence of strong perturbations in vaporization and 

combustion processes. 
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