E. Niedermeyer, L. Da-silva, and F. Electroencephalography, Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams and Wilkins, 2004.

C. G. Herrera, Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness, Nat Neurosci, vol.19, pp.290-319, 2016.

M. L. L?rincz and A. R. Adamantidis, Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics, Prog Neurobiol, vol.151, pp.237-253, 2017.

N. Leresche, S. Lightowler, I. Soltesz, D. Jassik-gerschenfeld, and V. Crunelli, Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells, J Physiol, vol.441, pp.155-174, 1991.

M. Steriade, A. Nunez, and F. Amzica, A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components, J Neurosci, vol.13, pp.3252-3265, 1993.

M. Steriade, D. Contreras, C. Dossi, R. Nuñez, and A. , The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks, J Neurosci, vol.13, pp.3284-3299, 1993.

T. Bal, M. Von-krosigk, and D. A. Mccormick, Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro, J Physiol, vol.483, pp.641-663, 1995.

T. Bal, M. Von-krosigk, and D. A. Mccormick, Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro, J Physiol, vol.483, pp.665-685, 1995.

S. W. Hughes, D. W. Cope, K. L. Blethyn, and V. Crunelli, Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro, Neuron, vol.33, pp.947-58, 2002.

S. W. Hughes, Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus, Neuron, vol.42, pp.253-68, 2004.

V. Crunelli, D. W. Cope, and S. W. Hughes, Thalamic T-type Ca2+ channels and NREM sleep, Cell Calcium, vol.40, pp.175-190, 2006.

R. Llinás and H. Jahnsen, Electrophysiology of mammalian thalamic neurones in vitro, Nature, vol.297, pp.406-414, 1982.

M. Deschênes, M. Paradis, J. P. Roy, and M. Steriade, Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges, J Neurophysiol, vol.51, pp.1196-219, 1984.

D. Attwell and A. Gibb, Neuroenergetics and the kinetic design of excitatory synapses, Nat Rev Neurosci, vol.6, pp.841-849, 2005.

H. Berger, Uber das Elektroenkephalogramm des Menschen, Arch Psych, vol.87, pp.527-570, 1929.

S. W. Hughes and V. Crunelli, Thalamic mechanisms of EEG alpha rhythms and their pathological implications, The Neuroscientist, vol.11, pp.357-372, 2005.

V. Crunelli, T. I. Tóth, D. W. Cope, K. Blethyn, and S. W. Hughes, The 'window' T-type calcium current in brain dynamics of different behavioural states, J Physiol, vol.562, pp.121-129, 2005.

A. Lüthi, Sleep Spindles. The Neuroscientist, vol.20, pp.243-256, 2014.

G. T. Neske, The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and Functions, Front Neural Circ, vol.9, p.88, 2016.

D. A. Mccormick and T. Bal, Sleep and arousal: thalamocortical mechanisms, Ann Rev Neurosci, vol.20, pp.185-215, 1997.

L. M. Carracedo, A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms, J Neurosci, vol.33, pp.10750-10761, 2013.

. Crunelli, , p.13

, Author manuscript; available in PMC, Nat Rev Neurosci, 2019.

, Europe PMC Funders Author Manuscripts Europe PMC Funders Author Manuscripts

M. L. L?rincz, A distinct class of slow (~ 0.22 Hz) intrinsically bursting layer 5 pyramidal neurons determines UP/DOWN state dynamics in the neocortex, J Neurosci, vol.35, pp.5442-5458, 2015.

R. C. Dossi, A. Nuñez, and M. Steriade, Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo, J Physiol, vol.447, pp.215-234, 1992.

I. Timofeev and M. Steriade, Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats, J Neurophysiol, vol.76, pp.4152-168, 1996.

D. A. Mccormick and H. C. Pape, Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones, J Physiol, vol.431, pp.291-318, 1990.

T. Bal and D. A. Mccormick, Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker, J Physiol, vol.468, pp.669-91, 1993.

C. Iber, S. Ancoli-israel, and A. Chesson, The new sleep scoring manual-The evidence behind the rules, J Clin Sleep Med, vol.3, p.107, 2007.

M. Steriade, A. Nunez, and F. Amzica, Intracellular Analysis Neocortical Oscillation Electroencephalogram of Relations between the Slow (< I Hz) and Other Sleep Rhythms, J Neurosci, vol.13, pp.3266-3283, 1993.

F. Amzica and M. Steriade, Short-and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation, J Neurophysiol, vol.73, pp.20-38, 1995.

M. Lemieux, J. Chen, P. Lonjers, M. Bazhenov, and I. Timofeev, The impact of cortical deafferentation on the neocortical slow oscillation, J Neurosci, vol.34, pp.5689-5703, 2014.

V. Crunelli, M. L. Lorincz, A. C. Errington, and S. W. Hughes, Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo, Pflug Arch Eur J Physiol, vol.463, pp.73-88, 2012.

M. V. Sanchez-vives and M. Da, Cellular and network mechanisms of rhythmic recurrent activity in neocortex, Nat Neurosci, vol.3, pp.1027-1034, 2000.

L. Zhu, Nucleus-and species-specific properties of the slow (<1 Hz) sleep oscillation in thalamocortical neurons, Neuroscience, vol.141, pp.621-657, 2006.

K. L. Blethyn, S. W. Hughes, T. I. Tóth, D. W. Cope, and V. Crunelli, Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro, J Neurosci, vol.26, pp.2474-2486, 2006.

M. O. Cunningham, Neuronal metabolism governs cortical network response state, Proc Natl Acad Sci (USA), vol.103, pp.5597-5601, 2006.

V. Crunelli and S. W. Hughes, The slow (< 1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators, Nat Neurosci, vol.13, pp.9-17, 2010.

F. David, Essential thalamic contribution to slow waves of natural sleep, J Neurosci, vol.33, pp.19599-19610, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542377

L. Bon-jego, M. Yuste, and R. , Persistently active, pacemaker-like neurons in neocortex, Front Neurosci, vol.1, pp.123-129, 2007.

F. M. Dreyfus, Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window, J Neurosci, vol.30, pp.99-109, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00489998

J. G. Klinzing, Spindle activity phase-locked to sleep slow oscillations, NeuroImage, vol.134, pp.607-616, 2016.

C. V. Latchoumane, H. V. Ngo, and J. Born, Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms, Neuron, vol.95, pp.424-435, 2017.

R. Morison and D. Bassett, Electrical activity of the thalamus and basal ganglia in decorticate cats, J Neurophysiol, vol.8, pp.309-314, 1945.

M. Steriade, M. Deschênes, L. Domich, and C. Mulle, Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami, J Neurophysiol, vol.54, pp.1473-1497, 1985.

M. Steriade, L. Domich, G. Oakson, and M. Deschenes, The deafferented reticular thalamic nucleus generates spindle rhythmicity, J Neurophysiol, vol.57, pp.260-273, 1987.

. Crunelli, , p.14

, Author manuscript; available in PMC, Nat Rev Neurosci, 2019.

, Europe PMC Funders Author Manuscripts Europe PMC Funders Author Manuscripts

C. Diego-&amp;-steriade and . Mircea, Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm, J Physiol, vol.490, pp.159-179, 1996.

P. Fuentealba and M. Steriade, The reticular nucleus revisited: Intrinsic and network properties of a thalamic pacemaker, Progr Neurobiol, vol.75, pp.125-141, 2005.

A. Destexhe, D. Contreras, and M. Steriade, Cortically-induced coherence of a thalamic-generated oscillation, Neuroscience, vol.92, pp.427-470, 1999.

D. Contreras, A. Destexhe, T. J. Sejnowski, and M. Steriade, Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback, Science, vol.274, pp.771-774, 1996.

A. Bollimunta, J. Mo, C. E. Schroeder, and M. Ding, Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations, J Neurosci, vol.31, pp.4935-4943, 2011.

O. Jensen, M. Bonnefond, T. R. Marshall, and P. Tiesinga, Oscillatory mechanisms of feedforward and feedback visual processing, Trends Neurosci, vol.38, pp.192-194, 2015.

E. W. Schomburg, Theta Phase Segregation of Input-Specific Gamma Patterns in EntorhinalHippocampal Networks, Neuron, vol.84, pp.470-485, 2014.

S. W. Hughes, Thalamic gap junctions control local neuronal synchrony and influence macroscopic oscillation amplitude during EEG alpha rhythms, Front Psychol, vol.2, 0193.

M. L. Lorincz, K. A. Kékesi, G. Juhász, V. Crunelli, and S. W. Hughes, Temporal framing of thalamic relaymode firing by phasic inhibition during the alpha rhythm, Neuron, vol.63, pp.683-696, 2009.

J. G. Macfarlane, B. Shahal, C. Mously, and H. Moldofsky, Periodic K-alpha sleep EEG activity and periodic limb movements during sleep: comparisons of clinical features and sleep parameters, Sleep, vol.19, pp.200-204, 1996.

L. R. Silva, Y. Amitai, and B. W. Connorst, Intrinsic Oscillations of Neocortex Generated by Layer 5 Pyramidal Neurons, Science, vol.251, pp.433-435, 1991.

A. C. Flint and B. W. Connors, Two types of network oscillations in neocortex mediated by distinct glutamate receptor subtypes and neuronal populations, J Neurophysiol, vol.75, pp.951-957, 1996.

L. Silva, F. H. , S. Van-leeuwen, and W. , The cortical source of the alpha rhythm, Neurosci Lett, vol.6, pp.237-241, 1977.

F. H. Lopes-da-silva, J. E. Vos, J. Mooibroek, and A. Van-rotterdam, Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis, Electroench Clin Neurophysiol, vol.50, pp.449-456, 1980.

G. Buzsáki, Rhythms of the Brain, 2006.

R. Llinás and Y. Yarom, Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro, J Physiol, vol.315, pp.569-584, 1981.

G. Stuart, J. Schiller, and B. Sakmann, Action potential initiation and propagation in rat neocortical pyramidal neurons, J Physiol, vol.505, pp.617-632, 1997.

S. R. Crandall, G. Govindaiah, and C. L. Cox, Low-Threshold Ca2+ Current Amplifies Distal Dendritic Signaling in Thalamic Reticular Neurons, J Neurosci, vol.30, pp.15419-15429, 2010.

. Destexhe, M. Neubig, . Ulrich, and J. Huguenard, Dendritic low-threshold calcium currents in thalamic relay cells, J Neurosci, vol.18, pp.3574-3588, 1998.

A. C. Errington, J. J. Renger, V. N. Uebele, and V. Crunelli, State-Dependent Firing Determines Intrinsic Dendritic Ca2+ Signaling in Thalamocortical Neurons, J Neurosci, vol.30, pp.14843-14853, 2010.

K. Kovács, A. Sik, C. Ricketts, and I. Timofeev, Subcellular distribution of low-voltage activated T-type Ca2+ channel subunits (Cav3.1 and Cav3.3) in reticular thalamic neurons of the cat, J Neurosci Res, vol.88, pp.448-460, 2010.

S. R. Williams and G. J. Stuart, Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons, J Neurosci, vol.20, pp.1307-1317, 2000.

R. Zomorrodi, H. Kröger, and I. Timofeev, Modeling Thalamocortical Cell: Impact of Ca2+ Channel Distribution and Cell Geometry on Firing Pattern, Front Comp Neurosci, vol.2, p.5, 2008.

W. M. Connelly, V. Crunelli, and A. C. Errington, The Global Spike: Conserved Dendritic Properties Enable Unique Ca 2+ Spike Generation in Low-Threshold Spiking Neurons, J Neurosci, vol.35, pp.15505-15522, 2015.

G. Major, M. E. Larkum, and J. Schiller, Active properties of neocortical pyramidal neuron dendrites, Ann Rev Neurosci, vol.36, pp.1-24, 2013.
DOI : 10.1146/annurev-neuro-062111-150343

G. Stuart, N. Spruston, M. Häusser, and . Dendrites, , 2016.

A. R. Sieber, R. Min, and T. Nevian, Non-Hebbian long-term potentiation of inhibitory synapses in the thalamus, J Neurosci, vol.33, pp.15675-15685, 2013.

T. Zaman, 3 Channels Are Critical for Oscillatory Burst Discharges in the Reticular Thalamus and Absence Epilepsy, Neuron, vol.70, pp.95-108, 2011.

W. M. Connelly, V. Crunelli, and A. C. Errington, Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons, J Neurosci, vol.37, pp.5319-5333, 2017.

A. C. Errington, S. W. Hughes, and V. Crunelli, Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non-REM sleep-related activity in vitro, J Physiol, vol.590, pp.3691-3700, 2012.

L. Cueni, T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites, Nat Neurosci, vol.11, pp.683-692, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00515629

P. Chausson, N. Leresche, and R. C. Lambert, Dynamics of Intrinsic Dendritic Calcium Signaling during Tonic Firing of Thalamic Reticular Neurons, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01348949

E. Perez-reyes, Molecular physiology of low-voltage-activated t-type calcium channels, Physiol Rev, vol.83, pp.117-161, 2003.

S. Astori, The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus, Proc Natl Acad Sci (USA), vol.108, pp.13823-13828, 2011.

H. A. Swadlow and A. G. Gusev, The impact of 'bursting' thalamic impulses at a neocortical synapse, Nat Neurosci, vol.4, pp.402-408, 2001.

P. Reinagel, D. Godwin, S. M. Sherman, and C. Koch, Encoding of visual information by LGN bursts, J Neurophysiol, vol.81, pp.2558-2569, 1999.

S. M. Sherman and R. W. Guillery, Functional organization of thalamocortical relays, J Neurophysiol, vol.76, pp.1367-1395, 1996.

D. Balduzzi and G. Tononi, What can neurons do for their brain? Communicate selectivity with bursts, Theory Biosci, vol.132, pp.27-39, 2013.

A. Kepecs and J. Lisman, Information encoding and computation with spikes and bursts, Network, vol.14, pp.103-118, 2003.
DOI : 10.1088/0954-898x/14/1/306

M. Beierlein, C. P. Fall, J. Rinzel, and R. Yuste, Thalamocortical bursts trigger recurrent activity in neocortical networks: layer 4 as a frequency-dependent gate, J Neurosci, vol.22, pp.9885-9894, 2002.

M. Rosanova and D. Ulrich, Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train, J Neurosci, vol.25, pp.9398-9405, 2005.

H. Hu and A. Agmon, Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts, J Neurosci, vol.36, pp.6906-6916, 2016.

E. M. Izhikevich, N. S. Desai, E. C. Walcott, and F. C. Hoppensteadt, Bursts as a unit of neural information: selective communication via resonance, Trends Neurosci, vol.26, pp.161-167, 2003.

W. Guido and T. Weyand, Burst responses in thalamic relay cells of the awake behaving cat, J Neurophysiol, vol.74, pp.1782-1786, 1995.

T. Ortuño, K. L. Grieve, R. Cao, J. Cudeiro, and C. Rivadulla, Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback, Front Behav Neurosci, vol.8, 0198.

C. Luscher and R. C. Malenka, NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD), Cold Spring Harb Perspect Biol, vol.4, 2012.
DOI : 10.1101/cshperspect.a005710

URL : http://cshperspectives.cshlp.org/content/4/6/a005710.full.pdf

H. K. Kato, A. M. Watabe, and T. Manabe, Non-Hebbian synaptic plasticity induced by repetitive postsynaptic action potentials, J Neurosci, vol.29, pp.11153-11160, 2009.
DOI : 10.1523/jneurosci.5881-08.2009

URL : http://www.jneurosci.org/content/jneuro/29/36/11153.full.pdf

E. T. Jones and . Thalamus, , 1985.

R. Pigeat, P. Chausson, F. M. Dreyfus, N. Leresche, and R. C. Lambert, Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: involvement of T-type Ca2+ channels and metabotropic glutamate receptors, J Neurosci, vol.35, pp.64-73, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01542373

S. Astori and A. Lüthi, Synaptic plasticity at intrathalamic connections via CaV3.3 T-type Ca2+ channels and GluN2B-containing NMDA receptors, J Neurosci, vol.33, pp.624-630, 2013.
DOI : 10.1523/jneurosci.3185-12.2013

URL : http://www.jneurosci.org/content/33/2/624.full.pdf

C. L. Hsu, H. W. Yang, C. T. Yen, and M. Y. Min, A requirement of low-threshold calcium spike for induction of spike-timing-dependent plasticity at corticothalamic synapses on relay neurons in the ventrobasal nucleus of rat thalamus, Chin J Physiol, vol.55, pp.380-389, 2012.

C. Hsu, Y. , H. , Y. , C. Min et al., Comparison of synaptic transmission and plasticity between sensory and cortical synapses on relay neurons in the ventrobasal nucleus of the rat thalamus, J Physiol, vol.588, pp.4347-4363, 2010.

J. S. Haas, B. Zavala, and C. E. Landisman, Activity-Dependent Long-Term Depression of Electrical Synapses, Science, vol.334, pp.389-393, 2011.
DOI : 10.1126/science.1207502

J. Sevetson, S. Fittro, E. Heckman, and J. S. Haas, A calcium-dependent pathway underlies activitydependent plasticity of electrical synapses in the thalamic reticular nucleus, J Physiol, vol.595, pp.4417-4430, 2017.

S. Lee, S. L. Patrick, K. A. Richardson, and B. W. Connors, Two Functionally Distinct Networks of Gap Junction-Coupled Inhibitory Neurons in the Thalamic Reticular Nucleus, J Neurosci, vol.34, pp.13170-13182, 2014.

A. Lüthi and D. A. Mccormick, H-current: properties of a neuronal and network pacemaker, Neuron, vol.21, pp.9-12, 1998.

A. Lüthi and D. A. Mccormick, Modulation of a pacemaker current through Ca(2+)-induced stimulation of cAMP production, Nat Neurosci, vol.2, pp.634-641, 1999.

G. Tononi and C. Cirelli, Sleep and synaptic homeostasis: a hypothesis, Brain Res Bull, vol.62, pp.143-150, 2003.
DOI : 10.1016/j.brainresbull.2003.09.004

S. Diekelmann and J. Born, The memory function of sleep, Nat Rev Neurosci, vol.11, pp.114-126, 2010.

B. O. Watson, D. Levenstein, J. P. Greene, J. N. Gelinas, and G. Buzsáki, Network Homeostasis and State Dynamics of Neocortical Sleep, Neuron, vol.90, pp.839-852, 2016.
DOI : 10.1016/j.neuron.2016.03.036

URL : https://doi.org/10.1016/j.neuron.2016.03.036

Z. Liu, U. Faraguna, C. Cirelli, G. Tononi, and X. Gao, Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex, J Neurosci, vol.30, pp.8671-8675, 2010.

S. J. Aton, Mechanisms of Sleep-Dependent Consolidation of Cortical Plasticity, Neuron, vol.61, pp.454-466, 2009.

G. Tononi and C. Cirelli, Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration, Neuron, vol.81, pp.12-34, 2014.

J. Durkin, Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity, Proc Natl Acad Sci, vol.114, pp.10485-10490, 2017.

L. Acsady, The thalamic paradox, Nat Neurosci, vol.20, pp.901-902, 2017.

M. M. Halassa and L. Acsády, Thalamic Inhibition: Diverse Sources, Diverse Scales, Trends Neurosci, vol.39, pp.680-693, 2016.
DOI : 10.1016/j.tins.2016.08.001

URL : http://europepmc.org/articles/pmc5048590?pdf=render

M. M. Halassa, State-Dependent Architecture of Thalamic Reticular Subnetworks, Cell, vol.158, pp.808-821, 2014.

C. , Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms, Cell Reports, vol.19, pp.2130-2142, 2017.

M. F. Wells, R. D. Wimmer, L. I. Schmitt, G. Feng, and M. M. Halassa, Thalamic reticular impairment underlies attention deficit in Ptchd1(Y/-) mice, Nature, vol.532, pp.58-63, 2016.

D. Guehl, Tremor-related activity of neurons in the 'motor' thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism, Eur J Neurosci, vol.17, pp.2388-2400, 2003.

M. Magnin, A. Morel, and D. Jeanmonod, Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients, Neuroscience, vol.96, pp.549-64, 2000.

M. Von-krosigk, T. Bal, and D. A. Mccormick, Cellular mechanisms of a synchronized oscillation in the thalamus, Science, vol.261, pp.361-365, 1993.

D. Contreras and M. Steriade, Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships, J Neurosci, vol.15, pp.604-622, 1995.

F. Amzica and M. Steriade, Cellular substrates and laminar profile of sleep K-complex, Neuroscience, vol.82, pp.671-686, 1998.

. Crunelli, , vol.18

, Author manuscript; available in PMC, Nat Rev Neurosci, 2019.

P. Europe and . Funders, Author Manuscripts Europe PMC Funders Author Manuscripts Schematic drawings of the mechanisms of different forms of synaptic and cellular plasticity elicited by rhythmic low-threshold spikes (LTSs) (and associated Ca 2+ transients) at frequencies relevant to oscillations of low vigilance states. a) Inhibitory long-term potentiation (iLTP) at GABAergic nucleus reticularis thalami (NRT)-thalamocortical (TC) neuron synapses. Note the low-voltage-gated T-type Ca 2+ channels (T-VGCC)-elicited depolarization (?V) driving activation of high-voltage-gated L-type Ca 2+ channels (LVGCCs). b) Inhibitory long-term depression (iLTD) at GABAergic NRT-TC neuron synapses. Note the requirement for metabotropic glutamate receptor (mGluR) activation by glutamate released from cortical (CX) afferents. c) Excitatory long-term potentiation (LTP) at glutamatergic TC-NRT neuron synapses. d) Long-term depression (LTD) at electrical NRT-NRT neuron synapses. e) Cellular plasticity of intrinsic hyperpolarization-activated cyclic-nucleotide

, AMPAR, glutamate receptor ionotropic AMPA; cGMP, cyclic GMP; Cx36, gap junction connexin 36; GluN2B, glutamate receptor ionotropic, NMDA 2B; NMDAR, glutamate receptor ionotropic NMDA 2A; NO, nitric oxide

. Crunelli, , vol.29

, Author manuscript; available in PMC, Nat Rev Neurosci, 2019.

, Europe PMC Funders Author Manuscripts Europe PMC Funders Author Manuscripts