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Abstract 

A nonhomogeneous hidden Markov model (NHMM) is used to stochastically 

simulate summer (June- August) daily precipitations in the middle and low reaches of 

the Yangtze River in Eastern China, with driving forcing from three global climate 

models (GCMs). Simulations cover the historical period from 1961 to 2005 and from 

2006 to 2100 following the RCP4.5 scenario. The model is firstly evaluated against data 

from the regional observation network. Results show that NHMM effectively enhances 

the ability of GCMs in simulating summer daily rainfall in the region. For future 

projection at different time horizons of the 21st century, the spectral distribution of 

regional precipitations (in function of their intensity) shows consistent changes with a 

decrease of occurrence probability for light rain (< 10mm/day) and an increase for 

heavy rain (> 10mm/day). Among variables of interest, total precipitation (PRCPTOT), 

precipitation intensity (SDII), number of rainy days for daily precipitation exceeding 

10mm (R10mm) and 95th percentile of precipitation (P95), all show a gradually 

increasing trend in the 21st century, and geographically an eastward gradient with 

smaller increase (or even weak decrease) for the west and larger increase for the east. It 

is noted that obvious changes occur in eastern region with 95% significance level, and 

PRCPTOT or R10mm increases by 40%~60% in the late 21st century. Further 

quantitative assessment is performed for global warming of 1.5℃ and 2℃. The half-

degree additional warming makes R10mm change by -3.7%, 2.4% and 12.1% over 

western, central and eastern regions, respectively. 

Key words: Nonhomogeneous hidden Markov model, Statistical downscaling, Daily 

precipitation, Future projection, Global warming of 1.5℃ and 2℃ 
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1 Introduction 

The middle and low reach of the Yangtze River in Eastern China is strongly 

influenced by the Asian monsoon. The annual precipitation in this zone is about 

1000mm and two-thirds fall in summer. The region suffers frequent extreme climate 

events causing serious losses of lives and properties. It is therefore important for us to 

investigate future evolution of such events under global warming. Furthermore, the 

2015 Paris Agreement aims to limit the global warming to well below 2℃ above the 

pre-industrial and to pursue efforts to limit it to 1.5℃ (UNFCC, 2015). Particularly, the 

half-degree warming from 1.5°C to 2.0°C becomes an issue for international geopolitics, 

since some recent studies concluded that it may drastically augment the occurrence 

frequencies and impacts of extreme events (Schaeffer et al., 2012; Knutti et al., 2016). 

Global climate model (GCM) which can well simulate large-scale climate variables 

is often used to make future climate change projection in China. However, GCM has 

shortcomings to well simulate regional climate, mainly due to its relatively coarse 

spatial resolution. It generally fails to reproduce mean and extreme precipitations (Jiang 

et al., 2009; Xu et al., 2011; Jiang et al., 2012; Jiang et al., 2015; Yang et al., 2016). 

Downscaling techniques are thus indispensable to transform outputs of GCM to reliable 

regional climate simulations. To do so, the statistical downscaling approach can be very 

appropriate, in particular, for simulating daily precipitation and with multiple 

realisations (Ben Alaya et al., 2015; Dayon et al., 2015; Jha et al., 2015; Ding et al., 

2016; Hundecha et al., 2016; Jones et al., 2016; Wu et al., 2016). 

The nonhomogeneous hidden Markov model (NHMM) is a good candidate for 

climate downscaling. It was firstly used by Hughes et al. (1994) to construct a 

relationship between large-scale atmospheric information and regional precipitation. 
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This climate downscaling procedure is based on the hypothesis that the occurrence 

probability of local weather is determined by large-scale fields, NHMM being able to 

determine the transition of local meteorological pattern on a daily timescale. Many 

interesting results were reported in the literature on using NHMM to conduct climate 

downscaling in different regions and obtained good effect (Bates et al., 1998; Charles et 

al., 1999; Greene et al., 2011; Tan et al., 2013; Cioffi et al, 2016). Fu et al. (2013a) used 

NHMM to generate an ensemble of stochastic daily rainfall projections for 30 stations 

across south-eastern Australia. Robertson et al. (2004) applied NHMM to outputs of the 

global climate model ECHAM4.5 over Northeast Brazil and pointed out that the 

generated daily precipitation series have good statistical properties. Recently, we also 

applied NHMM to produce daily precipitation in the Yangtze-Huaihe River Basin with 

BCC-CSM1.1(m) global model. A preliminary evaluation was reported in Ding et al. 

(2016). We found that our downscaling methodology with NHMM can effectively 

improve the daily precipitation properties on its spatial distribution, temporal variation 

and probability distribution function (PDF). The present work is an extension of Ding et 

al. (2016). We want to extend the utilization of NHMM to outputs from multiple 

climate models, and further investigate fine features of regional response with high 

credibility. Meanwhile, we also strongly hope that our projected daily precipitation for 

future is useful and can be used for regional management and relevant researches for 

surface hydrology, agriculture and land use. 

The outline of this paper is as follows. Section 2 describes data and methodology. 

Section 3 presents a validation of NHMM applied to three global models. The future 

projection of indices' changes during twenty-first century and under the global warming 

of 1.5℃ and 2℃ are presented in Section 4. Finally, Section 5 provides a general 

discussion and conclusions. 
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2 Data and methodology 

2.1 Datasets 

To construct a performant statistical downscaling model, we selected 56 high-

quality stations in the middle and low reach of the Yangtze River (27.5-32°N, 110-

122°E) from June 1 to August 31 from the China Meteorological Administration (CMA) 

network with daily rainfall records from 1961 to 1990.  Daily atmospheric circulation 

fields are from ERA-40 reanalysis with 2.5°×2.5° resolution from the European Centre 

for Medium-Range Weather Forecasts (ECMWF). They are used, together with rainfall 

from stations, to establish the NHMM statistical downscaling model. Large-scale 

predictors are sea level pressure (12.5-35°N, 105-120°E), geopotential height at 500hPa 

(10-25°N, 95-170°E), zonal wind at 500hPa (25-32.5°N, 95-140°E) and relative 

humidity at 500hPa (27.5-32.5°N, 105-125°E) (Ding et al. 2016). 

Three GCMs used in the NHMM are BCC-CSM1.1(m) (1.125°×1.125°) from 

China National Climate Center, IPSL-CM5A-MR (2.50°×1.27°) from French Pierre 

Simon Laplace Institute and MPI-ESM-MR (1.88°×1.87°) from Germany Max Planck 

Institute. Large-scale atmospheric predictors from GCMs from 1986 to 2005 are firstly 

applied into the NHMM. Simulated daily precipitations are carefully compared against 

observations from the same period, which provides a verification of the statistical model. 

A comparison with rainfalls directly from GCMs can reveal added value of the 

downscaling procedure. In a similar way, future climate projection is done for the three 

GCMs and for three periods at different horizons, 2016-2035, 2046-2065 and 2081-

2100. It’s noted that our NHMM, as described in Ding et al. (2016), was trained at a 

global grid of 2.5° by 2.5°. We need thus to interpolate predictors fields from GCMs 

into the grid of ERA-40 reanalysis with a bilinear interpolation scheme. In addition, the 
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four large-scale predictors entering into the NHMM calculation are normalized 

anomalous fields, with 1961-1990 climatology removed at each point, and the standard 

deviation as a normalization factor. 

2.2 Nonhomogeneous hidden Markov model (NHMM) 

The NHMM is a double stochastic process consisting of hidden states that cannot 

be directly found and an observed state sequence. The model decomposes the daily 

precipitation field on a network of stations into a few discrete hidden states, which are 

modelled as a first-order Markov chain progressing in time. Each hidden state is 

associated with a distinct atmospheric circulation regime. The transition of hidden states 

is unavoidably affected by large-scale predictors. The hidden states of whatever day in 

the temporal sequence are jointly determined by those of the precedent day and current-

day large-scale predictors. In such a way, the whole precipitation sequence is 

stochastically simulated. Without the external large-scale predictors, NHMM would 

become a simple hidden Markov model. 

We can now use �� and �� to designate observed precipitations and hidden states 

on day �	(� = 1, 2…�). Both are defined at � stations over the study area, � is time 

sequence length in days, i.e., 92 for boreal summer.  If the number of hidden states is 

noted as �, and then � = {��, ��…	�� …	��}, where ��  denotes each hidden state. �� 
represents atmospheric circulation field on day � and thus ��:� = (��, ��…��) denotes 

the time series of circulation field from � = 1 to � = �. The NHMM is defined with two 

assumptions (Hughes et al., 1994, 1999).  

�(��|	��:	� , ��:	���, ��:�) = �(��|	��)           (1) 

�(��|	��:	���, ��:�) = �(��|	����, ��)            (2) 

The first assumption is that the multivariate precipitation ��  at time �  is 

conditionally independent of all other variables, given the hidden states �� at time �. The 
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second assumption indicates that the hidden states ��   on day �  depend only on the 

predictor vector ��  for day �  and the hidden states ����  on day � − 1. A flow chart 

demonstrating how NHMM practically works is shown in Fig. 1. 

The modeling process for NHMM was introduced by Hughes et al. (1994, 1999). 

For the precipitation probability distribution function (conditional to the hidden states��) �(��|	��), we establish a δ function and a double-exponential distribution function to 

describe the probability of non-rainfall and rainfall, respectively.  

P(��|	�� = ��) = ∏ �(�� = !|�� = ��)" #� = ∏ $� " #�       (3) 

$� = %�� &																																								! = 0(�� )*� )+�,-./0�
)#� 											! > 0 

Where ! is the observed precipitation at station 2 on day �, �� is the hidden state on day 

�, 2 = 1, 2…�, 3 = 1, 2…�, 4 is the number of exponentials, �� ) refers to the weight, 

and *� ) denotes the exponential distribution function parameter. 

To calculate the transition matrix�(��|	����, ��) , we use Bayes conditional 

probability theory to decompose it into a product of the baseline transition matrix 56� 
( P(�� = ��7	���� = �68  and a function of the atmospheric predictorsP(��|���� =
�6 , �� = ��). 

Considering that the relevant atmospheric predictors ��  are usually derived 

variables of high-dimensional atmospheric fields, we can reasonably assume that �� are 

multivariate and normally distributed. This leads to the following model for 

�(��|	����, ��): 
P(�� = ��|���� = �6, ��) ∝ P(�� = ��7	���� = �68P(��|���� = �6, �� = ��) 
= 56�exp	[− �� (�� − >6�)∑��(�� − >6�)@]                                   (4)  
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Here, >6�  is the mean of the atmospheric predictors associated with transitions from 

state �6 at day t − 1 to state �� at day t. ∑�� is the covariance matrix of the atmospheric 

predictors. To ensure identifiability of the parameters, the constraints ∑ 56�� = 1 and 

∑ >6�� = >6 = 0 are imposed. 

Parameter estimation is accomplished by the methodology of maximum likelihood. 

Letting Θ denote the model parameters, the likelihood can be written as: 

L(Θ) = P(��:�|��:�) = ∑ P(��:� , ��:�|��:�)EF:G   

= ∑ P(��|��)∏ P(��|����, ��)��#�EF:G ∏ P(��|��)��#�       (5) 

The set of parameters Θ that maximize L(Θ) can be obtained with the widely-used 

Baum-Welch algorithm (Rabiner et al., 1986), a variant of the iterative Expectation-

Maximization (EM) algorithm (Dempster et al., 1977) for obtaining maximum 

likelihood parameter estimates for models with hidden variables and/or missing data. 

The specific EM procedure that we used in this paper for NHMM parameter estimation 

is fully detailed in Robertson et al. (2003). 

After the calibration of NHMM, model parameters including the hidden states 

� = {��, ��…	�� …	��} , the transition matrix P(SI|	SI��, XI)  and the precipitation 

probability distribution function (conditional to the hidden states	SI) P(RI|	SI) are fully 

determined. They remain unchanged for all rainfall simulations, including future climate 

conditions. As shown by the technical flowchart in Fig. 1, the first step of using NHMM 

is to generate a Markov chain of hidden states, S�, S�, … , SL, based on a sequence of 

daily atmospheric predictors, and the transition matrix P(SI|	SI��, XI). The next step is 

to simulate daily precipitation, r, according to probabilities P(RIN = r|SI = qP). In the 

case of future warming climate, atmospheric predictors corresponding to global 

warming would lead to modifications in the frequency of the hidden states with 

different rainfall amounts. Eventually more (or less) precipitation can be generated. 
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Therefore, the case of climate change for a future scenario is explicitly taken into 

account in the frequency of each hidden states. 

The number of hidden states K is optimized by the Bayesian information criterion 

(BIC). The BIC score with K states is defined as: 

BIC� = 2U(V�∗ ) − X log � \]^�        (6) 

Where V�∗  is the estimated maximum likelihood parameter vector, as is obtained 

through EM applied to the training data for a model with K  states, U(V�∗ )  is the 

likelihood of the model evaluated at V�∗  and X is the number of parameters in the K-state 

model. The least BIC score corresponds to an optimal model exploring the training data. 

After tests, an eight-state model (K = 8) is finally chosen for us (Ding et al., 2016). 

NHMM, applied to climate downscaling, needs appropriately-selected predictors. 

Our previous paper (Ding et al., 2016) shows that with four large-scale predictors, 

including sea level pressure, geopotential height at 500hPa, zonal wind at 500hPa and 

relative humidity at 500hPa, it is possible to establish a good NHMM to simulate 

summer daily precipitation over Eastern China. Actually, the basic principle of selecting 

predictors is that they must have a good correlation with precipitation (the predictand) 

and a clear physical meaning. 

In practice, the selection is as follows. We firstly calculated the leading principal 

component of summer precipitation from the 56 stations available in the middle and low 

reach of the Yangtze River. The leading PC was then used to calculate the temporal 

correlation coefficients with eighteen atmospheric variables including sea level pressure, 

atmospheric geopotential height, temperature, relative humidity, and wind fields. The 

obtained correlation maps could help us to determine potential predictors to select and 

their spatial domains which include major areas passing the 95% significance test. The 

second step of our practice consists of actually testing the performance of NHMM by 
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using different combinations of potential predictors. We evaluated the model ability by 

examining the temporal variability and spatial distribution of its simulations.  

Finally the optimal model was obtained with the following predictors (with their 

relevant domain): sea level pressure (12.5-35°N, 105-120°E), geopotential height at 

500hPa (10-25°N, 95-170°E), zonal wind at 500hPa (25-32.5°N, 95-140°E) and relative 

humidity at 500hPa (27.5-32.5°N, 105-125°E). 

To reduce the dimensionality of the selected predictors, a principal component 

analysis (PCA) is applied to the combined normalized fields of the four predictors. The 

first twenty six principal components, explaining up to 90% of the total variance, are 

selected as “actual predictors” of the model. 

Furthermore, since our NHMM was established with the 2.5°-grid of ERA-40 and 

its four variables as predictors, the same four variables extracted from GCMs outputs 

need to be firstly interpolated into the 2.5°-grid. They are then normalized by their 

standard deviations of the period (1961-1990) and finally form a combined field. To 

eliminate models systematic biases, the combined field from GCMs is projected onto 

the 26 ERA-40-based spatial EOF structures. The obtained 26 principal components are 

then used in NHMM to perform rainfall downscaling simulation: daily precipitations for 

each of the 56 stations and for the whole time period. 

Further details of our NHMM algorithms and procedures can be found in Hughes 

et al. (1994), Robertson et al. (2003), Kirshner et al. (2005) and Ding et al. (2016). The 

practical realization of NHMM used in this paper is through the toolbox "HMMTool" 

developed and maintained in the International Research Institute 

(https://iri.columbia.edu/our-expertise/climate/tools/hidden-markov-model-

tool/hmmtool/). 

2.3 Precipitation indices and evaluation methods 



Accepted manuscript. Guo et al. 2018 International J. of Climatology https://doi.org/10.1002/joc.5882  page 11 

 

In order to measure the climate characteristics of simulated precipitations, five 

indices including precipitation means and extremes are used (Jiang et al., 2012). They 

are all calculated with the diagnostic software provided by the Statistical and Regional 

Dynamical Downscaling of Extremes for European Regions (STARDEX) (Haylock et 

al., 2006). Their definition is presented in Table 1. 

Performance metrics include a parameter assessing the distribution of daily 

precipitations, skill Score (�`)a0b), and the Taylor diagram describing the spatial pattern 

of a geophysical variable (Perkins et al., 2007; Liu et al., 2011; Fu et al., 2013b; Taylor, 

2001).  

�`)a0b was proposed in Perkins et al. (2007) to measure the coincidence of two 

PDF curves by calculating the cumulative minimum value of the two distributions. 

	�`)a0b = ∑ c3d3efe(g
�#� �h� , �a�)           (7) 

Where �h� and �a� are the modelled and observed 3th probability values of each bins and 

i is the number of bins. It varies from 0 (no overlapping at all) to 1 (total matching 

between the two distributions).  

Taylor Diagram (Taylor, 2001) provides a statistical summary of patterns 

similarity between simulations and observations in terms of spatial correlation 

coefficient, centered root-mean-square (RMS) difference, and ratio of spatial standard 

deviations. A perfect simulation would have the value of 1 for the centered pattern root 

mean square error (RMSE), and 0 for the spatial correlation. The ratio of spatial 

standard deviations would be 1. 

2.4 Time windows for 1.5℃ and 2℃ global warming targets 

As defined in the Paris climate Agreement, the 1.5℃ and 2℃ global warming 

thresholds are relative to the pre-industrial level. The period 1861-1900 is selected as a 

common pre-industrial period in this study. The emission scenario is RCP4.5. Time 
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series of global averaged temperature anomalies are firstly smoothed by a 21-year 

moving average before selecting the year for which the 1.5℃ or 2℃ threshold is firstly 

reached. Finally a period of 21 years in total is defined with 10 years before and after 

the nominative year, as shown in Table 2. This way of defining the time windows is 

consistent and comparable with a few recent studies, e.g., Hu et al (2017) and Shi et al 

(2017), on China’s regional climate change corresponding to 1.5°C and 2°C warming 

levels. We need to point out that the climate reference period is from 1986 to 2005, 

defined as present-day climate, although the 1.5℃ and 2℃ warming targets are relative 

to the pre-industrial. The global mean surface air temperature increases by 0.9°C from 

pre-industrial to present-day in the ensemble mean of our three GCMs. The net 

warming for the cases of 1.5°C and 2°C warming levels would be of 0.6℃ and 1.1℃ 

respectively. 

 

3 Climate properties of extreme precipitations in GCMs and NHMM  

In our previous study, we used ERA-40 large-scale circulation from 1991 to 2002 

in the construction and calibration of NHMM to stochastically simulate summer (1 June 

to 31 August) daily precipitations in Eastern China. NHMM showed a very good skill in 

simulating the probability distribution of precipitations, their spatial distribution 

patterns and their interannual variability (Ding et al., 2016). In this paper, we will 

further evaluate the performance of NHMM, but in the context of its application to 

outputs of three GCMs. We put emphasis on the added value of NHMM compared to 

the performance of original GCMs. Since this evaluation is done for present-day climate, 

it also provides a reference for projecting future extreme rainfall changes. 

3.1 Statistical properties of daily precipitation 



Accepted manuscript. Guo et al. 2018 International J. of Climatology https://doi.org/10.1002/joc.5882  page 13 

 

To assess the ability of NHMM and that of the three driving GCMs, we first show 

the Quantile-Quantile plots performed on daily precipitation for four major stations in 

the region. As shown in Fig. 2, there is a systematic bias in the distribution of daily 

precipitations in GCMs. For any quantile, the simulated rainfall amount is significantly 

lower than the observed one. The largest difference is above 60mm (Fig. 2a and Fig. 2c). 

After downscaling with NHMM, models are rather close to observation with an absolute 

error smaller than 20mm. It indicates that NHMM indeed improves the statistical 

behaviors of daily precipitation. For daily precipitation rate below 50mm, NHMM is 

highly consistent with observation at Nanjing and Wuhan. Similarly, NHMM does a 

good job for daily rainfall rate below 40mm at Hangzhou and Hefei. For heavy rain 

greater than 50mm, the simulation by NHMM at Nanjing, Hangzhou and Hefei is 

generally smaller than observation, while at Wuhan and for precipitation greater than 

80mm, the simulation is larger than observation. 

In terms of differences among models, the ability of simulation below 70mm in 

MPI-ESM-MR gets closer to observation than other two models and the multi-model 

ensemble, while for daily rainfall greater than 70mm, BCC-CSM1.1(m) is slightly 

better than other models. The simulation capability of the multi-model ensemble 

generally keeps at middle level among the three models. After downscaling with 

NHMM, the outputs of all the three models and the multi-model ensemble tend to 

coincide. We almost cannot distinguish them from each other in Fig. 2. 

We now examine all the stations in the region. Fig. 3 gives box-and-whisker plots 

showing the distributions of �`)a0b at the 56 stations. When �`)a0bare closer to 1, the 

simulated distribution for all stations is closer to the observed one. It is clear that 

NHMM improves significantly the ability of all the three models and the multi-model 

ensemble in simulating the distribution of daily precipitation. Detailed results show that 
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the medians of �`)a0b  for BCC-CSM1.1(m), IPSL-CM5A-MR, MPI-ESM-MR and 

multi-model ensemble are 0.68, 0.68, 0.83 and 0.75, respectively. After downscaling 

with NHMM, the medians of �`)a0b increase to 0.91, 0.90, 0.90, and 0.91, respectively. 

In general, the �`)a0b for each station almost is above 0.85, in which the largest �`)a0b is 

up to 0.96. The ranges of �`)a0b are significantly decreased among different stations. 

If we examine individual models and the multi-model ensemble, MPI-ESM-MR 

gives the best results on �`)a0b, while BCC-CSM1.1(m) and IPSL-CM5A-MR show the 

largest improvement after NHMM downscaling with the medians of Sjklmn increasing to 

more than 0.9 (Fig. 3). 

3.2 Spatial distribution of precipitation indices 

In this section we turn our attention to the performance reproducing the spatial 

pattern by NHMM along with the mean and extreme precipitation indices. Fig. 4 shows 

the Taylor diagram for the five precipitation indices in the three global models and the 

multi-model ensemble to comprehensively evaluate the spatial distribution. The same is 

shown for results with the application of NHMM. There is generally a weak ability in 

GCMs. Specifically, the spatial correlation coefficients of  major indices between the 

simulations and observations are less than 0.4 and the maximum does not exceed 0.6; 

the standard deviations are relatively scattered; the RMSEs are generally greater than 

0.75. After downscaling, NHMM improves significantly the spatial distribution of 

precipitation indices. Except CDD that does not show improvement with NHMM, other 

precipitation indices observe their spatial correlation coefficients increasing to more 

than 0.8; the standard deviations remain between 0.9 and 1.3; the RMSEs decrease to 

less than 0.75. Among the different indices measuring spatial patterns of precipitation, 

there is a greater improvement in simulating PRCPTOT and R10mm with spatial 

correlation coefficients larger than 0.9 and RMSEs smaller than 0.5. Again, CDD shows 
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its weakest score compared to other indices. The first-order Markov chain, obviously, 

cannot well capture this persistent behavior of weather sequences. Burger et al. (2012), 

by comparing different statistical downscaling methods, also conclude that most of 

them fail to reproduce CDD. 

To sum up, NHMM effectively enhances the ability of models in simulating 

summer daily precipitation and spatial distribution over the Yangtze-Huaihe River 

Basin. It provides a basis for projecting future change of daily precipitation under 

warmer climate using this method. After downscaling, the PDF curves of the 

simulations get closer to the observations. The median of skill score for BCC-

CSM1.1(m), IPSL-CM5A-MR, MPI-ESM-MR and multi-model ensemble is increased 

by 0.23, 0.22, 0.07 and 0.16, respectively. The ranges of the �`)a0b are significantly 

decreased among different stations. The spatial correlation coefficients of PRCPTOT, 

SDII, R10mm and P95 are improved from less than 0.6 to more than 0.8, and the root 

mean square errors of the above four are generally decreased to 0.75 or less, in which 

PRCPTOT and R10mm have the optimal improvement. 

 

4 Future projections 

In view of the added value of NHMM compared to performance of initial GCMs, 

we apply the established NHMM to further project future change in daily precipitation 

or extreme precipitation during 2017-2036, 2046-2065 and 2080-2100 under the 

RCP4.5 emission scenario, as well as the global warming period of 1.5℃ and 2℃. 

4.1 Change in daily precipitation distribution 

We can now calculate the probability distribution functions of daily precipitations 

with different intensities from all the 56 stations in our region. This is repeated for 

present-day and the three future periods respectively. Instead of making visual 
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inspection among the four curves (not shown), we can quantify the variations from 

present-day to future horizons by calculating the ratio of probabilities for each bin of 

intensities. This concept is close to the probability ratio (PR) introduced and used by 

Stott et al. (2004) and Fischer et al. (2015) to measure the risk variation. Fig. 5 shows 

PR of daily precipitation distribution, calculated for the whole domain with data from 

the multi-model ensemble for three periods of the 21st century, 2017–2036, 2046–2065 

and 2080–2100. Generally speaking, PR of light rain (0.1-9.9mm) shows a decreasing 

trend, while that of strong rainfalls (larger than 9.9mm per day) increases. The rate of 

PR seems to slow down when the time goes on (a saturation effect). Specifically, for 

light rain (0.1-9.9mm/day), PR in average during 2017–2036, 2046–2065 and 2080–

2100 is 0.983, 0.966 and 0.962, respectively, relative to 1986-2005. For moderate rain 

(10-24.9mm/day), the occurrence probabilities increase by a factor of 1.005, 1.014 and 

1.016, respectively. For heavy rain (25-49.9mm/day), the occurrence probabilities 

increase by a factor of 1.026, 1.047 and 1.053, respectively. For the rainstorm (50-

99.9mm), the occurrence probabilities increase by a factor of 1.027, 1.052 and 1.055, 

respectively. For heavy rainstorm (more than 99.9mm), the occurrence probabilities 

increase by a factor of 1.026, 1.045 and 1.047, respectively. In general, summer daily 

precipitation in the middle and low reach of the Yangtze River has a higher occurrence 

probability for strong rainfalls (> 10 mm/day) and a weaker probability for light 

rainfalls (< 10 mm/day). 

4.2 Change in geographic distribution of precipitation indices 

The spatial distribution of PRCPTOT and SDII changes for 2017–2036, 2046–

2065 and 2080–2100, relative to 1986-2005, is shown in Fig. 6. In the early 21st century, 

both PRCPTOT and SDII increase at major stations in the east, with relative changes 

keeping below 20% and 10%, respectively, while the two indices decrease in the west. 
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In the middle 21st century, larger variations appear for the two indices, compared to the 

former period. For example, PRCPTOT across the coastal area increases by 40%. In the 

late 21st century, PRCPTOT and SDII show more dry areas for stations in the west, 

while the difference between the west and the east tends to amplify. It’s noted that the 

increase of PRCPTOT is generally stronger than that in SDII. 

Fig. 7 shows relative changes of extreme precipitation indices R10mm, P95 and 

CDD. The trend of R10mm is similar to that of P95, but opposite to that of CDD. In the 

early 21st century, R10mm and P95 at major stations increase with the relative changes 

keeping below 20% and 10%, respectively, while CDD generally decreases. In the 

middle 21st century, larger variations appear in the three indices and at more stations in 

the east. R10mm and P95 increase by more than 20% and 10%, and CDD decreases by 

over 20%. In the late 21st century, the increase of R10mm across the eastern region is 

up to over 40% and the decrease of CDD keeps more than 20%, while CDD over the 

western area decreases by less than 20%. To sum up, extreme and local characteristic of 

future summer rainfall over the Yangtze-Huaihe River Basin will show a gradual 

increase with smaller increase (or even weak decrease) in western region and larger 

increase in eastern region. 

4.3 Response of extreme precipitation under the global warming of 1.5℃ and 2℃ 

Considering important economic and geopolitical issues in relation to the global 

warming levels of 1.5℃ and 2.0℃ in the Paris Agreement, we put particular attention to 

responses of extreme precipitation in our region of investigation under the two warming 

targets. Precipitation indices in terms of geographic distributions are quite similar to 

what is shown in Fig. 7, R10mm, P95 and CDD have a spatially coherent change with 

wetter trend in eastern region and drier trend in western region under 1.5℃ warming 

target, while these trends are more significant under 2℃ target. Considering the fact that 
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there is a general gradient from west to east in our region of investigation, we divided 

the 56 stations into three groups (west, middle and east) with roughly equal number of 

stations. Statistics for each group are given in Fig. 8 in the form of box-whisker plots. 

For both R10mm and P95, there is a slight decrease in the west, but there are increases 

in the middle and east. Changes in 2°C are generally amplified compared to those in 

1.5°C warming. The additional half-degree warming from 1.5℃ to 2℃ implies changes 

of -3.7% (-0.3%), 2.4% (-0.1%) and 12.1% (2.7%) for R10mm (P95) and for the west, 

middle and east respectively. For CDD, we observe a reverse gradient from west to east. 

The additional half-degree warming induces an increase of 2.1% in the west, but 

decreases of -4.6% and -7.2% in other two regions. 

 

5 Summary and discussion 

A statistical climate downscaling based on NHMM was constructed and used to 

simulate summer daily precipitation in Central and Eastern China. The 

nonhomogeneous term was the large-scale atmospheric circulation from three global 

climate models, i.e., BCC-CSM1.1(m), IPSL-CM5A-MR and MPI-ESM-MR. NHMM 

became thus a powerful tool to perform relevant climate downscaling, including future 

projection of summer daily rainfall under the RCP4.5 emission scenario. Main 

conclusions are the following. 

(1) NHMM effectively enhances the ability of global climate models in simulating 

summer daily rainfall in the middle and low reach of the Yangtze River in Eastern 

China. Absolute errors of daily precipitation distribution shown in Quantile-Quantile 

plots are largely reduced, from about 60mm in global models to generally below 20mm 

in NHMM downscaling. The improvement is also confirmed with quantitative measures, 

the skill score. Spatial correlation coefficients of PRCPTOT, SDII, R10mm and P95 are 
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improved from less than 0.6 to more than 0.8. The RMSEs of the above four indices are 

generally decreased to 0.75 or less. CDD shows little improvement in NHMM, due to 

certainly inadequacy of the first-order Markov chain for long-lasting phenomenon. 

(2) Future rainfall changes are projected based on NHMM for three future periods, 

2017–2036, 2046–2065 and 2080–2100, under the RCP4.5 scenario. Our study area 

exhibits a general wetter trend in the future, but a different repartition in rainfall 

distribution. Daily precipitation smaller than 10mm would decrease and that above 

10mm would increase, in which the largest risk in rainstorm (50-99.9mm/day) increases 

by a factor of 1.027~1.055. The changing rate keeps significant until the middle of the 

21st century, and presents a saturation effect in the late 21st century. In addition, 

PRCPTOT, SDII, R10mm and P95 have a gradually increasing trend during early, 

middle and late 21st century, while CDD is relatively decreasing with flood in eastern 

region and drought in western region. There are obvious changes occurring in eastern 

region (118-122°E) with 95% significance level, and PRCPTOT or R10mm increases 

by 40%~60% in the late 21st century. Conversely, CDD decreases by -30%~ -20% 

there. Rainfall changes presented in this work are confirmed to be coherent with 

changes in atmospheric general circulation. Results, not shown in this paper, will be 

reported in the future. 

(3) Under the global warming of 1.5℃ and 2℃, the response characteristics of 

extreme precipitation for all stations in Eastern China show that R10mm, P95 and CDD 

have a spatially coherent change with wetter trend in eastern region and drier trend in 

western region under 1.5℃  warming target, while these trends would be more 

pronounced at 2℃ target. From 1.5℃ to 2℃ target, the additional half-degree warming 

makes R10mm (P95) to vary by -3.7% (-0.3%), 2.4% (-0.1%) and 12.1% (2.7%) in 

western, central and eastern regions, respectively. Conversely, CDD varies by 2.1%, -
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4.6% and -7.2%, respectively. It’s noted that the 1.5℃ and 2℃ warming targets relative 

to pre-industrial period imply a warming of 0.6℃ and 1.1℃ relative to present-day 

period for MME, respectively.  

Our results provide a relevant reference for statistical downscaling of daily rainfall 

in Eastern China with a nonhomogeneous hidden Markov chain. However, it is 

necessary to point out that rainfalls are often greatly affected by topography, and 

mesoscale and small scale systems, which creates intrinsic uncertainties for climate 

projection. There are also uncertainties in relation to future emission scenarios and to 

GCMs themselves. To reduce uncertainties of climate downscaling and projection, 

multiple models and multiple approaches need to be further promoted. Finally, in terms 

of NHMM improvement, we need to study model sensitivity in function of tunable 

parameters or to compare it with other statistical theories and approaches, already used 

in the East Asian monsoon region. 
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Table 1. Indicator, acronym, definition and unit of five indices used in this study 

Indicator Acronym Definition Unit 

Total precipitation PRCPTOT 

Let Apq be the daily precipitation 

amount for day m of period n. 

Then the total climatological 

precipitation in period n is PRCPTOTq = ∑ Apq
v
p#� . 

mm 

Precipitation 

intensity 
SDII 

Let whx be the daily precipitation 

amount for wet day e (w >

1ee) of period d. Then the 

mean precipitation amount for 

wet days is SDIIx =

∑ whx/c
{
h#� . 

mm/day 

Number of rainy 

days for daily 

precipitation more 

than 10mm 

R10mm 

Let whx be the daily precipitation 

amount for day e of period d. 

Then counted are the number of 

days where whx > 10ee. 

day 

95th percentile of 

precipitation 
P95 

Let whx be the daily precipitation 

amount for wet day e (w >

1ee) of period d. Then chosen 

is the 95th percentile of rainday 

amounts in period n. 

mm 

Maximum 

consecutive dry 

days 

CDD 

Let whx be the daily precipitation 

amount for day e of period d. 

Then counted is the largest 

number of consecutive days 

where whx < 1ee. 

day 
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Table 2 Time windows in the three global models when global warming levels at 1.5℃ 

and 2℃are satisfied, relative to pre-industrial period. 

Model 1.5℃ warming year 2℃ warming year 

BCC-CSM1-1(m) 2014  (2004, 2024) 2039  (2029, 2049) 

IPSL-CM5A-MR 2017  (2007, 2027) 2034  (2024, 2044) 

MPI-ESM-MR 2023  (2013, 2033) 2045  (2035, 2055) 
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Fig. 1. Schematic of NHMM and its progressing in time. 
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Fig. 2. Quantile-Quantile plots of simulated daily precipitations in GCMs (before 

downscaling) and NHMMs (after downscaling), and observed precipitations at four 

operational stations: Nanjing (a), Hangzhou (b), Wuhan (c) and Hefei (d). N-B (yellow 

circle), N-I (green circle), and N-M (red circle) denote outputs from NHMM 

simulations driven by three GCMs: BCC-CSM1.1(m) (orange triangle), IPSL-CM5A-

MR (green triangle), MPI-ESM-MR (red triangle). MME denotes multi-model 

ensemble (blue triangle) from the three GCMs, and N-MME the multi-model ensemble 

(blue circle) after downscaling, respectively. 
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Fig. 3. Box-and-whisker plot showing the distribution of �`)a0b at 56 stations before 

(blue, i.e. in GCMs) and after (red) NHMM downscaling. 

 

 

 

Fig. 4. Taylor Diagram showing five precipitation indices (PRCPTOT, SDII, R10mm, 

P95 and CDD) in three global climate models (BCC, IPSL, MPI) and their multi-model 
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ensemble (MME) (in hollow symbols).  Corresponding results from NHMM 

downscaling are shown in solid symbols. 

 

 

 

Fig. 5. Probability density function normalized by that of the reference climate from 

1986 to 2005 for summer daily precipitation in the middle and low reaches of the 

Yangtze River and for all NHMM simulations with three GCMs from 2016 to 2035, 

from 2046 to 2065 and from 2081 to 2100, respectively. To calculate the PR, we firstly 

divide the daily precipitation (>0.1mm) into several intervals of 5mm; furthermore, a 

ratio of the occurrence frequency in future period to that in reference period for each 

interval is the PR value. 
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Fig. 6. Relative changes of PRCPTOT (a, c, e) and SDII (b, d, f) during 2017–2036, 

2046–2065 and 2080–2100, relative to 1986-2005 (unit: %). Yellow cross represents the 

station that passes the 95% significance student’s t test. 
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Fig. 7. Same as Fig. 6, but for R10mm (a, d, g), P95 (b, e, h) and CDD (c, f, i). 
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Fig. 8. Boxplots showing the distribution of relative changes (in %) of R10mm (a), P95 

(b) and CDD (c) in the three sub-regions, western (green, 110-114°E), central (blue, 

114-118°E) and eastern (red, 118-122°E), under the global warming of 1.5℃, 2℃ and 

half-degree warming from 1.5 to 2℃. The upper and lower limits of box indicate the 

75th and 25th percentiles among stations; the horizontal line (the black asterisk) inside 

box indicates multi-station ensemble median (mean); and the whiskers show the range 

among stations. 
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