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Abstract

A nonhomogeneous hidden Markov model (NHMM) is usedstochastically
simulate summer (June- August) daily precipitationshe middle and low reaches of
the Yangtze River in Eastern China, with drivingcfog from three global climate
models (GCMSs). Simulations cover the historicaligebrfrom 1961 to 2005 and from
2006 to 2100 following the RCP4.5 scenario. The ehalfirstly evaluated against data
from the regional observation network. Results shioat NHMM effectively enhances
the ability of GCMs in simulating summer daily rih in the region. For future
projection at different time horizons of the 21snhtury, the spectral distribution of
regional precipitations (in function of their ingty) shows consistent changes with a
decrease of occurrence probability for light rain (0mm/day) and an increase for
heavy rain (> 10mm/day). Among variables of interestal precipitation (PRCPTOT),
precipitation intensity (SDII), number of rainy dajor daily precipitation exceeding
10mm (R10mm) and 95th percentile of precipitatid?®g), all show a gradually
increasing trend in the 21st century, and geogcailyi an eastward gradient with
smaller increase (or even weak decrease) for tts¢ avel larger increase for the east. It
is noted that obvious changes occur in easterromegith 95% significance level, and
PRCPTOT or R10mm increases by 40%~60% in the ldts&t 2entury. Further

quantitative assessment is performed for globaiway of 1.5C and 2C. The half-

degree additional warming makes R10mm change b#£632.4% and 12.1% over
western, central and eastern regions, respectively.
Key words. Nonhomogeneous hidden Markov model, Statistieatrtscaling, Daily

precipitation, Future projection, Global warminglo$C and 2C
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1 Introduction

The middle and low reach of the Yangtze River irstBan China is strongly
influenced by the Asian monsoon. The annual predipn in this zone is about
1000mm and two-thirds fall in summer. The regiofffess frequent extreme climate
events causing serious losses of lives and pregetti is therefore important for us to
investigate future evolution of such events undeba warming. Furthermore, the

2015 Paris Agreement aims to limit the global wawgnio well below Z° above the

pre-industrial and to pursue efforts to limit it3&dC (UNFCC, 201%. Particularly, the

half-degree warming from 1.5°C to 2.0°C becomesssne for international geopolitics,
since some recent studies concluded that it magtidadly augment the occurrence
frequencies and impacts of extreme evefith@effer et al., 2012; Knutti et al., 2016

Global climate model (GCM) which can well simultdege-scale climate variables
is often used to make future climate change prglean China. However, GCM has
shortcomings to well simulate regional climate, mhaidue to its relatively coarse
spatial resolution. It generally fails to reprodumean and extreme precipitatiodsafg
et al., 2009; Xu et al., 2011; Jiang et al., 20%idng et al., 2015; Yang et al., 2016
Downscaling techniques are thus indispensableatstorm outputs of GCM to reliable
regional climate simulations. To do so, the statdtdownscaling approach can be very
appropriate, in particular, for simulating daily epipitation and with multiple
realisations Ben Alaya et al., 2015; Dayon et al., 2015; Jhalgt2015; Ding et al.,
2016; Hundecha et al., 2016; Jones et al., 2016et/4l, 2015

The nonhomogeneous hidden Markov model (NHMM) igoad candidate for
climate downscaling. It was firstly used Byughes et al. (1994jo construct a

relationship between large-scale atmospheric inftion and regional precipitation.
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This climate downscaling procedure is based onhymothesis that the occurrence
probability of local weather is determined by lasgale fields, NHMM being able to
determine the transition of local meteorologicattggam on a daily timescale. Many
interesting results were reported in the literatomeusing NHMM to conduct climate
downscaling in different regions and obtained gefidct Bates et al., 1998; Charles et
al., 1999; Greene et al., 2011; Tan et al., 2018fficet al, 2016. Fu et al. (2013a)sed
NHMM to generate an ensemble of stochastic dailyfall projections for 30 stations
across south-eastern Austrakbertson et al. (2004pplied NHMM to outputs of the
global climate model ECHAMA4.5 over Northeast Braaitd pointed out that the
generated daily precipitation series have goodssitl properties. Recently, we also
applied NHMM to produce daily precipitation in tN@ngtze-Huaihe River Basin with
BCC-CSM1.1(m) global model. A preliminary evaluatiovas reported iDing et al.
(2019. We found that our downscaling methodology witkiMIM can effectively
improve the daily precipitation properties on ig@sal distribution, temporal variation
and probability distribution function (PDF). Theegent work is an extension bing et
al. (2016) We want to extend the utilization of NHMM to outp from multiple
climate models, and further investigate fine feaduof regional response with high
credibility. Meanwhile, we also strongly hope tloair projected daily precipitation for
future is useful and can be used for regional mamamt and relevant researches for
surface hydrology, agriculture and land use.

The outline of this paper is as followSection 2describes data and methodology.
Section 3presents a validation of NHMM applied to threebglomodels. The future
projection of indices' changes during twenty-fosettury and under the global warming
of 1.5°C and 2C are presented iSection 4 Finally, Section 5provides a general

discussion and conclusions.
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2 Data and methodology

2.1 Datasets

To construct a performant statistical downscalingdel, we selected 56 high-
quality stations in the middle and low reach of ¥&ngtze River (27.5-32°N, 110-
122°E) from June 1 to August 31 from the China Metegical Administration (CMA)
network with daily rainfall records from 1961 toA® Daily atmospheric circulation
fields are from ERA-40 reanalysis with 2.5°x2.58alition from the European Centre
for Medium-Range Weather Forecasts (ECMWF). Theyused, together with rainfall
from stations, to establish the NHMM statisticalwahscaling model. Large-scale
predictors are sea level pressure (12.5-35°N, RUBH), geopotential height at 500hPa
(10-25°N, 95-170°E), zonal wind at 500hPa (25-3%,595-140°E) and relative
humidity at 500hPa (27.5-32.5°N, 105-125{B)ng et al. 2016)

Three GCMs used in the NHMM are BCC-CSM1.1(m) (5’X1.125°) from
China National Climate Center, IPSL-CM5A-MR (2.5Q°&7°) from French Pierre
Simon Laplace Institute and MPI-ESM-MR (1.88°x18#dm Germany Max Planck
Institute. Large-scale atmospheric predictors fil@@Ms from 1986 to 2005 are firstly
applied into the NHMM. Simulated daily precipitai®are carefully compared against
observations from the same period, which providesrdication of the statistical model.
A comparison with rainfalls directly from GCMs caeveal added value of the
downscaling procedure. In a similar way, futurenelte projection is done for the three
GCMs and for three periods at different horizon81&2035, 2046-2065 and 2081-
2100. It's noted that our NHMM, as describedOimg et al. (2016)was trained at a
global grid of 2.5° by 2.5°. We need thus to intdgpe predictors fields from GCMs

into the grid of ERA-40 reanalysis with a bilineaterpolation scheme. In addition, the
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four large-scale predictors entering into the NHMadalculation are normalized
anomalous fields, with 1961-1990 climatology renthat each point, and the standard
deviation as a normalization factor.

2.2 Nonhomogeneous hidden Markov model (NHMM)

The NHMM is a double stochastic process consistihigidden states that cannot
be directly found and an observed state sequentoe.nfodel decomposes the daily
precipitation field on a network of stations intdeav discrete hidden states, which are
modelled as a first-order Markov chain progressingtime. Each hidden state is
associated with a distinct atmospheric circulatigime. The transition of hidden states
is unavoidably affected by large-scale predictdise hidden states of whatever day in
the temporal sequence are jointly determined bgetad the precedent day and current-
day large-scale predictors. In such a way, the &hplecipitation sequence is
stochastically simulated. Without the external ¢éasgale predictors, NHMM would
become a simple hidden Markov model.

We can now us&; andS; to designate observed precipitations and hiddatest
on dayt (t =1,2..T). Both are defined a¥ stations over the study ardais time
sequence length in days, i.e., 92 for boreal sumthgéhe number of hidden states is
noted a¥k, and therS = {q,q, --- q; .- qx}, Whereq; denotes each hidden stake.
represents atmospheric circulation field on daynd thusX,.; = (X;, X, ... X7) denotes
the time series of circulation field from= 1tot = T. The NHMM is defined with two
assumptionsHughes et al., 1994, 1999

P(R¢| S1.7) Ry t—1, X1.7) = P(R¢| Sp) 1)
P(S¢| S1: ¢—1, X1:7) = P(Se| Se—1, Xp) (2)
The first assumption is that the multivariate ppéetion R, at timet is

conditionally independent of all other variablesweg the hidden state at timet. The
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second assumption indicates that the hidden sfatesn dayt depend only on the
predictor vectoX; for dayt and the hidden stat€s_; on dayt — 1. A flow chart
demonstrating how NHMM practically works is showig. 1

The modeling process for NHMM was introducedHiyghes et al. (1994, 1999)
For the precipitation probability distribution furan (conditional to the hidden stasek
P(R;| S;), we establish @ function and a double-exponential distribution dtion to
describe the probability of non-rainfall and raihfeespectively.

PRl Se = q)) =TTW=1 PRY =7IS; = q) =[TW=1aw  (3)

PiWO TZO

2
Aiw = —Aiwe?
z Piwcliwce wce r>0
c=1

Wherer is the observed precipitation at statioron dayt, g; is the hidden state on day
t,w=12.W,i=1,2..K, cis the number of exponential,,. refers to the weight,
andA;,,. denotes the exponential distribution function paater.

To calculate the transition mat®(S;| S;_;,X;), we use Bayes conditional
probability theory to decompose it into a produtthe baseline transition matryx;
(P(S; = qi| S;-1 = q;) and a function of the atmospheric predic®;|S,—, =
qj,Se = q;)-

Considering that the relevant atmospheric predickyr are usually derived
variables of high-dimensional atmospheric fields, @an reasonably assume tkigare
multivariate and normally distributed. This leads the following model for
P(S¢| Se—1, Xp):

P(S: = qi|St-1 = qj, X¢) x P(S; = CIil Stoq = Qj)P(Xt|St—1 =4q;,5: = q;)

= yjiexp[— (Xe — i) (X, — 171)'] (4)
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Here,u;; is the mean of the atmospheric predictors assmtiatith transitions from
stateq; at dayt — 1 to statey; at dayt. ),~* is the covariance matrix of the atmospheric
predictors. To ensure identifiability of the paraers, the constrainfg;y; = 1 and
il = uj = 0 are imposed.

Parameter estimation is accomplished by the metbggd@f maximum likelihood.
Letting ©® denote the model parameters, the likelihood canriiten as:

L(®) = P(Ry.r|X1r) = ZslzT P(Ry.7, Sy.rlX17)

= Zslzr P(S;1X1) HZ=2 P(S¢lSe-1,X¢) HZ=1 P(R:|S:) )
The set of parametei® that maximizel.(®) can be obtained with the widely-used
Baum-Welch algorithmRabiner et al., 1986 a variant of the iterative Expectation-
Maximization (EM) algorithm Dempster et al., 19§7for obtaining maximum
likelihood parameter estimates for models with kid/ariables and/or missing data.
The specific EM procedure that we used in this pdpeNHMM parameter estimation
is fully detailed inRobertson et al. (200.3)

After the calibration of NHMM, model parameters luing the hidden states
S={q1,92 - q; - qx} , the transition matrixP(S;| S;_,,X;) and the precipitation
probability distribution function (conditional thé hidden state) P(R,| S;) are fully
determined. They remain unchanged for all rairgimlulations, including future climate
conditions. As shown by the technical flowcharFig. 1, the first step of using NHMM
is to generate a Markov chain of hidden stéfigss,, ..., St, based on a sequence of
daily atmospheric predictors, and the transitioririn® (S| S;—1, X). The next step is
to simulate daily precipitatiom, according to probabilitieB(R}’ = r|S; = q;). In the
case of future warming climate, atmospheric predsctcorresponding to global
warming would lead to modifications in the frequgnaf the hidden states with

different rainfall amounts. Eventually more (or degrecipitation can be generated.
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Therefore, the case of climate change for a fusaenario is explicitly taken into
account in the frequency of each hidden states.

The number of hidden statkds optimized by the Bayesian information criterion
(BIC). The BIC score with K states is defined as:

BICx = 2L(0f) —plogT logT (6)
Where 0 is the estimated maximum likelihood parameter sechs is obtained
through EM applied to the training data for a modeth K states.L(0f) is the
likelihood of the model evaluated @ andp is the number of parameters in tiestate
model. The least BIC score corresponds to an optimdel exploring the training data.
After tests, an eight-state modg&l € 8) is finally chosen for udiing et al., 2015

NHMM, applied to climate downscaling, needs appiaiply-selected predictors.
Our previous paperDing et al., 2016)shows that with four large-scale predictors,
including sea level pressure, geopotential heigf0@hPa, zonal wind at 500hPa and
relative humidity at 500hPa, it is possible to beth a good NHMM to simulate
summer daily precipitation over Eastern China. Aty the basic principle of selecting
predictors is that they must have a good corralatdh precipitation (the predictand)
and a clear physical meaning.

In practice, the selection is as follows. We fiysthiculated the leading principal
component of summer precipitation from the 56 stetiavailable in the middle and low
reach of the Yangtze River. The leading PC was tsed to calculate the temporal
correlation coefficients with eighteen atmosph&dadables including sea level pressure,
atmospheric geopotential height, temperature, iveldtumidity, and wind fields. The
obtained correlation maps could help us to detezrpiotential predictors to select and
their spatial domains which include major areasipasthe 95% significance test. The

second step of our practice consists of actuallirig the performance of NHMM by
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using different combinations of potential predistowe evaluated the model ability by
examining the temporal variability and spatial wisttion of its simulations.

Finally the optimal model was obtained with theldweling predictors (with their
relevant domain): sea level pressure (12.5-35°Ns-1ZD°E), geopotential height at
500hPa (10-25°N, 95-170°E), zonal wind at 500hPa32.5°N, 95-140°E) and relative
humidity at 500hPa (27.5-32.5°N, 105-125°E).

To reduce the dimensionality of the selected pteds¢ a principal component
analysis (PCA) is applied to the combined normalitields of the four predictors. The
first twenty six principal components, explaining to 90% of the total variance, are
selected as “actual predictors” of the model.

Furthermore, since our NHMM was established with 2:6°-grid of ERA-40 and
its four variables as predictors, the same fourabées extracted from GCMs outputs
need to be firstly interpolated into the 2.5°-grichey are then normalized by their
standard deviations of the period (1961-1990) andlly form a combined field. To
eliminate models systematic biases, the combingd from GCMs is projected onto
the 26 ERA-40-based spatial EOF structures. Thairdd 26 principal components are
then used in NHMM to perform rainfall downscalingalation: daily precipitations for
each of the 56 stations and for the whole timeqgkeri

Further details of our NHMM algorithms and proceshican be found irlughes
et al. (1994)Robertson et al. (2003irshner et al. (2005andDing et al. (2016)The
practical realization of NHMM used in this paperthsough the toolbox "HMMTool"
developed and maintained in the International Rekea Institute

(https://iri.columbia.edu/our-expertise/climate/®bidden-markov-model-

tool/hmmtool).
2.3 Precipitation indices and evaluation methods
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In order to measure the climate characteristicsiofulated precipitations, five
indices including precipitation means and extrem@susedJiang et al., 2002 They
are all calculated with the diagnostic softwarevpded by the Statistical and Regional
Dynamical Downscaling of Extremes for European Begi(STARDEX) Haylock et
al., 2009. Their definition is presented ifable 1

Performance metrics include a parameter assessiagdistribution of daily
precipitations, skill ScoreS(.,,.), and the Taylor diagram describing the spatittiepa
of a geophysical variabléérkins et al., 2007; Liu et al., 2011; Fu et2013b; Taylor,
2001).

Sscore Was proposed ifPerkins et al. (2007)0 measure the coincidence of two
PDF curves by calculating the cumulative minimurtugaof the two distributions.

Sscore = Li=1 Minimum( Py, Po;) (7)
Wherer,,; andp,; are the modelled and observéd probability values of each bins and
d is the number of bins. It varies from 0 (no ovppiag at all) to 1 (total matching
between the two distributions).

Taylor Diagram Taylor, 200} provides a statistical summary of patterns
similarity between simulations and observations teamms of spatial correlation
coefficient, centered root-mean-square (RMS) déffiee, and ratio of spatial standard
deviations. A perfect simulation would have theueabf 1 for the centered pattern root
mean square error (RMSE), and 0 for the spatiatetaiton. The ratio of spatial
standard deviations would be 1.

2.4 Timewindowsfor 1.5 C and 2 C global warming targets
As defined in the Paris climate Agreement, the’™.&nd ZC global warming

thresholds are relative to the pre-industrial le\féle period 1861-1900 is selected as a

common pre-industrial period in this study. The ssiun scenario is RCP4.5. Time
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series of global averaged temperature anomaliedirstey smoothed by a 21-year
moving average before selecting the year for wihehl1.5C or 2C threshold is firstly

reached. Finally a period of 21 years in totalefiried with 10 years before and after
the nominative year, as shown Tiable 2 This way of defining the time windows is
consistent and comparable with a few recent studigs,Hu et al (2017andShi et al
(2017) on China’s regional climate change corresponding.5°C and 2°C warming
levels. We need to point out that the climate egfee period is from 1986 to 2005,

defined as present-day climate, although th&lamd 2C warming targets are relative

to the pre-industrial. The global mean surfacetemperature increases by 0.9°C from
pre-industrial to present-day in the ensemble mefrour three GCMs. The net

warming for the cases of 1.5°C and 2°C warmingleveould be of 0.6 and 1.1C

respectively.

3 Climate properties of extreme precipitationsin GCMsand NHMM

In our previous study, we used ERA-40 large-scatlation from 1991 to 2002
in the construction and calibration of NHMM to dtastically simulate summer (1 June
to 31 August) daily precipitations in Eastern ChiN&liIMM showed a very good skill in
simulating the probability distribution of precigitons, their spatial distribution
patterns and their interannual variabilitpitg et al., 2018 In this paper, we will
further evaluate the performance of NHMM, but ir ttontext of its application to
outputs of three GCMs. We put emphasis on the asgdkee of NHMM compared to
the performance of original GCMs. Since this eviadurais done for present-day climate,
it also provides a reference for projecting futexéreme rainfall changes.

3.1 Statistical properties of daily precipitation
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To assess the ability of NHMM and that of the thdeging GCMs, we first show
the Quantile-Quantile plots performed on daily ggation for four major stations in
the region. As shown ifig. 2, there is a systematic bias in the distribution ailyd
precipitations in GCMs. For any quantile, the siatedtl rainfall amount is significantly
lower than the observed one. The largest differemedove 66hm(Fig. 2a and Fig. Jc
After downscaling with NHMM, models are rather @ds observation with an absolute
error smaller than 20m It indicates that NHMM indeed improves the stata
behaviors of daily precipitation. For daily pretgtion rate below 58m, NHMM is
highly consistent with observation at Nanjing andin&n. Similarly, NHMM does a
good job for daily rainfall rate below #tim at Hangzhou and Hefei. For heavy rain
greater than 58m the simulation by NHMM at Nanjing, Hangzhou anefél is
generally smaller than observation, while at Wubad for precipitation greater than
80mm the simulation is larger than observation.

In terms of differences among models, the abilitysionulation below 76hmin
MPI-ESM-MR gets closer to observation than otheo twodels and the multi-model
ensemble, while for daily rainfall greater than 7TOmMBCC-CSM1.1(m) is slightly
better than other models. The simulation capabitifythe multi-model ensemble
generally keeps at middle level among the three etsodAfter downscaling with
NHMM, the outputs of all the three models and theltmmodel ensemble tend to
coincide. We almost cannot distinguish them frowheather inFig. 2

We now examine all the stations in the regieig. 3 gives box-and-whisker plots
showing the distributions of,,,. at the 56 stations. Whefy,,,..are closer to 1, the
simulated distribution for all stations is closer the observed one. It is clear that
NHMM improves significantly the ability of all thhree models and the multi-model
ensemble in simulating the distribution of dailygpitation. Detailed results show that
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the medians of,.,,. for BCC-CSM1.1(m), IPSL-CM5A-MR, MPI-ESM-MR and
multi-model ensemble are 0.68, 0.68, 0.83 and :&gpectively. After downscaling
with NHMM, the medians of,,,. increase to 0.91, 0.90, 0.90, and 0.91, respéytive
In general, the,,,,. for each station almost is above 0.85, in whighl#rgestS; . IS
up to 0.96. The ranges 8{.,,.. are significantly decreased among different stetio

If we examine individual models and the multi-mo@elsemble, MPI-ESM-MR
gives the best results 64.,,., while BCC-CSM1.1(m) and IPSL-CM5A-MR show the
largest improvement after NHMM downscaling with thedians o8, increasing to
more than 0.9Kig. 3).
3.2 Spatial distribution of precipitation indices

In this section we turn our attention to the perfance reproducing the spatial
pattern by NHMM along with the mean and extremeipitation indicesFig. 4 shows
the Taylor diagram for the five precipitation inelécin the three global models and the
multi-model ensemble to comprehensively evaluagesiatial distribution. The same is
shown for results with the application of NHMM. Thes generally a weak ability in
GCMs. Specifically, the spatial correlation coafitts of major indices between the
simulations and observations are less than 0.4tfeenaximum does not exceed 0.6;
the standard deviations are relatively scatteree;RMSEs are generally greater than
0.75. After downscaling, NHMM improves significantthe spatial distribution of
precipitation indices. Except CDD that does notvslmmprovement with NHMM, other
precipitation indices observe their spatial coiiefa coefficients increasing to more
than 0.8; the standard deviations remain betwe@ra®d 1.3; the RMSEs decrease to
less than 0.75. Among the different indices meaguspatial patterns of precipitation,
there is a greater improvement in simulating PRCPT&dd R10mm with spatial

correlation coefficients larger than 0.9 and RMSHEmller than 0.5. Again, CDD shows

Accepted manuscript. Guo et al. 2018 Internatidnaf Climatology https://doi.org/10.1002/joc.5882 page 14



its weakest score compared to other indices. Tisedrder Markov chain, obviously,
cannot well capture this persistent behavior oftheasequence&urger et al. (2012)
by comparing different statistical downscaling noeth, also conclude that most of
them fail to reproduce CDD.

To sum up, NHMM effectively enhances the ability mbdels in simulating
summer daily precipitation and spatial distributiomer the Yangtze-Huaihe River
Basin. It provides a basis for projecting futureamtpe of daily precipitation under
warmer climate using this method. After downscalinbe PDF curves of the
simulations get closer to the observations. The iameaf skill score for BCC-
CSM1.1(m), IPSL-CM5A-MR, MPI-ESM-MR and multi-modehsemble is increased
by 0.23, 0.22, 0.07 and 0.16, respectively. Thegeanof thes,.,,.. are significantly
decreased among different stations. The spatiatledion coefficients of PRCPTOT,
SDIl, R10mm and P95 are improved from less thant®.@ore than 0.8, and the root
mean square errors of the above four are genatatlyeased to 0.75 or less, in which

PRCPTOT and R10mm have the optimal improvement.

4 Future projections

In view of the added value of NHMM compared to pariance of initial GCMs,
we apply the established NHMM to further projedufe change in daily precipitation
or extreme precipitation during 2017-2036, 204620éhd 2080-2100 under the

RCP4.5 emission scenario, as well as the globaimay period of 1.5 and 2C.

4.1 Changein daily precipitation distribution
We can now calculate the probability distributiemdtions of daily precipitations
with different intensities from all the 56 statioms our region. This is repeated for

present-day and the three future periods respégtidastead of making visual

Accepted manuscript. Guo et al. 2018 Internatidnaf Climatology https://doi.org/10.1002/joc.5882 page 15



inspection among the four curves (not shown), we gaantify the variations from
present-day to future horizons by calculating theorof probabilities for each bin of
intensities. This concept is close to the probgbiiatio (PR) introduced and used by
Stott et al. (2004andFischer et al. (2015 measure the risk variatiohig. 5 shows
PR of daily precipitation distribution, calculatéal the whole domain with data from
the multi-model ensemble for three periods of thst Zentury, 2017-2036, 2046—2065
and 2080-2100. Generally speaking, PR of light (@it-9.9mm) shows a decreasing
trend, while that of strong rainfalls (larger th&u®mm per day) increases. The rate of
PR seems to slow down when the time goes on (aasiatu effect). Specifically, for
light rain (0.1-9.9mm/day), PR in average durind 22036, 2046—2065 and 2080—
2100 is 0.983, 0.966 and 0.962, respectively, ikgab 1986-2005. For moderate rain
(10-24.9mm/day), the occurrence probabilities iaseeby a factor of 1.005, 1.014 and
1.016, respectively. For heavy rain (25-49.9mm/ddiie occurrence probabilities
increase by a factor of 1.026, 1.047 and 1.053ews/ely. For the rainstorm (50-
99.9mm), the occurrence probabilities increase gcgor of 1.027, 1.052 and 1.055,
respectively. For heavy rainstorm (more than 99.9mime occurrence probabilities
increase by a factor of 1.026, 1.045 and 1.04peds/ely. In general, summer daily
precipitation in the middle and low reach of theng&ze River has a higher occurrence
probability for strong rainfalls (> 10 mm/day) arad weaker probability for light
rainfalls (< 10 mm/day).
4.2 Changein geographic distribution of precipitation indices

The spatial distribution of PRCPTOT and SDII chandger 2017-2036, 2046—
2065 and 2080-2100, relative to 1986-2005, is shiav#Ang. 6. In the early 21st century,
both PRCPTOT and SDII increase at major stationthéneast, with relative changes
keeping below 20% and 10%, respectively, whiletthe indices decrease in the west.
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In the middle 21st century, larger variations apgeathe two indices, compared to the
former period. For example, PRCPTOT across thetabasea increases by 40%. In the
late 21st century, PRCPTOT and SDIl show more deas for stations in the west,
while the difference between the west and the teasts to amplify. It's noted that the
increase of PRCPTOT is generally stronger thanith8DII.

Fig. 7 shows relative changes of extreme precipitatiahces R10mm, P95 and
CDD. The trend of R10mm is similar to that of PB&t opposite to that of CDD. In the
early 21st century, R10mm and P95 at major statimecrease with the relative changes
keeping below 20% and 10%, respectively, while CBé&herally decreases. In the
middle 21st century, larger variations appear ettiree indices and at more stations in
the east. R10mm and P95 increase by more than 8d%G26, and CDD decreases by
over 20%. In the late 21st century, the increasBImm across the eastern region is
up to over 40% and the decrease of CDD keeps rhare 20%, while CDD over the
western area decreases by less than 20%. To suextug@me and local characteristic of
future summer rainfall over the Yangtze-Huaihe RiBasin will show a gradual
increase with smaller increase (or even weak dsejeim western region and larger
increase in eastern region.

4.3 Response of extreme precipitation under the global warming of 1.5 Cand 2 C

Considering important economic and geopoliticaléssin relation to the global

warming levels of 1.% and 2.0C in the Paris Agreement, we put particular attentm

responses of extreme precipitation in our regiomeéstigation under the two warming
targets. Precipitation indices in terms of geogm@amhstributions are quite similar to
what is shown irFFig. 7,R10mm, P95 and CDD have a spatially coherent ahanti

wetter trend in eastern region and drier trend @stern region under 1% warming

target, while these trends are more significanear®{ target. Considering the fact that
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there is a general gradient from west to east mregion of investigation, we divided
the 56 stations into three groups (west, middle east) with roughly equal number of
stations. Statistics for each group are given m Biin the form of box-whisker plots.
For both R10mm and P95, there is a slight decrea®e west, but there are increases
in the middle and east. Changes in 2°C are gemeaatplified compared to those in

1.5°C warming. The additional half-degree warmirgnf 1.5C to 2C implies changes

of -3.7% (-0.3%), 2.4% (-0.1%) and 12.1% (2.7%) RIrOmm (P95) and for the west,
middle and east respectively. For CDD, we obsemayarse gradient from west to east.
The additional half-degree warming induces an m®eeof 2.1% in the west, but

decreases of -4.6% and -7.2% in other two regions.

5 Summary and discussion

A statistical climate downscaling based on NHMM wveasstructed and used to
simulate summer daily precipitation in Central andastern China. The
nonhomogeneous term was the large-scale atmosptiesidation from three global
climate models, i.e., BCC-CSM1.1(m), IPSL-CM5A-MRdaMPI-ESM-MR. NHMM
became thus a powerful tool to perform relevamhate downscaling, including future
projection of summer daily rainfall under the RC3F4emission scenario. Main
conclusions are the following.

(1) NHMM effectively enhances the ability of globalrmkte models in simulating
summer daily rainfall in the middle and low readhtle Yangtze River in Eastern
China. Absolute errors of daily precipitation distition shown in Quantile-Quantile
plots are largely reduced, from about 60mm in dlobadels to generally below 20mm
in NHMM downscaling. The improvement is also comigd with quantitative measures,

the skill score. Spatial correlation coefficienfP®RCPTOT, SDII, R10mm and P95 are
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improved from less than 0.6 to more than 0.8. TMSESs of the above four indices are
generally decreased to 0.75 or less. CDD shows littprovement in NHMM, due to
certainly inadequacy of the first-order Markov e¢hor long-lasting phenomenon.

(2) Future rainfall changes are projected based on NHigiMhree future periods,
2017-2036, 2046—-2065 and 2080-2100, under the BC$énario. Our study area
exhibits a general wetter trend in the future, butifferent repartition in rainfall
distribution. Daily precipitation smaller than 10mwould decrease and that above
10mm would increase, in which the largest riskamstorm (50-99.9mm/day) increases
by a factor of 1.027~1.055. The changing rate kesggsificant until the middle of the
21st century, and presents a saturation effechén late 21st century. In addition,
PRCPTOT, SDII, R10mm and P95 have a gradually asing trend during early,
middle and late 21st century, while CDD is reldtyvéecreasing with flood in eastern
region and drought in western region. There araontsvchanges occurring in eastern
region (118-122°E) with 95% significance level, @pRCPTOT or R10mm increases
by 40%~60% in the late 21st century. ConverselyDCiecreases by -30%~ -20%
there. Rainfall changes presented in this work @efirmed to be coherent with
changes in atmospheric general circulation. Resnlis shown in this paper, will be
reported in the future.

(3) Under the global warming of 1’6 and 2C, the response characteristics of

extreme precipitation for all stations in Eastetir@ show that R10mm, P95 and CDD
have a spatially coherent change with wetter tienelastern region and drier trend in

western region under 1’6 warming target, while these trends would be more
pronounced at? target. From 1.® to 2°C target, the additional half-degree warming

makes R10mm (P95) to vary by -3.7% (-0.3%), 2.4%106) and 12.1% (2.7%) in

western, central and eastern regions, respecti@ipversely, CDD varies by 2.1%, -
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4.6% and -7.2%, respectively. It's noted that tfECland 2C warming targets relative
to pre-industrial period imply a warming of @6and 1.IC relative to present-day

period for MME, respectively.

Our results provide a relevant reference for statisdownscaling of daily rainfall
in Eastern China with a nonhomogeneous hidden Marioain. However, it is
necessary to point out that rainfalls are oftenatlyeaffected by topography, and
mesoscale and small scale systems, which creati@ssio uncertainties for climate
projection. There are also uncertainties in refatio future emission scenarios and to
GCMs themselves. To reduce uncertainties of clingdenscaling and projection,
multiple models and multiple approaches need ttutiber promoted. Finally, in terms
of NHMM improvement, we need to study model sewsitiin function of tunable
parameters or to compare it with other statistiicabries and approaches, already used

in the East Asian monsoon region.
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Table 1. Indicator, acronym, definition and uniffiee indices used in this study

Indicator

Acronym  Definition Unit

Total precipitation PRCPTO

Precipitation
_ _ SDIl
intensity

Number of rainy
days for dail

y. o Y R10mm
precipitation more

than 10mm

95th percentile of
o P95
precipitation

Maximum
consecutive dry CDD

days

Let A,,, be the daily precipitatior
amount for dayn of periodn.

Then the total climatological mm
precipitation in period is

PRCPTOT, = ¥M_, Apn.

Let 4,,,,, be the daily precipitatior
amount for wet dayn (A >

1mm) of periodn. Then the

mm/day

mean precipitation amount for

wet days iSDII,, =

My A/ M.

Let 4,,,,, be the daily precipitatior
amount for dayn of periodn. day
Then counted are the number of
days whered,,,,, > 10mm.

Let 4,,,,, be the daily precipitatior
amount for wet dayn (A >

1mm) of periodn. Then chosen mm
is the 95th percentile of rainday
amounts in period.

Let 4,,,,, be the dalily precipitatior
amount for dayn of periodn.

Then counted is the largest day
number of consecutive days

whereA,,, < Imm.
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Table 2 Time windows in the three global models nvgkwbal warming levels at 6

and 2Care satisfied, relative to pre-industrial period.

Model 1.5°C warming year & warming year

BCC-CSM1-1(m) 2014 (2004, 2024) 2039 (2029, 2049)

IPSL-CM5A-MR 2017 (2007, 2027) 2034 (2024, 2044)

MPI-ESM-MR 2023 (2013, 2033) 2045 (2035, 2055)
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Fig. 1. Schematic of NHMM and its progressing mei
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Fig. 2. Quantile-Quantile plots of simulated dapyecipitations in GCMs (before

downscaling) and NHMMs (after downscaling), and esleed precipitations at four

operational stations: Nanjing (a), Hangzhou (b),hafu(c) and Hefei (d). N-B (yellow

circle), N-I (green circle), and N-M (red circle)embte outputs from NHMM

simulations driven by three GCMs: BCC-CSM1.1(m)afage triangle), IPSL-CM5A-

MR (green triangle), MPI-ESM-MR (red triangle). MMHEenotes multi-model

ensemble (blue triangle) from the three GCMs, aAdME the multi-model ensemble

(blue circle) after downscaling, respectively.
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Fig. 3. Box-and-whisker plot showing the distriloutiof S,,.,,. at 56 stations before

(blue, i.e. in GCMs) and after (red) NHMM downsaoali
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Fig. 4. Taylor Diagram showing five precipitatiomdices (PRCPTOT, SDII, R10mm,
P95 and CDD) in three global climate models (BAE5L, MPI) and their multi-model
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ensemble (MME) (in hollow symbols). Correspondimgsults from NHMM

downscaling are shown in solid symbols.

ie)
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Fig. 5. Probability density function normalized that of the reference climate from
1986 to 2005 for summer daily precipitation in tméddle and low reaches of the
Yangtze River and for all NHMM simulations with && GCMs from 2016 to 2035,
from 2046 to 2065 and from 2081 to 2100, respelstivieo calculate the PR, we firstly
divide the daily precipitation (>0.1mm) into seVeirstervals of 5mm; furthermore, a

ratio of the occurrence frequency in future periodhat in reference period for each

interval is the PR value.
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Fig. 6. Relative changes of PRCPTOT (a, c, e) atd &, d, f) during 2017-2036,
2046-2065 and 2080-2100, relative to 1986-2005:(%s). Yellow cross represents the

station that passes the 95% significance studerds.
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Fig. 7. Same as Fig. 6, but for R10mm (a, d, gh @9 e, h) and CDD (c, f, i).
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Fig. 8. Boxplots showing the distribution of reletichanges (in %) of R10mm (a), P95

(b) and CDD (c) in the three sub-regions, westgmegn, 110-114°E), central (blue,
114-118°E) and eastern (red, 118-122°E), undeglbieal warming of 1.5, 2°C and
half-degree warming from 1.5 td@ The upper and lower limits of box indicate the

75th and 25th percentiles among stations; the bt line (the black asterisk) inside
box indicates multi-station ensemble median (meandt the whiskers show the range

among stations.
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