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Abstract-Optical robots are micro-scale structures actuated using laser trapping techniques. However, the lack of robust and real-time 3D actuation techniques reduces most applications to planar space. We present here a new approach to generate and control several optical traps synchronously in 3D with low latency and high bandwidth (up to 200 Hz). This timeshared technique uses only mirrors, hence is aberration-free. Simultaneous traps are used to actuate optical robots and provide 6-DoF telemanipulation. Experiments demonstrate the flexibility and dexterity of the implemented user control, paving the way to novel applications in micro-robotics and biology.
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I. INTRODUCTION

M OBILE micro-robots promising access to intangible scales brings revolutionary potential to a vast amount of biological applications, ranging from minimally invasive unicellular surgery to exploration of fundamental biological phenomena [START_REF] Li | Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification[END_REF]. Optical trapping is a practical mean for actuating these tiny micro-machines in confined environments, such as lab-on-chip devices. They use the optical force generated by the energy and momentum exchange between light and particles to drive the mechanical motions of micro objects with nanometer resolution [START_REF] Ashkin | Optical trapping and manipulation of single cells using infrared laser beams[END_REF]. Using diffractive optical elements or active components, multiple traps can be generated from a single source, allowing simultaneous manipulation of several independent samples or applying torques on non-spherical objects.

Optical manipulation has become a popular tool for manipulating single biological samples, successfully demonstrated in a large range of in-vivo [START_REF] Gross | 8 application of optical traps in vivo[END_REF] and in-vitro [START_REF] Zhang | Optical tweezers for single cells[END_REF] experiments such as the trapping of red blood cells in living animals [START_REF] Zhong | Trapping red blood cells in living animals using optical tweezers[END_REF], the immobilization of bacterial cells for nanoscopy [START_REF] Diekmann | Nanoscopy of bacterial cells immobilized by holographic optical tweezers[END_REF] and cell rotation for tomographic imaging [START_REF] Y.-C. Lin | Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy[END_REF], among others. Usually, these optical traps are used directly to manipulate the object of interest. This approach suffers mainly from two issues: Thisworkwas supported by the French National Research Agency through the ANR-IOTA project (ANR-16-CE33-0002-01), and partially by the French government research program "Investissements d'avenir" through the Robotex Equipment of Excellence (ANR-10-EQPX-44). the exposure of biological samples to the laser beams can be damaging, and the quality of the trap strongly depends on the shape, material and the refraction index of the target, hence it's difficult to reliably hold organic samples. For these reasons, indirect manipulation methods have been proposed, where optically trapped structures are used as tools. Additionally, implementing sensing, actuation and feedback control leverage these structures as optical robots. The most basic and common example of such a tool is a polystyrene bead attached to the target sample [START_REF] Gross | 8 application of optical traps in vivo[END_REF]. Multiple beads arranged into gripper formations for the manipulation of cells are then explored [START_REF] Chowdhury | Automated manipulation of biological cells using gripper formations controlled by optical tweezers[END_REF]. Recent advances in microscale additive fabrication processes [START_REF] Maruo | Recent progress in multiphoton microfabrication[END_REF] have led the way to novel examples of micro-mechanisms actuated through optical trapping. These more complex structures are designed with attached spherical parts serving as optically trappable handles. Eventually, using an appropriate mix of surfactants or nano-materials, some interesting functions are demonstrated: a micro-pump [START_REF] Maruo | Optically driven micropump produced by three-dimensional two-photon microfabrication[END_REF]; a pH measurement gel-microtool by connecting micro-beads impregnated with indicators [START_REF] Maruyama | Functional gel-microbead manipulated by optical tweezers for local environment measurement in microchip[END_REF]; a micro-tool integrating a silicon nano-wire for temperature sensing [START_REF] Fukada | 3d fabrication and manipulation of hybrid nanorobots by laser[END_REF]; a surface scanning probe [START_REF] Phillips | Shape-induced force fields in optical trapping[END_REF]; a micro-robot with syringe function [START_REF] Villangca | Lightdriven micro-tool equipped with a syringe function[END_REF]; an optical screw-wrench for micro-assembly [START_REF] Köhler | Optical screwwrench for microassembly[END_REF].

The use of intermediate tools clearly widens the scope of optical trapping. Controlling these so-called optical robots requires the synchronous control of each handle. This in turn requires a precise control of the laser exposure and the trajectory of individual traps. Also, the overall stability depends on guaranteeing the same amount of power is transmitted at each trap, regardless of its position. This is only possible on an efficient, high-bandwidth and low-latency system [START_REF] Bolopion | Analysis of stability and transparency for nanoscale force feedback in bilateral coupling[END_REF].

These constraints are quite difficult to satisfy, therefore most optical robots are confined in 2D space in the optical plane (two translations and a rotation), limiting the applications where 3D controlled motion is crucial, such as cell orientation for micro-injection, polar-body biopsy, nuclear transplantation or 3D tomographic imaging [START_REF] Leung | Three-dimensional rotation of mouse embryos[END_REF].

The main aim of this paper is to present a new design of optical actuation to generate and control several simultaneous traps in 3D space. This design is solely based on mirrors, thus maximizing the optical efficiency. The choice of components with very high response times lowers latency and increases considerably the bandwidth for the control. Following a literature survey on multi-trap solutions, the proposed system is described here. Then, its capabilities are demonstrated by controlling simultaneously thirteen individual objects in 3D. Finally, its real-time capabilities are depicted in a teleoperated scenario, controlling true 6D motions of optical robots.

II. BACKGROUND AND RELATED WORK

Controlling the 3D motion of non-spherical objects (like cells, or synthetic robots) where optical handles are rigidly linked is much more demanding than controlling separate and individual beads. Relative deviations in the position of each trap will affect the stability of the whole structure and the force on each trap will interfere with the dynamics of the motion, as well as differences in the power distribution between traps. The generation of several simultaneously trapping points using a single laser source can be achieved using spatial or temporal sharing methods with their specific strengths and limitations. Table I summarizes the properties of some significant methods.

In spatial-sharing, using the light-diffraction, the beam is split on several less powerful beams. This requires a diffractive optical component such as a Spatial Light Modulator (SLM). Holographic optical tweezers (HOT) [START_REF] Curtis | Dynamic holographic optical tweezers[END_REF] or Generalized Phase Contrast (GPC) [START_REF] Eriksen | Multiple-beam optical tweezers generated by the generalized phase-contrast method[END_REF] are one of the most common techniques for creating multiple traps in 3D. However, calculating the hologram for a given number of traps in space is quite processor intensive. Liquid crystal components have also a relatively low response time. Hence, it's currently quite impossible to obtain sufficient bandwidth for real-time operation using spatial sharing. Recently, some studies utilizing HOT systems for rotational motions are reported. 2D actuation of an optical micro-robot is presented [START_REF] Fukada | 3d fabrication and manipulation of hybrid nanorobots by laser[END_REF]. Limited by the response time of the SLM (80 ms) and the stability of the traps, the maximum control frequency of the microrobot is 3 Hz. 3D rotation control of single live mammalian cells was reported [START_REF] Cao | Rotation of single live mammalian cells using dynamic holographic optical tweezers[END_REF]. Nonetheless, out-of-plane rotation speed of the cell and the traps are different with an important delay time of 1 to 5 seconds. Multiple degrees of freedom in HOT systems are also possible through wave-front shaping, using vortex [START_REF] Ng | Theory of optical trapping by an optical vortex beam[END_REF], Laguerre-Gaussian [START_REF] Asavei | Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization[END_REF], and other beam shapes [START_REF] Zhao | Curved singular beams for three-dimensional particle manipulation[END_REF], [START_REF] Kim | Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3d refractive index maps[END_REF]. Although these SLM-based techniques represent elegant solutions for the 3D motion or rotations, the extensive computational cost and complexity of trajectory control make their implementation in real-time scenarios a very difficult task.

On the other hand, multiple stable trapping points can be created by rapidly deflecting a laser beam among a set of positions. In these temporal-sharing methods the frequency of the trap scanning should be faster than the Brownian relaxation time of the trapped objects [START_REF] Neuman | Optical trapping[END_REF]. Usually these methods use a scanning mirror system [START_REF] Arai | Synchronized laser micromanipulation of multiple targets along each trajectory by single laser[END_REF] or an acousto-optic deflector (AOD) [START_REF] Ruh | Fast parallel interferometric 3d tracking of numerous optically trapped particles and their hydrodynamic interaction[END_REF]. Time-shared methods are suitable for controlled manipulation under real-time automatic/interactive control. Nevertheless, these are commonly limited to two dimensions.

Using a motorized objective or a z stage, the axial position of the beam can be controlled [START_REF] Arai | 3d 6dof manipulation of micro-object using laser trapped microtool[END_REF], [START_REF] Arai | 3d manipulation of lipid nanotubes using laser trapped functional gel microbeads[END_REF], [START_REF] Tanaka | Real-time threedimensional orientation control of non-spherical micro-objects using laser trapping[END_REF]. However, the inertia of such a system makes the synchronization of axial and planar motions a very difficult task. Some interesting approaches are reported to overcome this limitation. By combining a deformable mirror and acousto-optic deflector, a 3D steering system for single particle manipulation is presented, but no multi-trap capability has been reported [START_REF] Huang | Three-axis rapid steering of optically propelled micro/nanoparticles[END_REF]. An oscillating optical trap is used to rotate rod-shaped bacterial cells with respect to the optical axis [START_REF] Carmon | Rotation of single bacterial cells relative to the optical axis using optical tweezers[END_REF]. The oscillating trap was produced by means of a galvanometric mirror and the angle of rotation is determined by the amplitude of the oscillation. An electrically focus-tunable lens combined with a two-axis steering mirror is proposed [START_REF] Tanaka | Controlled 3d rotation of biological cells using optical multiple-force clamps[END_REF], [START_REF] Tanaka | Double-arm optical tweezer system for precise and dexterous handling of micro-objects in 3d workspace[END_REF], but its delayed response and distortion make it impossible to control 3D rotations accurately. A combination of a mirror galvanometer with a GPC to manipulate a micro-tool was proposed [START_REF] Arai | Multi-beam laser micromanipulation of microtool by integrated optical tweezers[END_REF]. The GPC generates fixed laser traps and the galvanometer is used to manipulate the overall configuration. The trapping force induced by GPC is weaker than what can be obtained directly by a mirror, hence the motion is quite limited and confined in the optical plane. As a workaround for the axial motion, an articulated robot with an out-of-plane mobility of an appendix using AOD is proposed [START_REF] Avci | Laser-printing and 3d optical-control of untethered microrobots[END_REF]. The precise and stable control of this DoF is a complex endeavour as it is controlled through handles on the structure in the same focal plane.

The lack of high bandwidth and low latency systems makes precise real-time control a challenging task, limiting the potential of optical robots that interact in a micro-world with high dynamics effects. An alternative design introducing a time-shared scanning technique for 3D multi-trap actuation is presented next. This system is based on the synchronization of a deformable mirror and a steering mirror and allows simultaneous control of focal and planar positions. This approach combines the efficiency of optical components with high reflectance and low latency response times.

III. HIGH-BANDWIDTH 3D MULTI-TRAP ACTUATION

The efficiency of an optical trap is related to the intensity distribution near the focal point. This diffraction-limited spot size is usually obtained by using an objective lens of high numerical aperture (NA). The location of the trap is determined by the angle of incidence and the degree of collimation of the laser beam and its stability is very dependent on the quality of the beam that reaches the entrance of the microscope objective. However, given the correlation between the beam that reaches the objective and the focal point, it is difficult to change the 3D position of the trap without distorting its shape and introducing aberrations that will degrade its performance [START_REF] Kampmann | Optical tweezers affected by monochromatic aberrations[END_REF].

To overcome these constraints in all three dimensions, a mirror galvanometer is used for the in-plane (xy) scanning. A deformable mirror (DM) which can focus or defocus the beam is used on z. The deformable mirror and the galvanometer are positioned in a conjugate plane on the entrance aperture of the objective (OBJ). Hence, the laser beam will pivot around the entrance aperture of the microscope objective and retain the same degree of overfilling, independently of the angle or degree of collimation of the incident beam, producing equally efficient and stable traps as much as possible [START_REF] Fällman | Design for fully steerable dual-trap optical tweezers[END_REF]. Fig. 1 depicts this principle.

The deformable mirror (PTT111 DM, Iris AO) is a microelectromechanical component with 111 actuators and 37 piston-tip-tilt segments with an update rate of more than 2 kHz. Each segment has 700 µm diameter while the array has an aperture of 3.5 mm and with a maximum dynamic range (Stroke) of 5.8 µm. Electrostatic actuation allows precise positioning of each segment with nanometer and microradian resolution (wavefront resolution <15 nm rms). The mechanical step-response speed is less that 200 µs (10-90%) and has high reflectance (>99.9%).

The segmented DM can effectively create smooth shapes, and it is used to control the degree of collimation of the laser beam. By synchronizing the orientation of the mirror galvanometer and the motion of the DM it is possible to displace the focal spot laterally and axially while maintaining the diffraction-limited performance. This axial scan implies a very low mechanical inertia, hence the z bandwidth is compatible with the galvanometer. The overall switching speed between 3D trap positions is in the same order of magnitude of equivalent 2D systems in the literature, as is shown below. Thus, it is possible to obtain very stable traps without introducing any significant aberrations.

The optical scheme of the system is shown in Fig. 2.(a). The Gaussian laser beam (1070 nm) is guided into the inverted microscope through the galvanometer, the DM, and standard optical elements. Two afocal systems (f 1 :f 2 and f 3 :f 4 ) are used to conjugate the two actuators with the entrance aperture of the objective and to expand the laser beam. It's expanded in order to overfill (20%) the objective entrance to improve the trapping efficiency [START_REF] Neuman | Optical trapping[END_REF]. A picture of the whole platform is shown in Fig. 2 The balanced distribution of power among different traps and the synchronization between the galvanometer and DM constitutes a critical issue in the system. A hard realtime 1 control framework implemented in C++ is set up to manage the synchronization. A single PC (Intel Xeon core, 2.93 GHz) operating under a real-time Linux co-kernel and RTOS APIs Xenomai [START_REF] Barbalace | Performance comparison of vxworks, linux, rtai, and xenomai in a hard real-time application[END_REF] gives satisfactory performances, without requiring any special hardware nor GPU. Synchronized parallel threads corresponding to the galvanometer and the DM run at hard real-time with fixed sampling rate. Given the very low response time of these components, near perfect synchronization is observed.

A. Calibration of the system

Precise positioning in 3D of each trap requires calibration between the optical path and real world coordinates. Using the microscope, xy calibration can be obtained quite straight forwardly, using any known distance. The precision in this case is limited by the optical properties of the microscope and the quality of the external gauge. The actuation sensitivities in xy axes are 37 µm/deg and 35 µm/deg respectively. The lateral workspace is limited by the range of view of the camera and is estimated as 56×43 µm.

The calibration in axial direction z is not an obvious task, as one can not rely upon the 2D optical feedback. An event based camera is used in this purpose, as previously described [START_REF] Yin | Highbandwidth 3d force feedback optical tweezers for interactive biomanipulation[END_REF]. This sensor has a range of ±2 µm around the focus plane with 5% SD. A 3 µm silica micro-sphere is trapped and displaced along the z axis, by varying the defocus magnitude of the DM from -0.5 to 0.5 µm rms, while tracing the position of the bead as seen by the above mentioned sensor. 70,000 data points are recorded in the 4 µm range of the sensor, giving an excellent linear fit depicted in Fig. 3. The working range of the axial displacement is estimated as 9 µm between the maximal and minimal defocusing position of the DM. This workspace depends on the current set-up and can be easily increased using a DM with larger stroke (eg. DMP40, Thorlabs). Also, the initial calibration showed a cross-talk between planar and axial motions as shown in Fig. 3.b. This is due to a small misalignment in the light path, which is corrected in control, enabling independent motion of all three axes. 1 The "hard real-time" here indicates the high precision of task scheduling, which is controlled by real-time kernel in a patched Linux system. 

B. Evaluation of the system

The system allows a sampling rate of 2 kHz for the control of z axis for small displacements below 2 µm. In order to exploit the full range of 9 µm allowed by the DM, the control loop is executed at 200 Hz. This bandwidth is in the same order of magnitude as the 2D mirror galvanometer (GVS002, Thorlabs), with full scale bandwidth of 250 Hz and 1 kHz for small angles (±0.2 • ). Note that the DM lacks position feedback and is controlled in open-loop, based on the calibration. The mirror galvanometer is controlled in closedloop through electronics provided by the constructor with an angular resolution of 0.0008 • .

The absence of external perturbations makes the synchronization between those 2 actuators reliable enough: the system allows the trapping and independent control of more than 15 micro-beads in different axial positions. Fig. 4 shows 13 micro-beads simultaneously trapped in 3D space, synchronously manipulated. The micro-spheres are arranged within a cube of 16×16×8 µm 3 . The laser power is 400 mW (measured at the laser output) and the shared irradiation time is set to 5 ms for each trap. These values of power and timesharing were optimized experimentally. Table II summarizes the principal parameters of the system. IV. 6-DOF TELEOPERATED OPTICAL ROBOTS Optical robots are basically small inert structures, with spherical handles implemented at different locations. These can be custom designed for a particular experiment. This case is quite well adapted to a remote handling scenario: the operator will have full control of the robots and can flexibly carry out his task. The high bandwidth of the proposed system and the lack of any noticeable latency allow such a direct control to be easily implemented.

A. Fabrication of Robots

At least three 'handles' are necessary to induce complete spatial motion. Two types of optical robots have been designed, with three and four spheres of 3 µm diameter as optical handles (Fig. 5). Different spacers are attached on both sides of the robot to minimize the adhesion forces. They are fabricated through two-photon polymerization (2PP) (Nanoscribe Photonic Professional). Each robot can be printed with various end-effectors appropriate for different applications.

The robots are incubated in distilled water, 5% ethanol and 0.5% Tween20 solution to prevent the surface adhesion. For the experiments, micro-robots are transferred to a sample chamber though an actuated microliter syringe, then sealed with another cover-slip, thus enclosed in a confined space.

B. Robot control

A (6+1) DoF master device (Omega.7, ForceDimension) is used to control the position of the robots (Fig. 6.a). The system allows to create traps on the fly, so the user can sequentially position traps on each handle and then control it in 6-DoF.

The robot kinematics were expressed in a local reference frame F r attached to its body. The origin of this frame is a virtual point G in the center of rotation of the robot. Each optical handle is relative to the point G and defined with a 3D vector T n = {X n , Y n , Z n } where n depicts the number of the trap (Fig. 6.b and Algorithm 1). An alternative control technique is implemented, where the operator moves the sample-chamber through the nano-stage. In this configuration, the robot has a fixed position in the camera view. Nano-stage can be driven in two modes, rate-control to explore all the sample chamber, and position-control to execute precise tasks.

2) 3D Rotations: The orientation of the robot is controlled by the orientation of the master device with reference frame F m . The rotation matrix R from F m to F r is calculated using the Tait-Bryan angles with zyx convention (yaw, pitch The achievable orientation range depends naturally on the maximum distance separating optical handles and the center of rotation, and limited by the working space of the 3D actuation technique. The rotation around x (roll) is ±35 • for four-handles robot and ±45 • for three-handles robot. The rotation around y (pitch) is limited to ± 85 • in order to avoid the eventual occlusion between two traps in a vertical configuration. Around z (yaw) the rotation is virtually unlimited. It's artificially set to ±120 • to match the handle rotation of the master device. Every DoF can naturally be controlled independently, coupled to another, or fixed. Note that every rotation can be controlled in speed rather than position, similarly to what was exposed above for translations. 2 Please see the supporting information

V. DISCUSSION AND FUTURE WORK

A new design with a fast and efficient architecture to generate several independent optical traps in arbitrary 3D positions is presented here. Up to 15 stable traps are generated in a volume of approx. 50×45×9 µm 3 , with a high bandwidth (up to 200 Hz) and nanometric resolution. The proposed system takes advantage of a combination of a mirror galvanometer and a deformable mirror with high reflectance, and hence is aberration-free. The implementation of 3D trajectory control is straightforward and its low computational cost and latency makes it suitable to be exploited for closed-loop or interactive control schemes. This approach can be advantageously used in different applications where the orientation of microscopic objects (biological or synthetic) is needed, such as cell surgery applications, 3D tomographic imaging of living samples, optically driven micro-machines or micro-assembling in microfluidic devices.

Thanks to the capabilities of the method, and because of its stable and simple set-up design, 6-DoF control of an optical robot in a teleoperated scenario have been demonstrated. This is a significant illustration of new robotic applications that can benefit from the proposed 3D optical manipulation. Furthermore, the actuation method combined with an intuitive and flexible user interface could be used in complex biological application where dexterous motions in 3D space is necessary. Since the optical-robot structures can be directly 3D printed according to the needs of a given experiment, each structure will have proper characteristics, and the system must have the capacity to adapt to this new tool. Proposing a fully automated control for each situation can be inefficient, as most of the protocols are not completely defined before the operation.

Possible applications of teleoperated 6-DoF optical robots include drug delivery tasks, pushing, 3D orientation of biological samples, 3D sensing, localized mechanical stimulation of single cells and any application requiring dexterous cell handling. More advanced functionalization (chemical, magnetic) of optical robots will take even further their capacity for micromanipulation.

In addition to provide the axial motion, the DM can be also used for shaping the beam structure. Compared to a SLM, it has excellent wavelength response and speed but lower spatial resolution. Combined, the wave shaping capabilities of the DM and the lateral deflection of the galvanometer, it will be possible to create more sophisticated motions and functions of the trapped objects. This real-time multi-trap technique can also be used in applications requiring a rapid generation of light beams such as optogenetics, structured light for microscopy or optical communications [START_REF] Rubinsztein-Dunlop | Roadmap on structured light[END_REF].

In future work, we plan to study the indirect 3D orientation of cells through optical robots with different endeffectors. We anticipate that the 3D micro-manipulation of biological samples without direct exposition to the laser beam will contribute to many cellular applications, where the cell rotation task is a required step, such as nuclear transplantation, embryo micro-injections and polar-body biopsy [START_REF] Zhao | Robotic cell rotation based on the minimum rotation force[END_REF]. We also plan to extend this 6-DoF control to several simultaneous optical robots for collaborative tasks. Also, the sensor used for the calibration can be exploited for indirect 3-axis force measurements, similarly to what was presented [START_REF] Yin | Highbandwidth 3d force feedback optical tweezers for interactive biomanipulation[END_REF]. This will open the way to force control of the robots, as well as to haptic feedback teleoperation where pico-Newton scale forces can be rendered to the user.
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 1 Fig. 1. (a) Schematic representation of how the laser beam will pivot around the objective's (OBJ) entrance aperture for small movements of the mirror galvanometer (GVT), creating the motion of the optical trap in the optical plane; (b) Schematic representation of the effect of focusing or defocusing the deformable mirror (DM) to change the z position of the traps. The size of the beam at the objective's entrance aperture remains the same, regardless of the degree of collimation of the incident beam.

Fig. 2 .

 2 Fig. 2. (a) Optical path of the time-shared multi-trap actuation. The source is a 1070 nm laser with a maximum output of 10 W. The deformable mirror (DM) and the galvanometer (GVT) are positioned in a conjugate plane of the entrance aperture of the objective (OBJ) and used to control the axial and the planar positions respectively. The oil immersion objective (Olympus UPlanFLN 40x, NA 1.3) is used to produce the optical traps and to image the scene. The illumination (LED, 3 W) is reflected by a longpass dichroic mirror (LDM, 900 nm cutoff) into the CMOS camera (Basler, 659×494 pixels). f 1 = f 2 = 50, f 3 = 60, f 4 = 250, M:Mirror. (b) Image of the optical trapping system with a close-up photograph of a Deformable Mirror (PTT111 DM, Iris AO) and a triangular optical robot. Two micro-stages (x -y) and a 3D nano-stage provide respectively coarse and fine positioning of samples.

Fig. 3 .

 3 Fig. 3. (a) The axial position range of the system. The linear regression coefficients show the conversion between DM coordinates and the real displacement, as reported by the position sensor; (b) The correction in xy axes when a motion in z is generated.

Fig. 4 .

 4 Fig. 4. Controlled movements of thirteen micro-beads arranged in a cube of 16×16×8 µm

Fig. 5 .

 5 Fig. 5. (a) Schematic depictions with dimensions of two different optical robots; (b) Scanning electron microscopy (SEM) images of robots.

Fig. 6 .

 6 Fig. 6. (a) Master device and his reference frame. (b) Representation of robot's kinematics and frames used in the 3D control.

Algorithm 1 6 -

 6 DoF teleoperated control of optical robots Require : Initial traps position Tn = {Xn, Yn, Zn} and center of rotation G = {X, Y, Z} ; i = 1 0: every 5 ms switch to next trap i+1 1: do for trap i 2: Acquire position P={px,py,pz} and orientation Ω={rx,ry,rz} of master device. 3: Calculate G : G + P×gain pos. 4: Update Rotation Matrix : R[3][3]← Rot Mat(rx,ry,rz). 5: Calculate new trap position of trap i: N p = R × T i 6: Transform N p and G in mirror coordinates 7: Send Output : M = N p + G to mirrors controllers 8: end do1) 3D translations:The reference frame is used to translate each trap, resulting in an uniform motion of the robot as depicted in Fig.7. Motions of the master device are scaled down by 1×10 -4 to control the 3D translation of the optical robot. In this configuration the workspace is limited to the field of view of the camera in xy and by the working space of the axial actuation.

Fig. 7 .

 7 Fig. 7. Experimental validation of 3D translation control of Optical Robots.

Fig. 8 .

 8 Fig. 8. Experimental validation of rotation control of Optical Robots.
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