B. A. Gordon, Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study, The Lancet. Neurology, vol.17, pp.241-250, 2018.

A. Faure, Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer's disease, Neurobiol. Aging, vol.32, 2011.

Y. J. Lin and .. P. Koretsky, Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function, Magn. Reson. Med, vol.38, pp.378-388, 1997.

S. Kikuta, Quantitative activation-induced manganese-enhanced MRI reveals severity of Parkinson's disease in mice, Sci. Rep, vol.5, pp.12800-12800, 2015.

P. Svehla, A. Bédécarrats, C. Jahn, R. Nargeot, and L. Ciobanu, Intracellular manganese enhanced MRI signals reflect the frequency of action potentials in Aplysia neurons, J. Neurosci. Methods, vol.295, pp.121-128, 2018.

I. Aoki, S. Naruse, and C. Tanaka, Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia, NMR Biomed, vol.17, pp.569-580, 2004.

T. Q. Duong, A. C. Silva, S. P. Lee, and S. G. Kim, Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements, Magn. Reson. Med, vol.43, pp.383-392, 2000.

Y. Hsu, W. Lee, and C. Chang, Multiparametric MRI evaluation of kainic acid-induced neuronal activation in rat hippocampus, Brain, vol.130, pp.3124-3134, 2007.

M. A. Laine, Brain activation induced by chronic psychosocial stress in mice, Sci. Rep, vol.7, pp.15061-15061, 2017.

A. W. Dobson, K. M. Erikson, M. Aschner, and . Manganese, Ann. N. Y. Acad. Sci, vol.1012, pp.115-128, 2004.

I. Aoki, Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI), Magn. Reson. Med, vol.48, pp.927-933, 2002.

W. Chen, J. Tenney, P. Kulkarni, and J. A. King, Imaging unconditioned fear response with manganese-enhanced MRI (MEMRI), Neuroimage, vol.37, pp.221-229, 2007.

G. P. Howles, Y. Qi, and G. A. Johnson, Ultrasonic disruption of the blood-brain barrier enables in vivo functional mapping of the mouse barrel field cortex with manganese-enhanced MRI, Neuroimage, vol.50, pp.1464-1471, 2010.

R. G. Pautler and A. P. Koretsky, Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging, Neuroimage, vol.16, pp.441-448, 2002.

J. Weng, J. Chen, P. Yang, and W. Tseng, Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast, Neuroimage, vol.36, pp.1179-1188, 2007.

H. Lu, Real-time animal functional magnetic resonance imaging and its application to neuropharmacological studies, Magn. Reson. Imaging, vol.26, pp.1266-1272, 2008.

N. Sun, Dynamic changes in orbitofrontal neuronal activity in rats during opiate administration and withdrawal, Neuroscience, vol.138, pp.77-82, 2006.

Y. Kuo, A. H. Herlihy, P. So, and J. D. Bell, Manganese-enhanced magnetic resonance imaging (MEMRI) without compromise of the blood-brain barrier detects hypothalamic neuronal activity in vivo, NMR Biomed, vol.19, pp.1028-1034, 2006.

Y. Kuo, A. H. Herlihy, P. So, K. K. Bhakoo, and J. D. Bell, In vivo measurements of T1 relaxation times in mouse brain associated with different modes of systemic administration of manganese chloride, Journal of magnetic resonance imaging: JMRI, vol.21, pp.334-339, 2005.

, Scientific RepoRts |, vol.9, p.1140, 2019.

T. Kimura, Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau, The EMBO journal, vol.26, pp.5143-5152, 2007.

C. Inui-yamamoto, The brain mapping of the retrieval of conditioned taste aversion memory using manganese-enhanced magnetic resonance imaging in rats, Neuroscience, vol.167, pp.199-204, 2010.

S. N. Fontaine, Identification of changes in neuronal function as a consequence of aging and tauopathic neurodegeneration using a novel and sensitive magnetic resonance imaging approach, Neurobiol. Aging, vol.56, pp.78-86, 2017.

P. D. Perez, In vivo functional brain mapping in a conditional mouse model of human tauopathy (tauP301L) reveals reduced neural activity in memory formation structures, Mol. Neurodegener, vol.8, pp.9-9, 2013.

X. Tang, Spatial learning and memory impairments are associated with increased neuronal activity in 5XFAD mouse as measured by manganese-enhanced magnetic resonance imaging, Oncotarget, vol.7, pp.57556-57570, 2016.

M. W. Brown and J. P. Aggleton, Recognition memory: what are the roles of the perirhinal cortex and hippocampus?, Nature Reviews. Neuroscience, vol.2, pp.51-61, 2001.

C. Casas, Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model, Am. J. Pathol, vol.165, pp.1289-1300, 2004.

W. Tischmeyer and R. Grimm, Activation of immediate early genes and memory formation, Cell. Mol. Life Sci, vol.55, pp.564-574, 1999.

S. Kumar-singh, Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls, Am. J. Pathol, vol.167, pp.527-543, 2005.

M. Cotel, S. Jawhar, D. Z. Christensen, T. A. Bayer, and O. Wirths, Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice, Neurobiol. Aging, vol.33, pp.96-107, 2012.

O. Wirths, H. Breyhan, S. Schafer, C. Roth, and T. A. Bayer, Deficits in working memory and motor performance in the APP/PS1ki mouse model for Alzheimer's disease, Neurobiol. Aging, vol.29, pp.891-901, 2007.

A. C. Silva, J. H. Lee, I. Aoki, and A. P. Koretsky, Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations, NMR Biomed, vol.17, pp.532-543, 2004.
DOI : 10.1002/nbm.945

A. Montagne, Z. Zhao, and B. V. Zlokovic, Alzheimer's disease: A matter of blood-brain barrier dysfunction?, The Journal of experimental medicine, vol.214, pp.3151-3169, 2017.

B. A. Berkowitz, MRI biomarkers for evaluation of treatment efficacy in preclinical diabetic retinopathy, Expert Opin. Med. Diagn, vol.7, pp.393-403, 2013.

H. Breyhan, APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy, Acta Neuropathol, vol.117, pp.677-685, 2009.
DOI : 10.1007/s00401-009-0539-7

URL : https://link.springer.com/content/pdf/10.1007%2Fs00401-009-0539-7.pdf

T. S. Benice and J. Raber, Object recognition analysis in mice using nose-point digital video tracking, J. Neurosci. Methods, vol.168, pp.422-430, 2008.

X. Yu, Y. Z. Wadghiri, D. H. Sanes, and D. H. Turnbull, In vivo auditory brain mapping in mice with Mn-enhanced MRI, Nat. Neurosci, vol.8, pp.961-968, 2005.
DOI : 10.1038/nn1477

URL : http://europepmc.org/articles/pmc2034206?pdf=render

K. Chuang, A. P. Koretsky, and C. H. Sotak, Temporal changes in the T1 and T2 relaxation rates (DeltaR1 and DeltaR2) in the rat brain are consistent with the tissue-clearance rates of elemental manganese, Magn. Reson. Med, vol.61, pp.1528-1532, 2009.

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, and . Nih, Image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, pp.671-675, 2012.