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Abstract

Several groups have studied experimentally the deformation of the front of mode I cracks prop-
agating quasistatically along the interface between bonded plates. The theoretical interpretation
of such experiments has always been based up to now on a formula of Rice (1985); this formula
provides the first-order variation of the local mode I stress intensity factor resulting from some
small, but otherwise arbitrary coplanar perturbation of the front of a semi-infinite crack in an
infinite body. To be applicable to bonded plates, this formula requires that the characteristic
distance of variation of this perturbation in the direction of the crack front be small compared
to all other characteristic dimensions of the problem, and first of all the thickness of the plates.
This condition is unfortunately frequently violated in practice. The purpose of this paper is
therefore to provide a more exact formula for the variation of the local stress intensity factor,
for the specific cracked geometry and boundary conditions used in experiments; this should allow
for more accurate theoretical interpretations. This is done in two steps. The first one consists in
adapting Rice (1985)’s treatment, applicable to the extreme case of plates of infinite thickness,
to the other extreme one of plates of infinitesimal thickness, using the standard Love-Kirchhoff
plate theory. An interesting outcome of the analysis is that the distance from the crack front
to the boundary of the plate acts as a “cutoff length”, in the sense that when the distance
between two points on the crack front gets larger than it, the influence of the crack advance at
the first point upon the stress intensity factor at the second diminishes quickly; the plate thick-
ness, however, plays no similar role. The second step consists in supplementing the theoretical
expressions applicable to extreme values of the plate thickness with finite element computations
providing results for intermediate values. These computations lead to the definition of a simple,
approximate but accurate “interpolation formula” for the variation of the local stress intensity
factor, applicable to plates of arbitrary thickness.
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1 Introduction

In the past 20 years, a number of works have been devoted to experimental studies of
the deformation of the front of plane cracks propagating quasistatically in heterogeneous
materials; see Schmittbuhl and Maloy (1997), Delaplace et al. (1999), Maloy and Schmit-
tbuhl (2001), Schmittbuhl et al. (2003), Maloy et al. (2006), Dalmas et al. (2009), Chopin
(2010), Santucci et al. (2010), and the recent reviews of Bonamy (2009) and Bonamy
and Bouchaud (2011). In a typical experiment, two plexiglas plates were bonded together
through application of a large pressure at high temperature, an inhomogeneous distribu-
tion of toughness being generated on the interface through some suitable treatment. 1 The
plates were then gradually separated by increasing the gap between them on one side,
thus inducing propagation of a crack from this side along the interface. The transparency
of the plates allowed for direct optical observation of the shape of the crack front as a
function of the distance of propagation.

Theoretical interpretations of experiments of this type have been proposed by many au-
thors; see Schmittbuhl et al. (1995), Tanguy et al. (1998), Schmittbuhl and Vilotte (1999),
Krishnamurthy et al. (2000), Roux et al. (2003), Schmittbuhl et al. (2003), Charles et al.
(2004), Katzav and Adda-Bedia (2006), Bonamy et al. (2008), Laurson et al. (2010), Pon-
son and Bonamy (2010), and the reviews of Alava et al. (2006) and Lazarus (2011). These
interpretations were invariably based on a formula of Rice (1985) providing the first-order
expression of the variation of the local mode I stress intensity factor resulting from some
small, but otherwise arbitrary in-plane perturbation of the crack front. This formula was
established for a semi-infinite crack in some infinite body. Clearly, to be applicable to
a crack lying on the interface between bonded plates, it requires that the characteris-
tic distance of variation of the perturbation of the front be small compared to all other
characteristic dimensions of the problem, and first of all the thickness of the plates.

Unfortunately, this condition is often violated in actual experiments. In Dalmas et al.
(2009)’s experiments for instance, regularly distributed tough spots of size comparable
to the plate thickness were generated, resulting in notable fluctuations of the position of
the crack front over this lengthscale. Even in more customary experiments which involved
randomly distributed toughness inhomogeneities of much smaller size, Fourier components
of the fluctuations of position of the front of wavelength comparable to the plate thickness
were present; see for instance Figure 5 of Schmittbuhl et al. (2003)’s paper.

Applicability of Rice (1985)’s formula to the experiments discussed is therefore question-
able. More accurate interpretations of these experiments would result from use of a for-
mula specifically adapted to the geometric configuration employed. Establishing it seems
all the more important since extensions of Rice (1985)’s formula to different situations - a
tunnel-crack loaded in mode I (Leblond et al., 1996) or in some arbitrary combination of
modes (Lazarus and Leblond, 2002); a system of two coplanar, parallel, identical mode I
tunnel-cracks (Pindra et al., 2010); a system of two coplanar, parallel semi-infinite mode
I cracks (Legrand and Leblond, 2010) - have revealed a notable influence of the cracked

∗ Corresponding author.
1 In a variant, the interface was between a plate and a rigid substrate.
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geometry considered upon the “influence function” depicting the effect of a small crack
advance at some point of the front upon the variation of the stress intensity factor at
some other point. The effect is particularly important upon the asymptotic behavior of
this function at large distances (Legrand and Leblond, 2010).

The aim of this paper is therefore to extend Rice (1985)’s formula to coplanar perturbation
of a crack lying on the interface between bonded plates, or equivalently on the mid-plane
of a plate of double thickness. 2 This will be done in two steps. First, Rice (1985)’s
treatment, appropriate for plates of very large thickness, will be adapted to the other
extreme case of plates of very small thickness. This will be done by replacing the standard
3D theory of elasticity he used by the Love-Kirchhoff plate theory, which is known to be the
correct asymptotic theory in the limit of an infinitesimal plate thickness (Sanchez-Hubert
and Sanchez-Palencia, 1992). Second, the theoretical expressions applicable to extreme
values of the thickness will be supplemented with finite element computations providing
results for intermediate values. These results will be used to define a simple, approximate
but accurate “interpolation formula” for the variation of the local stress intensity factor,
applicable in all cases.

The paper is organized as follows:

• Section 2 presents the problem to be solved.
• Section 3 recalls Rice (1985)’s solution, applicable to plates of very large thickness.
• As a prerequisite for the next section, Section 4 expounds some generalities on cracks

lying on the mid-plane of plates.
• Rice (1985)’s treatment is then adapted in Section 5 to the case of plates of very small

thickness.
• Finally Section 6 presents the numerical study for plates of intermediate thickness and

the interpolation formula deduced from it.

2 Statement of the problem - Notations

Figures 1 and 2 offer different 2D views of the 3D problem considered. A plate occupies
the domain 0 ≤ x < +∞, −h ≤ y ≤ h, −∞ < z < +∞ in the 3D space. This plate
contains a plane crack occupying the region 0 ≤ x ≤ a(z), −∞ < z < +∞ in the plane
y = 0. The crack front is almost straight so that the distance a(z) separating it from the
Oz axis may be written in the form

a(z) ≡ a + δa(z) , |δa(z)| � a. (1)

At each point P of the crack front, we define some local axes Px1, Px2, Px3 with Px1

perpendicular to the front within the Oxz plane, Px2 parallel to the Oy axis and Px3

tangent to the front.

2 The general consensus is that the sole role of the interface is to enforce coplanar propagation
of the crack between the plates; its lower elastic stiffness is unimportant and may be ignored.
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Fig. 1. The general problem - View in the Oxy plane
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Fig. 2. The general problem - View in the Oxz plane

The plate is made of some isotropic elastic material with Young’s modulus E and Poisson’s
ratio ν.

The loading consists of uniform, opposite displacements v0, −v0 in the y direction imposed
on the upper and lower halves of the left boundary.

The crack is thus loaded in a state of pure mode I at all points of its front. When this
front is straight, the mode I stress intensity factor is uniform along it and denoted K.
When it is curved, this stress intensity factor is non-uniform and denoted K(P ) or K(z),
depending on the context. If the deviation from straightness is slight, K(z) may be written
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in the form
K(z) ≡ K + δK(z) , |δK(z)| � K. (2)

The problem is to derive an expression of the local fluctuation of the stress intensity
factor at the point z of the crack front, δK(z), accurate to first order in the values of the
perturbation of this front, δa(z′), −∞ < z′ < +∞.

Use will be made of Fourier transforms of functions in the direction of the crack front.
The definition adopted for the Fourier transform φ̂(k) of an arbitrary function φ(z) will
be

φ̂(k) =
∫ +∞

−∞
φ(z)eikzdz ⇔ φ(z) =

1

2π

∫ +∞

−∞
φ̂(k)e−ikzdk. (3)

3 The Rice solution for an infinite 3D body

Rice (1985) derived the expression of δK(z) for a semi-infinite crack in an infinite body.
Such a geometric schematization is acceptable in the present case only if the characteristic
distance of variation λ of the perturbation of the crack front 3 satisfies the conditions

λ � h , λ � a, (4)

the first of which implies that the plate must be “very thick”. Provided that these condi-
tions are met, δK(z) is given by the formula

δK(z)

K
=

1

2π
PV

∫ +∞

−∞
δa(z′) − δa(z)

(z′ − z)2
dz′ (subject to conditions (4)) (5)

where the symbol PV denotes a Cauchy principal value.

The equivalent formula in Fourier’s space is readily shown to be

δ̂K(k)

K
= −|k|

2
δ̂a(k) (subject to conditions (4)). (6)

4 Generalities on cracks lying on the mid-plane of very thin plates

We now consider the limit of a “very thin” plate, that is one satisfying the conditions

h � λ , h � a. (7)

There are two ways to consider this limit, according to whether one observes the plate as
it is or adopting a magnified view of the vicinity of the crack front. Within the framework
of matched asymptotic expansions, the first possibility corresponds to considering the
“exterior problem”, and the second one the “interior problem”. For the sake of simplicity

3 That is, in the case of a sinusoidal perturbation, simply the wavelength 2π/|k|.
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and clarity, we shall avoid a fully rigorous, but heavily formal study of these two problems,
and be content with a more qualitative and intuitive presentation.

4.1 Exterior problem

Consider the vicinity of some arbitrary point P of the crack front, with the local axes
Px1, Px2, Px3 defined in Figure 2. Figure 3 shows the “exterior” view of this region. In a
formal asymptotic expansion of the equations of the problem, this view would correspond
to using the variables x1, x2/h, x3, that is, considering a dilation of coordinates in the
sole direction x2.

P

x1

x2

x3

2h

Fig. 3. The exterior problem

In the limit h → 0, the mechanical situation is equivalent to a system of two symmetric
plates occupying the region x1 ≤ 0 and clamped into some rigid frame at x1 = 0. These
plates must be described using Love-Kirchhoff’s plate theory, since it is known to be the
correct asymptotic one in the limit h → 0 (Sanchez-Hubert and Sanchez-Palencia (1992),
p. 158 sqq.). Within this theory, the displacement u2(x1, x3) ≡ v(x1, x3) of the upper plate
in the x2 ≡ y direction is of the following form, in the plane x3 = 0 and behind and near
the point P :

v(x1, 0) =
1

2

∂2v

∂x2
1

(0, 0)x2
1 + O(x3

1) (x1 ≤ 0).

Using rather Love-Kirchhoff’s deformation tensor (the opposite of the curvature tensor of
the plate) 4

C ≡ −grad(grad v), (8)

this expression may be rewritten as

v(x1, 0) = −C11(P )

2
x2

1 + O(x3
1) (x1 ≤ 0). (9)

4 The more customary notation K for Love-Kirchhoff’s deformation tensor is avoided in order
to prevent any possible confusion with the stress intensity factor K.

6



4.2 Interior problem

Now Figure 4 shows the “interior” view of the vicinity of the point P . In a formal asymp-
totic expansion, this view would correspond to using the variables x1/h, x2/h, x3, that
is, considering a dilation of coordinates in the directions x1 and x2 but not x3. (Dilating
coordinate x3 would mean letting λ go to zero together with h).

P
x1

x2

x3

h

h

Fig. 4. The interior problem

In the limit h → 0, the 3D elasticity problem becomes one of plane strain in the plane
Px1x2, since the characteristic distance of variation λ of the position of the crack front be-
comes infinitely larger than the typical dimension h of the region studied. In this problem,
the component C11(P ) of Love-Kirchhoff’s deformation tensor in the exterior problem acts
as a boundary condition imposed on the far left of the upper half of the geometry, which
is thus subjected to some prescribed bending moment (see Figure 4). The linearity of the
problem implies that the stress intensity factor K(P ) at point P must depend linearly on
this boundary condition, so that there must be a constant γ such that

K(P ) = −C11(P )

2γ
. (10)

4.3 Calculation of the constant γ

Although the calculation of the constant γ is not strictly indispensable in the present
context, we shall present it for completeness.

The standard way of evaluating γ would be to explicitly solve the interior problem. It
so happens, however, that this is unnecessary in the present case. Indeed, as will now be
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seen, γ may be calculated analytically and explicitly by combining elementary energetic
considerations and Irwin’s formula connecting the local energy-release-rate G(P ) to the
local stress intensity factor K(P ).

Let us consider a rectangular region centered at the point P of the crack front, with sides
parallel to the Px1 and Px3 axes (Figure 5). Conditions (7) make it possible to choose,
for the dimensions L1 and L3 of this rectangle along these axes, values much larger than
h, while still much smaller than λ and a. The conditions L1, L3 	 h allow for the use
of Love-Kirchhoff’s theory to evaluate the total energy of the region (the result will be
asymptotically exact in the limit h → 0), while the conditions L1, L3 � λ, a make it
possible to consider the strain and stress states as uniform within its left, deformed part.

P

a(z)

x1

x2

x3

L1

L3

L

λ

Fig. 5. Definition of a domain for the calculation of the local energy-release rate

Let M denote the tensor of bending and torsion moments, related to the deformation
tensor C through Love-Kirchhoff’s constitutive law

M = D [(1 − ν)C + ν(tr C)1] (11)

where

D ≡ Eh3

12(1 − ν2)
(12)

is the bending stiffness. In the left part of the upper plate, the values of the components
of the deformation tensor are C11 = C11(P ), C13 = C33 = 0 (because of the clamping
conditions v = 0, ∂v/∂x1 = 0 at x1 = 0). It then follows from equation (11) that M11 =
DC11(P ), so that the value of the surface density of elastic energy of the upper plate
is 1

2
M : C = 1

2
M11C11 = D

2
[C11(P )]2. Accounting for the presence of two plates, one

concludes that the value of the total elastic energy of the rectangular region is

W = D [C11(P )]2 LL3 (13)
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where L is the length of the crack within the rectangle, that is, the distance between its
left side and the crack front (see Figure 5).

Now the opposite of the potential energy of prescribed forces, φ, is just the work done
in the deformed configuration by the bending moments imposed on the left side of the
plates. Therefore, by the work theorem,

φ = 2W. (14)

It follows from equations (13) and (14) that

− ∂

∂L
(W − φ) =

∂W

∂L
= D [C11(P )]2 L3. (15)

But the left-hand side of equation (15) is equal to
∫ L3/2
−L3/2 G(x3)dx3 = G(P )L3, by the very

definition of the local energy-release-rate. It follows that

G(P ) = D [C11(P )]2 . (16)

Using now Irwin’s formula, one gets from there the value of the local stress intensity
factor:

K(P ) =

√
E

1 − ν2
G(P ) = − Eh3/2

2
√

3 (1 − ν2)
C11(P ), (17)

where equation (12) has been used and account has been taken of the obvious positiveness
of K(P ) and negativeness of C11(P ). This means that K(P ) and C11(P ) are related by a
formula of type (10), with

γ ≡
√

3
1 − ν2

Eh3/2
. (18)

4.4 Synthesis of results

Combining equations (9) and (10), one sees that the asymptotic expression of the dis-
placement of the upper plate in the y direction, behind and near the point P of the crack
front, in the exterior problem, reads

v(x1, 0) = γK(P ) x2
1 + O(x3

1) (x1 ≤ 0) (19)

with γ given by equation (18). This expression is the equivalent, for cracks lying on the
mid-plane of very thin plates, of the standard asymptotic formula for the crack opening
displacement near the crack front in classical 3D fracture mechanics. 5 It will play a central
role in the next section.

5 It may be noted incidentally that equation (19) is just a straightforward 3D extension of
that applicable to 2D problems, which underlies the derivation of some solutions of thin elastic
cracked bodies using beam theory; see Tada et al. (2000) for specific examples.
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5 The solution for a very thin plate

We shall now adapt Rice (1985)’s treatment of the in-plane perturbation of a semi-infinite
crack in some infinite body to the in-plane perturbation of a crack lying on the midplane
of a very thin plate (that is, satisfying conditions (7)).

In fact Rice (1985)’s paper contained two independent derivations of the same final for-
mula: one based on the theory of Bueckner’s 3D weight functions, and the other on a
direct calculation of the Neuber-Papkovich potentials of the 3D elasticity problem. The
first approach would be inapplicable here, because of lack of development of an analog of
Bueckner’s theory for thin plates. On the other hand the second approach can be adapted
to a thin plate, as will be seen; in fact the adaptation will even turn out to be simpler
than the original, in that it will directly deal with the displacement field instead of the
Neuber-Papkovich potentials. It will suffice to consider the exterior problem defined in
Section 4, making use of equation (19); the study of the interior problem will not be
necessary.

5.1 Original problem for an arbitrary perturbation of the crack front

The “exterior equations” of the problem defined in Section 2, with a perturbation of
the crack front of arbitrary amplitude (that is, without hypothesis (1)), within Love-
Kirchhoff’s plate theory, read on the upper plate:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂2

∂x2
+

∂2

∂z2

)2

v(x, z) = 0 for 0 ≤ x ≤ a(z), −∞ < z < +∞

v(0, z) = v0

∂2v

∂x2
(0, z) = 0

⎫⎪⎬⎪⎭ for −∞ < z < +∞

v(a(z), z) = 0
∂v

∂n
(a(z), z) = 0

⎫⎪⎬⎪⎭ for −∞ < z < +∞

(20)

where the symbol ∂/∂n denotes the normal derivative to the front. Equation (20)1 is the
equilibrium equation, equations (20)2,3 are the boundary conditions on the left side, and
equations (20)4,5 are the clamping conditions on the crack front.

5.2 First-order problem for an infinitesimal perturbation of the crack front

Consider now a perturbation of small amplitude (obeying hypothesis (1)), and denote
δv(x, z) the variation, under constant loading, of the normal displacement of the upper
plate arising from the variation of position δa(z) of the crack front around the mean value
a. The equilibrium equation and boundary conditions of the left side satisfied by δv(x, z)
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are readily obtained through differentiation of equations (20)1,2,3 at constant v0:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
∂2

∂x2
+

∂2

∂z2

)2

δv(x, z) = 0 for 0 ≤ x ≤ a, −∞ < z < +∞

δv(0, z) = 0

∂2δv

∂x2
(0, z) = 0

⎫⎪⎬⎪⎭ for −∞ < z < +∞.

(21)

On the other hand the conditions verified by δv(x, z) on the crack front cannot be obtained
from equations (20)4,5 in such a simple way. To derive them, it is convenient to temporarily
write the perturbation of the front in the form

δa(z) ≡ εφ(z)

where ε is a small parameter and φ(z) a given function. We then introduce the power
expansion of the displacement in the original problem, up to the third order, in the
plane perpendicular to the front at the point (a + εφ(z), z), with explicit indications of
dependence of all quantities upon ε:

v (ε; x, z + ε(a − x)φ′(z)) = γK(ε; z) [a + εφ(z) − x]2 + χ(ε; z) [a + εφ(z) − x]3

+O
(
[a + εφ(z) − x]4

)
(0 ≤ x ≤ a + εφ(z)).

(22)

(In the left-hand side, the correction of the z coordinate arises from the fact that the
normal vector to the perturbed front is not exactly ex but ex − εφ′(z)ez, see Figure 2;
also, in the right-hand side, the distance from the point (x, z + ε(a − x)φ′(z)) to the point
(a + εφ(z), z) of the crack front is considered to be a + εφ(z)− x, with an error of second
order in ε). Differentiating this equation with respect to ε at ε = 0, one gets

∂v

∂ε
(0; x, z) +

∂v

∂z
(0; x, z)(a − x)φ′(z) = 2γK(0; z)(a − x)φ(z) + γ

∂K

∂ε
(0; z)(a − x)2

+3χ(0; z)(a − x)2φ(z) + O ((a − x)3)

or more simply, since for ε = 0 the problem becomes 2D in the Oxy plane and v, K and
χ independent of z:

∂v

∂ε
(0; x, z) = 2γK(0)(a − x)φ(z) + γ

∂K

∂ε
(0; z)(a − x)2

+3χ(0)(a − x)2φ(z) + O ((a − x)3) .

Multiplying both sides by ε and identifying ε∂v/∂ε to δv, εφ to δa and ε∂K/∂ε to δK,
one gets from there

δv(x, z) = 2γK(a − x)δa(z) + γδK(z)(a − x)2

+3χ(a − x)2δa(z) + O
(
(a − x)3

) (0 ≤ x ≤ a) (23)

where henceforth superfluous indications that quantities are taken at ε = 0 have been
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discarded. It follows that⎧⎪⎨⎪⎩
δv(a, z) = 0
∂δv

∂x
(a, z) = −2γKδa(z)

for −∞ < z < +∞. (24)

These are the boundary conditions on the crack front looked for.

5.3 Solution of the first-order problem in Fourier’s space

To solve equations (21, 24), take their Fourier transform in the direction z and get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂2

∂x2
− k2

)2

δ̂v(x, k) = 0 for 0 ≤ x ≤ a, −∞ < k < +∞

δ̂v(0, k) = 0

∂2δ̂v

∂x2
(0, k) = 0

⎫⎪⎬⎪⎭ for −∞ < k < +∞

δ̂v(a, k) = 0

∂δ̂v

∂x
(a, k) = −2γKδ̂a(k)

⎫⎪⎬⎪⎭ for −∞ < k < +∞.

(25)

The solution of equation (25)1 must be looked for in the form of an exponential eμx. Then
μ satisfies the characteristic equation (μ2 − k2)2 = 0, which admits two double solutions,

μ = k and μ = −k. It follows that δ̂v(x, k) must be a linear combination of the functions
ekx, xekx, e−kx, xe−kx, or equivalently of the form

δ̂v(x, k) = (Ax + B) sinh(kx) + (Cx + D) cosh(kx) (26)

where A, B, C and D are constants to be determined. 6 Now equations (25)2,3 immediately
imply that

A = D = 0, (27)

and the values of B and C then follow from equations (25)4,5:⎧⎪⎪⎪⎨⎪⎪⎪⎩
B = 2γKa δ̂a(k)

cosh(ka)

cosh(ka) sinh(ka) − ka

C = −2γK δ̂a(k)
sinh(ka)

cosh(ka) sinh(ka) − ka
.

(28)

Then, by equation (26),

δ̂v(x, k) = 2γK δ̂a(k)
a cosh(ka) sinh(kx) − x sinh(ka) cosh(kx)

cosh(ka) sinh(ka) − ka
. (29)

6 The constant D should not be confused with the bending stiffness defined by equation (12),
which no longer plays a role.
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5.4 Fourier transform of the variation of the stress intensity factor

The next task is to relate the Fourier transform of the variation of the stress intensity
factor, δ̂K(k), to that of the perturbation of the front, δ̂a(k). To do so, differentiate
equation (23) twice with respect to x at x = a:

∂2δv

∂x2
(a, z) = 2γδK(z) + 6χδa(z) ⇒ δK(z) =

1

2γ

∂2δv

∂x2
(a, z) − 3χ

γ
δa(z),

then take the Fourier transform of this equation:

δ̂K(k) =
1

2γ

∂2δ̂v

∂x2
(a, k) − 3χ

γ
δ̂a(k). (30)

Now, by equation (29),

∂2δ̂v

∂x2
(a, k) = −4γkK δ̂a(k)

sinh2(ka)

cosh(ka) sinh(ka) − ka
. (31)

Also, to calculate the constant χ, note that by equation (22) applied to the unperturbed
configuration of the crack front (ε = 0),

γK ≡ 1

2

d2v

dx2
(a) ; χ ≡ −1

6

d3v

dx3
(a) (32)

where v(x) is the unperturbed normal displacement of the upper plate. Now it is easy
to calculate this displacement from the equations of the unperturbed (2D) problem ((20)
with a(z) ≡ Cst. ≡ a):

v(x) = v0

(
1 − 3x

2a
+

x3

2a3

)
, (33)

so that

γK =
3v0

2a2
; χ = − v0

2a3
= −γK

3a
. (34)

(The value of K in equation (34)1, with γ given by equation (18), coincides with that
provided by Tada et al. (2000), p. 419, for the problem in question). Combining equations
(30), (31) and (34), one gets

δ̂K(k)

K
=

1

2γK

∂2δ̂v

∂x2
(a, k) − 3χ

γK
δ̂a(k)

= − 2k sinh2(ka)

cosh(ka) sinh(ka) − ka
δ̂a(k) +

δ̂a(k)

a

=

(
1 − 2ka sinh2(ka)

cosh(ka) sinh(ka) − ka

)
δ̂a(k)

a

or equivalently

δ̂K(k)

K
= F (ka)

δ̂a(k)

a
(subject to conditions (7)) (35)
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where F (p) is a function of the “reduced wavenumber”

p ≡ ka (36)

defined by

F (p) ≡ 2p cosh(2p) − sinh(2p)

2p − sinh(2p)
. (37)

Several features of the function F (p) are noteworthy:

• First, expanding cosh(2p) and sinh(2p) in powers of p, one easily shows that

F (0) = −2. (38)

• Second, the very definition (37) of F (p) implies that it is indefinitely differentiable
except perhaps at the origin. But near the origin, it is obviously the ratio of two power
series of p, and this ratio has a finite limit for p → 0, as just noted. Hence it is also
indefinitely differentiable at the origin. In conclusion, F (p) is indefinitely differentiable
on the whole real line.

• Finally it is easy to show that

F (p) = −2|p| + 1 + O
(
p2e−2|p|) for p → ±∞. (39)

There is a connection here with the work of Vandembroucq and Roux (1997) on biharmonic
functions satisfying certain conditions on the boundary of a slightly perturbed domain.
Although the results of these authors, obtained by a conformal mapping technique, do
not directly apply to the present problem because of some differences in the boundary
conditions, a link may be established in the limiting case where the depth a of the crack
goes to infinity; the asymptotic behavior of the function F (p) described by equation (39)
fully agrees with Vandembroucq and Roux (1997)’s findings in this case.

There is also a connection with a very recent, yet unpublished work of Ponson et al. (2011)
devoted to the problem of coplanar perturbation of a crack resulting from a “peeling test”,
in which some thin flexible membrane bonded onto some rigid substrate is gradually pulled
from it. This problem was more complex than that envisaged here in that it required use
of the Föppl-von Karman nonlinear plate theory in order to account for the effect of the
in-plane tension of the deformed membrane; on the other hand the geometry was simpler
in that the crack was semi-infinite. The solutions obtained may be compared by replacing
the lower deformable plate by a rigid one and letting the depth a of the crack go to infinity
in the present work, and dropping nonlinearities in Ponson et al. (2011)’s work. The two
solutions do coincide with these adaptations and simplifications.

5.5 Variation of the stress intensity factor

Although equations (35, 37) for the Fourier transform δ̂K(k) may be used directly, an
explicit formula for the variation of the stress intensity factor in the physical space, δK(z),
rather than in Fourier’s space, may also be useful.
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To derive such a formula, take the inverse Fourier transform of equation (35):

δK(z)

K
=

1

2π

∫ +∞

−∞
δ̂K(k)

K
e−ikzdk =

1

2π

∫ +∞

−∞
F (ka)

δ̂a(k)

a
e−ikzdk.

Now use the Fourier decomposition of δ̂a(k) in this expression:

δK(z)

K
=

1

2π

∫ +∞

−∞

(∫ +∞

−∞
F (ka)

δa(z′)
a

eikz′e−ikzdz′
)

dk.

It would seem tempting at this stage to change the order of integration; the inverse Fourier
transform of the function F (p) would then appear as a result of the first integration on
k. This is however not feasible because the function F (p), being nonzero at infinity as is
apparent in equation (39), does not admit a Fourier transform.

A more elaborate reasoning is thus necessary. First, rewrite the preceding expression in
the form

δK(z)

K
= I1 + I2 ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I1 ≡ 1

2π

∫ +∞

−∞

(∫ +∞

−∞
F (ka)

δa(z)

a
eik(z′−z)dz′

)
dk

I2 ≡ 1

2π

∫ +∞

−∞

(∫ +∞

−∞
F (ka)

δa(z′) − δa(z)

a
eik(z′−z)dz′

)
dk.

(40)

The integrals I1 and I2 may now be calculated as follows:

• With regard to I1, performing the integration on z′, one gets

I1 =
1

2π

∫ +∞

−∞
F (ka)

δa(z)

a
2πδ(k) e−ikz dk = F (0)

δa(z)

a
= −2

δa(z)

a
(41)

where equation (38) has been used.
• With regard to I2, note first that the function

k �→ −i
∫ +∞

−∞
δa(z′) − δa(z)

z′ − z
eik(z′−z)dz′

vanishes at infinity, being a Fourier transform, and that its derivative is the function

k �→
∫ +∞

−∞
[δa(z′) − δa(z)] eik(z′−z)dz′.

Therefore integration by parts of the expression of I2 yields

I2 =
i

2π

∫ +∞

−∞

(∫ +∞

−∞
F ′(ka)

δa(z′) − δa(z)

z′ − z
eik(z′−z)dz′

)
dk

=
i

2π

∫ +∞

−∞
F ′(ka)

(
PV

∫ +∞

−∞
δa(z′) − δa(z)

z′ − z
eik(z′−z)dz′

)
dk

where the introduction of the PV is allowed by the fact that the integral is convergent
in the usual sense. Now note that the function

k �→ −i PV
∫ +∞

−∞
δa(z′) − δa(z)

(z′ − z)2
eik(z′−z)dz′

again vanishes at infinity, being a Fourier transform, and that its derivative is the
function

k �→ PV
∫ +∞

−∞
δa(z′) − δa(z)

z′ − z
eik(z′−z)dz′.
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Therefore a second integration by parts of the expression of I2 yields

I2 = − 1

2π

∫ +∞

−∞
F ′′(ka)

(
PV

∫ +∞

−∞
δa(z′) − δa(z)

(z′ − z)2
eik(z′−z)dz′

)
adk.

The order of integration may now be changed since the function F ′′(p), being zero at
infinity as implied by equation (39), does admit a Fourier transform unlike F (p). One
thus gets

I2 = −PV
∫ +∞

−∞
δa(z′) − δa(z)

(z′ − z)2

(
1

2π

∫ +∞

−∞
F ′′(ka)eik(z′−z)adk

)
dz′

or equivalently

I2 = PV
∫ +∞

−∞
f

(
z − z′

a

)
δa(z′) − δa(z)

(z′ − z)2
dz′, (42)

where f(u) is a function of the “reduced distance”

u ≡ z − z′

a
(43)

defined by 7

f(u) ≡ − 1

2π

∫ +∞

−∞
F ′′(p)e−ipudp = − 1

π

∫ +∞

0
F ′′(p) cos(pu)dp; (44)

note that f(u) is just in fact the opposite of the inverse Fourier transform of F ′′(p).

Combining equations (40), (41) and (42), one finally gets

δK(z)

K
= −2

δa(z)

a
+ PV

∫ +∞

−∞
f

(
z − z′

a

)
δa(z′) − δa(z)

(z′ − z)2
dz′ (subject to conditions (7))

(45)
with f(u) given by equation (44).

Formula (45) is analogous to that derived by Rice (1985) for perturbation of a semi-
infinite crack in an infinite body, equation (5), except for two differences. First, the formula
involves a term proportional to δa(z) in addition to the integral term, which represents the
variation of the stress intensity factor for a uniform advance of the crack front (δa(z′) ≡
δa(z),∀z′). 8 Second, the “influence function” in the integral term is more complex since
it involves an extra function f((z − z′)/a).

Figure 6 provides a graphical representation of the function f(u) obtained by performing
the second integral in equation (44) numerically, using an explicit expression of F ′′(p)
deduced from equation (37). The slightly negative values of f(u) for large values of u in
this figure have been checked to be significant and not arise from numerical errors. Also,
one may note the following additional features of this function:

7 Use is been made here of the fact that the function F (p) being even, see equation (37), its
second derivative is also even.
8 In fact a term of this kind does appear in Rice (1985)’s formula but must logically be discarded
when this formula is applied to a cracked plate, its contribution becoming negligible then.
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• First, by equation (44)2,

f(0) = − 1

π
[F ′(+∞) − F ′(0)] =

2

π
(46)

where use has been made of the properties F ′(0) = 0 (consequence of the fact that the
function F (p) is even) and F ′(+∞) = −2 (consequence of equation (39)). Note that
the value of f(0) is higher than its equivalent for a semi-infinite crack in an infinite
body, that is, the constant prefactor of 1

2π
in Rice (1985)’s formula (5), by a factor of

4. In other words, the influence function is 4 times larger for a thin plate than for an
infinite body, when the distance between the points considered is much smaller than a
(but still of course much larger than h).

• Second, it has been noted in Subsection 5.4 that the function F (p) is indefinitely differ-
entiable on the entire real line, and the same is of course true of its second derivative.
It then follows from a classical theorem that the opposite f(u) of the inverse Fourier
transform of F ′′(p) vanishes at infinity more quickly than any power function of u. The
behavior at large distances of the influence function f((z − z′)/a)(z′ − z)−2 in equation
(45) is thus very different from that of the simple influence function (z′ − z)−2 in equa-
tion (5). Clearly, in the cracked geometry envisaged here, the distance a from the left
boundary to the mean position of the crack front acts as a “cutoff length” above which
the influence function quickly vanishes.
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Fig. 6. The function f(u) for a very thin plate
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6 Numerical study for a plate of arbitrary thickness

6.1 Generalities

We shall now envisage the general case of a plate or arbitrary thickness. Therefore, nei-
ther conditions (4) nor conditions (7) will be imposed. We shall however introduce the
hypothesis that

h � a. (47)

Indeed this condition is always fulfilled in practice, and considerable simplifications result
from there. Note immediately for instance that with such a hypothesis, λ � h suffices to
warrant conditions (4) and therefore applicability of Rice (1985)’s formulae (5) and (6);
whereas λ 	 h suffices to warrant conditions (7) and therefore applicability of formulae
(35) and (45).

We shall look for some “interpolation formula”, in Fourier’s space, between the expression
(6), appropriate for λ � h, and the expression (35), appropriate for λ 	 h, in the form

δ̂K(k)

K
=

[
− (1 − θ(kh))

|k|
2

+ θ(kh)
F (ka)

a

]
δ̂a(k), (48)

where θ(q) denotes some even function of the “reduced wavenumber”

q ≡ kh (49)

to be determined, obeying the properties

θ(0) = 1 ; θ(±∞) = 0. (50)

Formula (48) does possess the desired features: if λ � h, |kh| = 2πh/λ 	 1 so that

θ(kh) � 0 and the expression of δ̂K(k)/K reduces to (6); and if λ 	 h, |kh| = 2πh/λ � 1,
θ(kh) � 1 and it reduces to (35).

Formula (48) may seem to be criticizable on the grounds that since the problem involves
three characteristic lengths, a, h and λ ≡ 2π/|k|, and thus two dimensionless geometric
parameters, for instance kh and ka, the function θ should depend on both of these pa-
rameters instead of just one, kh. However the dependence of θ upon ka may safely be
disregarded: indeed

• if λ is much smaller than a, then the latter length is much larger than the other two
by hypothesis (47); it is thus safe to consider it as infinite and replace θ(kh, ka) by
θ(kh,±∞);

• if λ is comparable to a or larger, then it is necessarily much larger than h by hypothesis
(47); then θ(kh, ka) � 1 by equation (50)1, whatever the value of ka.

Hence with hypothesis (47), one may safely consider the interpolation function θ as a
function of the sole variable kh, as assumed in equation (48).
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6.2 Principle of numerical calculations

The function θ(q) will be determined by performing finite element elastic computations
of cracked plates of finite dimensions. The depth a of the crack and the length of the
unbroken ligament ahead of the crack front will be chosen much larger than the thickness
h of the plate. Two configurations of the front will be considered, one straight and one
with slight sinusoidal in-plane undulations of wavelength λ. Because of the periodicity of
the problem in the z direction, only one slice of material lying between the planes z = 0
and z = λ will be meshed, periodic boundary conditions being imposed on these planes.

The oscillations of the local stress intensity factor along the crack front, δK(z), will be
determined by comparing the values of this factor in the original and perturbed configu-
rations of the front. One test of the relevance of the first-order perturbation approach will
be that these oscillations will have to be sinusoidal like those of the local crack advance,
δa(z); this test will serve to fix a maximum admissible value of the amplitude of varia-

tion of δa(z). For acceptable values of this amplitude, the value of the ratio δ̂K(k)/δ̂a(k)
(k = ±2π/λ) will be deduced from that of the ratio of the amplitudes of variation of
δK(z) and δa(z).

Various values of λ will be considered, all of them comparable to h and therefore much
smaller than a. Under such conditions |ka| 	 1 so that F (ka)/a ∼ −2|k| by equation
(39). Hence equation (48) reduces to

δ̂K(k)

K
= −1

2
[1 + 3θ(kh)] |k| δ̂a(k) (subject to the condition |ka| 	 1), (51)

which shows that the function θ(kh) is related to the quantity

X ≡ − δ̂K(k)/K

|k| δ̂a(k)
(52)

through the equivalent relations

X =
1

2
[1 + 3θ(kh)] ⇔ θ(kh) =

2X − 1

3
. (53)

Equations (52) and (53) will serve to determine numerical values of the quantity X and the

function θ(kh) from those of the ratio δ̂K(k)/δ̂a(k). Note in particular that by equations
(50) and (53), X must take the values 2 and 1

2
in the limits |kh| � 1 (λ 	 h) and |kh| 	 1

(λ � h) respectively.

6.3 Presentation of numerical calculations

All computations are performed with the finite element code CAST3M developed by the
French Commissariat à l’Energie Atomique (CEA).
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Two types of computations are performed with different boundary conditions on the upper
and lower halves of the left boundary of the cracked plate: opposite vertical displacements
versus opposite bending moments. Boundary conditions of the first type precisely corre-
spond to those employed in actual experiments. Boundary conditions of the second type
are representative of those prevailing on the left side of a rectangular subregion of the
plate of dimensions much smaller than a, though much larger than h. 9 (That dimensions
satisfying these two conditions may be found is a consequence of hypothesis (47)). Hence
the two types of conditions are expected to yield identical results for sufficiently large
plates; this will serve as a test that the dimensions considered are sufficient.

The two types of computations also use different dimensions, meshes and types of ele-
ments, although the plate thickness is 1 mm in all cases. In these involving prescribed
displacements, the distance a between the left side and the unperturbed crack front is
100 mm or 200 mm, depending on whether λ is smaller or larger than 10 mm; the mesh
consists of 449,760 (for λ < 10 mm) or 646,440 (for λ > 10 mm) bilinear 8-node paral-
lelepipedic elements and 471,713 or 688,568 nodes. In those involving prescribed moments,
which require a smaller mesh since they focus on a subregion of the plate, the distance
a between the left side and the unperturbed front is 50 mm, and the mesh consists of
182,400 bilinear 6-node prismatic elements and 106,896 nodes. In both cases the elements
are strictly parallelepipedic or prismatic only for the unperturbed straight configuration
of the front; for the perturbed configuration the same mesh is used with a slight distortion
of elements.

The value of Poisson’s ratio is the same in all cases, namely ν = 0.3.

Local values of the stress intensity factor along the crack front are evaluated using
Destuynder et al. (1983)’s “G − θ method”, the accuracy of which is well established.

In a first step, a straight front is considered. The unperturbed stress intensity factors
calculated for the two types of boundary conditions are compared to the exact analytic
values provided by Tada et al. (2000), pp. 417 and 419, for the problems in question.
The relative error found decreases from about 10% for a/h = 10 to less than 0.1% for
the largest values of this ratio. (The explanation of the relatively large difference for the
smallest value of a/h does not lie in numerical errors but in the fact that Tada et al.
(2000)’s solutions are asymptotic ones in the limit a/h → +∞).

In a second step, wavy fronts of sinusoidal shape with different amplitudes δamax are
considered. Figures 7 and 8 show, in the typical case where λ = h, the distribution of
the local energy-release-rate, normalized by half the sum of its maximum and minimum
values, along the crack front, for values of δamax equal to 1% and 10% of λ. In each case the
blue curve represents numerical results and the red one the sinusoidal approximation of
these results having the same minima and maxima. The oscillation of the energy-release-
rate can be observed to be sinusoidal for the smaller amplitude, but not so for the larger
one. This shows that the linear perturbation approach is applicable only to the smaller

9 It is implicitly assumed here that the crack advance does not induce any variation of the
bending moments exerted on the two halves of the left side; this is true in all calculations since
λ � a.
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one, which is therefore adopted in subsequent calculations.
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Fig. 7. Distribution of the normalized energy-release-rate along the crack front for
δamax/λ = 0.01.
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Fig. 8. Distribution of the normalized energy-release-rate along the crack front for δamax/λ = 0.1.

6.4 Results

Figure 9 shows numerical values of the quantity X defined by equation (52), as a function
of kh. (Only positive values of kh are considered here since the function X(kh) is obviously
even). The two types of boundary conditions can be observed to yield identical results,
which shows that the dimensions of the plates considered are large enough. Also, the
quantity X goes to the values 2 (thin plate solution) and 1

2
(3D solution) in the limits

kh → 0 and kh → +∞ respectively, as expected.
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Fig. 9. The quantity X for a plate of arbitrary thickness

Figure 9 shows that a decrease of kh from values much larger than unity to values much
smaller than it, or equivalently an increase of λ from values much smaller than h to values
much larger than it, induces an increase of X. This clearly shows that in contrast to the
distance between the crack front and the boundary of the plate, the plate thickness does
not play the role of a “cutoff length” above which the ratio δ̂K(k)/δ̂a(k) should quickly
decrease. (There is in fact nothing surprising in this conclusion: in Love-Kirchhoff’s thin
plate theory, the deformation of a plate is never confined by the thickness but by the
boundary conditions).

It is also shown in Figure 9 that the numerical results may be accurately represented by
the following very simple approximate formula for the function θ(q), which is therefore
adopted hereafter:

θ(q) � 1

1 + 1
3
|q|4/3

. (54)

6.5 Final formulae in Fourier’s space and the physical space

We shall now provide final formulae for the variation of the stress intensity factor, distin-
guishing between the cases a < +∞ and a = +∞ (which often represents an acceptable
approximation in actual experiments). The formulae will be parametrized by the dimen-
sionless quantity

ξ ≡ a

h
(	 1 by condition (47)). (55)

In Fourier’s space, formula (48) for δ̂K(k) may be written in the form

δ̂K(k)

K
= G

(
a

h
; kh

)
δ̂a(k)

h
(subject to condition (47)) (56)
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where

G(ξ; q) ≡

⎧⎪⎪⎨⎪⎪⎩
− [1 − θ(q)]

|q|
2

+ θ(q)
F (ξq)

ξ
if ξ < +∞

−1

2
[1 + 3θ(q)] |q| if ξ = +∞.

(57)

In equation (57), the expression of the function θ(q) is given by equation (54), and that
of the function F (p) by equation (37) (or (39) when ξ is infinite).

The following special features of the function G(ξ; q) are of interest:

G(ξ; 0) = −2

ξ
; G(ξ; q) ∼ −|q|

2
for q → ±∞. (58)

Of course, the values of G(ξ; .) at the origin and near infinity are connected to those of

δ̂K(k) for crack front perturbations of very large wavelength in a thin plate (equations (35)
and (38)), and of very small wavelength in an infinite body (equation (6)), respectively.

In the physical space, the formula for δK(z) may be obtained through Fourier inversion

of that for δ̂K(k). The reasoning is completely analogous to that presented in Subsection
5.5 for the case of a very thin plate (the only difference being that the reference length
used here is h instead of a), and therefore will not be repeated. The resulting formula
reads

δK(z)

K
= −2

δa(z)

a
+ PV

∫ +∞

−∞
g

(
a

h
;
z − z′

h

)
δa(z′) − δa(z)

(z′ − z)2
dz′ (59)

where g(ξ; v) is a function of the dimensionless parameter ξ and the “reduced distance”

v ≡ z − z′

h
(60)

defined by

g(ξ; v) ≡ − 1

2π

∫ +∞

−∞
∂2G

∂q2
(ξ; q)e−iqvdq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

π

∫ +∞

0

∂2G

∂q2
(ξ; q) cos(qv)dq if ξ < +∞

2

π
− 1

π

∫ +∞

0

∂2G

∂q2
(+∞; q) cos(qv)dq if ξ = +∞.

(61)
The extra term 2

π
in the final expression of g(+∞; v) arises from the fact that the function

∂G/∂q(+∞; q) being discontinuous at the point q = 0, with ∂G/∂q(+∞; 0±) = ∓2 (see
equations (50)1 and (57)2), its derivative ∂2G/∂q2(+∞; q) in the integral from −∞ to
+∞ must be understood in the sense of generalized functions, with an additional term
−4δ(q).

Figure 10 shows the function g(ξ; v) obtained numerically from equations (61)2 for various
values of ξ, including infinity. 10 Again, like in Figure 6, the slightly negative values of
g(ξ; v) for moderate ξ and large v have been checked to be significant. The numerical
results may also be supplemented by analytical ones in some special cases. First, at the

10 The curve corresponding to ξ = 10 is shown for illustrative purposes but involves some error
since the necessary hypothesis (47) is barely satisfied for such a value.
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origin, by equations (61),

g(ξ; 0) =

⎧⎪⎨⎪⎩− 1
π

[
∂G
∂q

(ξ; +∞) − ∂G
∂q

(ξ; 0+)
]

if ξ < +∞
2
π
− 1

π

[
∂G
∂q

(+∞; +∞) − ∂G
∂q

(+∞; 0+)
]

if ξ = +∞

⎫⎪⎬⎪⎭ =
1

2π
in all cases (62)

where use has been made of the properties ∂G/∂q(ξ; +∞) = −1
2

in all cases, whereas
∂G/∂q(ξ; 0+) = 0 or −2 depending on whether ξ < +∞ or ξ = +∞. Equation (62) means
that the influence function g( a

h
; z−z′

h
)(z′ − z)−2 in equation (59) behaves like 1

2π(z′−z)2
at

short distances, like in an infinite body, of course (see equation (5)). Also,

lim
v→±∞ g(ξ; v) =

⎧⎪⎨⎪⎩
0 if ξ < +∞
2

π
if ξ = +∞

(63)

since the integrals in equations (61)2 go to zero when v goes to ±∞. All of these features
agree with what can be observed in Figure 10.
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Fig. 10. The function g(ξ; v) for a plate of arbitrary thickness

It is easy to understand the behavior of the function g(ξ; v). When the distance |z − z′|
increases from values much smaller than h to values much larger than it, but still much
smaller than a (that is, when the normalized distance |v| increases from values much
smaller than unity to values much larger than it, but still much smaller than ξ), this
function increases from the value for an infinite body, 1

2π
, to that for a thin plate, 2

π
.

However, since the distance a has been observed to play the role of a cutoff length,
when |z − z′| becomes comparable to or much larger than it (that is, when |v| becomes
comparable to or much larger than ξ), the function decreases back to zero. Of course, the
larger the value of a or ξ, the slower the decrease; for a = +∞ or ξ = +∞, there is no
decrease at all.

24



The role of cutoff length played by the distance a is probably best illustrated by Figure
11, which shows g(ξ; v) as a function of the variable v/ξ ≡ (z−z′)/a. (The use of this new
variable obviously forbids to consider the case ξ = +∞ ⇔ a = +∞). This figure clearly
shows that the decrease of g(ξ; v) occurs above some critical distance comparable to a.
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Fig. 11. Plot of g(ξ; v) versus v/ξ ≡ (z − z′)/a

7 Conclusion

The aim of this paper was to provide a first-order formula for the local variation of the
mode I stress intensity factor resulting from some small but otherwise arbitrary coplanar
perturbation of the front of a planar crack, in the specific case where this crack results from
gradual separation of two bonded plates from one side. This configuration is frequently
used in experiments, and it was our hope to provide an alternative to Rice (1985)’s formula
for the theoretical interpretation of such experiments. Indeed, although this formula has
systematically been used for this purpose up to now, it was derived for a semi-infinite
crack in some infinite body, and thus applies to the configuration considered only when
the characteristic distance of variation of the perturbation of the front is much smaller
than the plate thickness.

In a first step, Rice (1985)’s treatment, appropriate for infinitely thick plates, was adapted
to the other extreme case of plates of infinitesimal thickness. This was done by replacing
the standard 3D theory of elasticity he used by Love-Kirchhoff’s theory of plates. The
validity of this procedure is ensured by the fact that the latter theory is known to be the
correct asymptotic one for very thin plates. An interesting outcome of the analysis is that
the distance between the crack front and the boundary of the plate plays the role of a
“cutoff length” for elastic interactions along the crack front; that is, the influence of the
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crack advance at some point of the front upon the stress intensity factor at some other
point quickly vanishes when the separation between these points becomes larger than this
distance. The plate thickness, on the other hand, plays no similar role.

In a second step, the analytical formulae applicable to extreme, infinite or infinitesimal,
values of the plate thickness, were completed by finite element computations for a number
of intermediate values. In addition to confirming the validity of the analytical formulae for
the two limit cases, these computations allowed us to define an approximate but accurate
formula for the local variation of the stress intensity factor applicable to plates of arbitrary
thickness.
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