P. Brezonik and W. Arnold, Water chemistry: an introduction to the chemistry of natural and engineered aquatic systems, 2011.

H. Kola and K. J. Wilkinson, Cadmium Uptake by a Green Alga Can Be Predicted by Equilibrium Modelling, Environ. Sci. Technol, vol.39, pp.3040-3047, 2005.

S. J. Markich, P. L. Brown, R. A. Jeffree, and R. P. Lim, The Effects of pH and Dissolved Organic Carbon on the Toxicity of Cadmium and Copper to a Freshwater Bivalve: Further Support for the Extended Free Ion Activity Model, Arch. Environ. Contam. Toxicol, vol.45, pp.479-491, 2003.

, MINTEQ, Program developed in the U.S. (MINTEQA2) and in Sweden (Visual MINTEQ

, The IUPAC Stability Constants Database, SC-Database and Mini-SCDatabase, 2002.

M. and P. ,

, PHREEQC Interactive version 3, free program developed at US Geological Survey (USGS)

W. Verweij and . Cheaqs, Program developed in the Netherlands

C. W. Davies, The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates, J. Chem. Soc, pp.2093-2098, 1938.

E. Guggenheim, The specific thermodynamic properties of aqueous solutions of strong electrolytes, Phil. Mag, vol.19, pp.588-643, 1935.

J. Simonin, Thermodynamic consistency in the modeling of speciation in selfcomplexing electrolytes, Ind. Eng. Chem. Res, vol.56, pp.9721-9733, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581827

L. Blum, Theoretical Chemistry, pp.1-66, 1980.

L. Blum and J. Høye, Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function, J. Phys. Chem, vol.81, pp.1311-1316, 1977.

J. Simonin, Real Ionic Solutions in the Mean Spherical Approximation. 2. Pure Strong Electrolytes up to Very High Concentrations, and Mixtures, in the Primitive Model, J. Phys. Chem. B, vol.101, pp.4313-4320, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00162536

J. Simonin, O. Bernard, and L. Blum, Real ionic solutions in the mean spherical approximation. 3. Osmotic and activity coefficients for associating electrolytes in the primitive model, J. Phys. Chem. B, vol.102, pp.4411-4417, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00162536

A. Ruas, P. Moisy, J. Simonin, O. Bernard, J. Dufrêche et al., Lanthanide salts solutions: Representation of osmotic coefficients within the binding mean spherical approximation, J. Phys. Chem. B, vol.109, pp.5243-5248, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00164780

B. A. Pailthorpe, D. J. Mitchell, and B. W. Ninham, Ion-solvent interactions and the activity coefficients of real electrolyte solutions, J. Chem. Soc. Faraday Trans, vol.2, pp.115-139, 1984.

J. Ruaya and T. Seward, The stability of chlorozinc(II) complexes in hydrothermal solutions up to 350 ? C, Geochim. Cosmochim. Acta, vol.50, pp.651-661, 1986.

A. J. Anderson, R. A. Mayanovic, and S. Bajt, A microbeam XAFS study of aqueous chlorozinc complexing to 430 ? C in fluid inclusions from the Knaumuehle granitic pegmatite, Saxonian granulite massif, Can. Mineral, vol.36, pp.511-524, 1998.

L. G. Sillen and A. E. Martell, Stability constants of metal-ion complexes. Section 1 ; London Chemical Society, 1964.

D. Irish, B. Mccarroll, and T. Young, Raman study of zinc chloride solutions, J. Chem. Phys, vol.39, pp.3436-3444, 1963.

H. Weingaertner, K. Mueller, H. Hertz, A. Edge, and R. Mills, Unusual behavior of transport coefficients in aqueous solutions of zinc chloride at 25 ? C, J. Phys. Chem, vol.88, pp.2173-2178, 1984.

R. Robinson and R. Stokes, Electrolyte Solutions, issue.24, 1968.

A. E. Martell and R. M. Smith, Critical Stability Constants: First

, Springer Science & Business Media, vol.4, issue.5, 2013.

, An IUPAC contribution to reliable and rigorous computer modelling, Chemistry International 2015, vol.37, pp.15-19

H. Ohtaki and T. Radnai, Structure and dynamics of hydrated ions, Chem. Rev, vol.93, pp.1157-1204, 1993.

P. Lagarde, A. Fontaine, D. Raoux, A. Sadoc, and P. Migliardo, EXAFS studies of strong electrolytic solutions, J. Chem. Phys, vol.72, pp.3061-3069, 1980.

D. Morris, E. L. Short, and D. Waters, Zinc chloride and zinc bromide complexes-III Structures of species in solution, J. Inorg. Nucl. Chem, vol.25, pp.975-983, 1963.

U. Kaatze, V. Lönnecke, and R. Pottel, Dielectric spectroscopy on aqueous solutions of zinc(II) chloride. Evidence of ion complexes, J. Phys. Chem, vol.91, pp.2206-2211, 1987.

A. K. Soper, G. W. Neilson, J. E. Enderby, and R. A. Howe, A neutron diffraction study of hydration effects in aqueous solutions, J. Phys. C, p.1793, 1977.

G. W. Neilson and J. E. Enderby, The hydration of Ni 2+ in aqueous solutions, J. Phys. C, p.625, 1978.

D. R. Sandstrom, Determination of structural parameters from EXAFS: Application to solutions and catalysts, Nuovo Cimento D, vol.3, pp.825-845, 1984.

R. Caminiti, G. Licheri, G. Paschina, G. Piccaluga, and G. Pinna, X-ray diffraction and structural properties of aqueous solutions of divalent metal-chlorides, Z. Naturforsch. A, vol.35, pp.1361-1367, 1980.

M. Maeda, T. Ito, M. Hori, and G. Johansson, The structure of zinc chloride complexes in aqueous solution, Z. Naturforsch. A, vol.51, pp.63-70, 1996.

D. J. Harris, J. P. Brodholt, and D. M. Sherman, Zinc Complexation in Hydrothermal Chloride Brines: Results from ab Initio Molecular Dynamics Calculations, J. Phys. Chem. A, vol.107, pp.1050-1054, 2003.

M. Delwaulle, Etude au moyen de l'effet Raman de la constitution des solutions d'iodure, de bromure et de chlorure de zinc dissous seuls ou en présence d'ions halogènes-Mise enévidenceenévidence des molécules non ionisées ZnX 2

. Acad and . Sci, , vol.240, pp.2132-2134

C. Quicksall and T. Spiro, Raman spectra of terachlorozincates and the structure of ZnCl 2? 4, Inorg. Chem, vol.5, pp.2232-2233, 1966.

M. Magini, Hydration and complex formation study on concentrated MCl2 solutions, J. Chem. Phys, vol.74, pp.2523-2529, 1981.

B. Beagley, C. Mcauliffe, S. Smith, and E. White, EXAFS studies of aqueous solutions of manganese (II) chloride and bromide: structural variations with concentration and interactions with solvent, J. Phys. Condens. Matter, vol.3, p.7919, 1991.

A. Musinu, G. Paschina, G. Piccaluga, and M. Magini, X-ray diffraction study of CoCl 2LiCl aqueous solutions, J. Chem. Phys, vol.80, pp.2772-2776, 1984.

D. Angelo, P. Bottari, E. Festa, M. R. Nolting, H. Pavel et al., Structural investigation of copper(II) chloride solutions using x-ray absorption spectroscopy, J. Chem. Phys, vol.107, pp.2807-2812, 1997.

P. Dreier and P. Rabe, EXAFS-study of the Zn 2+ coordination in aqueous halide solutions, J. Phys. Colloq, vol.47, pp.8-809, 1986.
URL : https://hal.archives-ouvertes.fr/jpa-00226058

R. Goldberg, J. Manley, and R. Nuttal, Program Gamphi for Calculating Activity and Osmotic Coefficients of Aqueous Electrolyte Solutions at 298.15 K, 1984.

L. Blum and H. L. Friedman, ) Stigter, D. Interactions in aqueous solutions. II. Osmotic pressure and osmotic coefficient of sucrose and glucose solutions, Theoretical Chemistry, vol.5, pp.118-124, 1960.

J. Simonin, L. Blum, and P. Turq, Real Ionic Solutions in the Mean Spherical Approximation. 1. Simple Salts in the Primitive Model, J. Phys. Chem, vol.100, pp.7704-7709, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00162536

J. Simonin, Study of experimental-to-McMillan-Mayer conversion of thermodynamic excess functions, J. Chem. Soc. Faraday Trans, vol.92, pp.3519-3523, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00162530

H. Jenkins and K. Thakur, Reappraisal of thermochemical radii for complex ions, J. Chem. Educ, vol.56, p.576, 1979.

J. E. Huheey, E. A. Keiter, R. L. Keiter, and O. K. Medhi, Inorganic chemistry: principles of structure and reactivity, 2006.

P. Schatzberg, Molecular diameter of water from solubility and diffusion measurements, J. Phys. Chem, vol.71, pp.4569-4570, 1967.

A. Ben-naim and F. Franks, In The Physics and Physical Chemistry of Water, pp.413-442, 1972.

M. M. Jones, E. A. Jones, D. F. Harmon, and R. T. Semmes, Raman spectra of perchlorate solutions, J. Am. Chem. Soc, vol.83, pp.2038-2042, 1961.

H. Ohtaki and G. Johansson, X-ray diffraction studies on the structures of cadmium iodide complexes in water and in DMSO solutions, Pure Applied Chem, vol.53, pp.1357-1364, 1981.

J. Smithson and R. Williams, A possible differentiation between ion-pairs and complexes, J. Chem. Soc, pp.457-462, 1958.

J. O. Bockris, A. K. Reddy, G. E. Moore, and K. A. Kraus, Anion exchange studies. IV. Cobalt and nickel in hydrochloric acid solutions, Modern Electrochemistry; Kluwer, vol.1, issue.64, pp.843-844, 1952.

R. H. Herber and J. W. Irvine, Anion-exchange Studies. III. Ni(II) in Aqueous Hydrochloric Acid and Lithium Chloride, J. Am. Chem. Soc, vol.78, pp.905-907, 1956.

C. J. Downes, Osmotic and activity coefficients for system NaCl-MnCl 2-H 2 O at 25 ? C, J. Chem. Eng. Data, vol.18, pp.412-416, 1973.

C. Downes, Thermodynamics of mixed electrolyte solutions: The systems H 2 O-NaClCoCl 2 and H?2O-CaCl 2-CoCl 2 at 25 ? C, J. Solution Chem, vol.4, pp.191-204, 1975.

V. Filippov, A. Rumyantsev, and N. Charykov, Thermodynamic study of the ternary system K + , Co 2+ ?Cl ?-H 2 O AND K + , Ni 2+ ?Cl ?-H 2 O at 25 ? C, J. Applied Chem, p.64, 1991.

C. J. Downes and K. S. Pitzer, Thermodynamics of electrolytes. Binary mixtures formed from aqueous NaCl, Na 2 SO 4 , CuCl 2 , and CuSO 4 , at 25 ? C, J. Solution Chem, vol.5, pp.389-398, 1976.

H. Tialowska-mocharla, S. Manohar, and G. Atkinson, Activity coefficient measurements of the system HCl-ZnCl 2-H 2 O at 25 and 35 ? C, J. Solution Chem, vol.21, pp.545-555, 1992.

C. F. Pan and W. J. Argersinger, Isopiestic determination of the osmotic and relative activity coefficients in BaCl 2-ZnCl 2-H 2 O at 25 ? C, J. Chem. Eng. Data, vol.32, pp.205-210, 1987.

P. Reilly and R. Stokes, The activity coefficients of cadmium chloride in water and sodium chloride solution at 25 ?, Aust. J. Chem, vol.23, pp.1397-1406, 1970.

Y. Marcus and D. Maydan, Anion exchange of metal complexes. VIII. The effect of the secondary cation. The zinc-chloride system, J. Phys. Chem, vol.67, pp.979-983, 1963.

Y. Luo and F. J. Millero, Stability constants for the formation of lead chloride complexes as a function of temperature and ionic strength, Geochim. Cosmochim. Acta, vol.71, pp.326-334, 2007.

G. Hefter, Stability constants for the lead (II)-halide systems, Polyhedron, vol.9, pp.2429-2432, 1990.

R. Triolo, L. Blum, and M. Floriano, Simple electrolytes in the mean spherical approximation. 2. Study of a refined model, The Journal of Physical Chemistry, vol.82, pp.1368-1370, 1978.

O. Söhnel, Novotn`Novotn`y, P. Densities of aqueous solutions of inorganic substances, vol.22, 1985.

C. E. Ruby and J. Kawai, The densities, equivalent conductances and relative viscosities at 25 ? , of solutions of hydrochloric acid, potassium chloride and sodium chloride, and of their binary and ternary mixtures of constant chloride-ion-constituent content, J. Am. Chem. Soc, vol.48, pp.1119-1128, 1926.

T. Isono, Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, LaCl 3 , Na 2 SO 4 , NaNO 3 , NaBr, KNO 3 , KBr, and Cd(NO 3 ) 2, J. Chem. Eng. Data, vol.29, pp.45-52, 1984.

R. F. Pogue and G. Atkinson, Solution thermodynamics of first-row transition elements. 2. Apparent molal volumes of aqueous MnCl 2 , Mn(ClO 4 ) 2 , CoCl 2 , Co(ClO 4 ) 2 , FeCl 2 , and Fe(ClO 4 ) 2 , from 15 to 55 ? C, J. Chem. Eng. Data, vol.34, pp.227-232, 1989.

R. H. Stokes, S. Phang, and R. Mills, Density, conductance, transference numbers, and diffusion measurements in concentrated solutions of nickel chloride at 25 C, J. Solution Chem, vol.8, pp.489-500, 1979.

P. Berthier, C. Courty, and J. Gauthier, Sur le paramagnétisme du chlorure cuivrique en solution aqueuse, C. R. Hebd. Seances Acad. Sci, vol.234, pp.604-606, 1952.

D. 'ans, J. Surawski, H. Synowietz, and C. , Densities of binary aqueous systems and heat capacities of liquid systems. Landolt-Börnstein database: Numerical Data and Functional Relationships in Science and Technology. Group IV: Macroscopic and Technical Properties of Matter

J. Timmermans, The Physico-chemical Constants of Binary Systems in Concentrated Solutions: Systems with metallic compounds, vol.3, 1960.

R. Pogue and G. Atkinson, Solution thermodynamics of first-row transition elements. 1. Apparent molal volumes of aqueous NiCl 2 , Ni(ClO 4 ) 2 , CuCl 2 , and Cu(ClO 4 ) 2 , from 15 to 55 ? C, J. Chem. Eng. Data, vol.33, pp.370-376, 1988.

P. Berthier, C. Courty, and J. Gauthier, Sur les propriétés magnétiques des solutions aqueuses de perchlorate cuivrique, C. R. Hebd. Seances Acad. Sci, vol.239, pp.241-243, 1954.

H. Willard and J. Kassner, Preparation and properties of lead perchlorate, J. Am. Chem. Soc, vol.52, pp.2391-2396, 1930.

J. Simonin and O. Bernard, Organic electrolyte solutions: Modeling of deviations from ideality within the binding mean spherical approximation, Fluid Phase Equilib, vol.468, pp.58-69, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01924584

F. J. Millero, Molal volumes of electrolytes, Chem. Rev, vol.71, pp.147-176, 1971.

Y. Marcus, The standard partial molar volumes of ions in solution. Part 4. Ionic volumes in water at 0-100 ? C, J. Phys. Chem. B, vol.113, pp.10285-10291, 2009.

H. Zhang, G. Chen, and S. Han, Viscosity and density of H 2 O+NaCl+CaCl 2 and H 2 O+KCl+CaCl 2 at 298.15 K, J. Chem. Eng. Data, vol.42, pp.526-530, 1997.

J. A. Rard and D. G. Miller, Ternary mutual diffusion coefficients of ZnCl 2-KCl-H 2 O at 25 C by Rayleigh interferometry, J. Solution Chem, vol.19, pp.129-148, 1990.