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SEQUENCE-TO-SEQUENCE MODELLING OF F0 FOR SPEECH EMOTION CONVERSION

Carl Robinson, Nicolas Obin, Axel Roebel

IRCAM, CNRS, Sorbonne Université
Paris, France

ABSTRACT
Voice interfaces are becoming wildly popular and driving demand
for more advanced speech synthesis and voice transformation sys-
tems. Current text-to-speech methods produce realistic sounding
voices, but they lack the emotional expressivity that listeners ex-
pect, given the context of the interaction and the phrase being spo-
ken. Emotional voice conversion is a research domain concerned
with generating expressive speech from neutral synthesised speech
or natural human voice. This research investigated the effectiveness
of using a sequence-to-sequence (seq2seq) encoder-decoder based
model to transform the intonation of a human voice from neutral to
expressive speech, with some preliminary introduction of linguis-
tic conditioning. A subjective experiment conducted on the task of
speech emotion recognition by listeners successfully demonstrated
the effectiveness of the proposed sequence-to-sequence models to
produce convincing voice emotion transformations. In particular,
conditioning the model on the position of the syllable in the phrase
significantly improved recognition rates.
Index Terms: speech emotion conversion, intonation, sequence-to-
sequence models

1. INTRODUCTION

1.1. Speech, Emotion and Conversion

The sound of a human voice is changed as a consequence of the so-
matic (bodily) effects of emotional responses. Once simply impul-
sive expressions, emotions have now evolved into an essential com-
ponent of human communication. Emotion is conveyed by speech
prosody (pitch, intensity, speech rate, voice quality) [1], and when
speech is interpreted, the prosodic component is given priority over
the verbal component [2]. In particular, the intonation, describing
the variations of the vocal pitch, or fundamental frequency (F0)
is a key aspect of speech emotion that takes place over different
time domains, from local contours over the syllables, to global con-
tours over an entire phrase. Consequently, speech emotion conver-
sion involves learning the transfer function between the continuous,
variable-length F0 sequences of natural speech and those of expres-
sive speech. The more sophisticated our technology becomes, the
greater the need for natural, intuitive interfaces. In this context,
voice-enabled emotion-aware interfaces can create very little fric-
tion for users and encourage acceptance, leading to greater use, en-
gagement, and higher perceived utility of products. By modelling
and transforming speech emotion, we can improve the naturalness
of text-to-speech synthesis, and manipulate recordings of human
speech, with applications to voice assistants, conversational agents,
and sound design.

1.2. Related Works

Modelling speech intonation and associated F0 contours is a chal-
lenging task that has been faced in the past decades for a variety of

speech applications: from text-to-speech, voice identity conversion,
and speech emotion conversion among others. The representation of
such F0 variations is a challenging task for at least two main reasons:
first, the F0 sequence corresponding to a speech signal is discontin-
uous by nature: F0 values are only over speech segments that are
voiced, and undefined otherwise; second, the F0 varies over mul-
tiple time scales associated with pre-defined linguistic units (e.g.,
syllable, phrase) or with latent units [3]. Accordingly, a number of
models have been proposed to model F0 variations : 1) Basically, as
a linear sequence of F0 values defined at each time step, either from
discontinuous raw F0 values or from continuous interpolated F0 val-
ues over voiced instants. 2) As a parametric stylization of the defined
F0 values over linguistic units, based on the decomposition of the F0
values over a set of slow time-varying functions, pre-defined as the
Discrete cosine transform (DCT) [4] or learned from speech datasets
[5]. 3) Using multi-scale modelling, from multi-linear models [6]
to more complex models such as the continuous wavelet transform
(CWT) decomposition of F0 variations over multiple time scales [7].
These representations have been largely designed and exploited for
generative modelling tasks, such as text-to-speech synthesis (TTS)
and voice conversion [8, 9, 10, 11, 12, 13].

Over the recent years, recurrent neural networks (RNN) and
long-short-term memory (LSTM) cell architectures have been de-
veloped to effectively exploit the temporal dependencies in audio
data. In particular LSTM-RNN networks have been used to model
timbre and prosody variations over time, improving the speech qual-
ity over models [14] in text-to-speech synthesis [15, 16] and voice
conversion [17, 18]. By including multi-tier links and feedback
loops at the frame, phoneme, and syllable levels, the segmental
and suprasegmental structure of the F0 contours can be efficiently
modelled and preserved during synthesis [19]. A standard RNN
can be extended to make both the hidden state and the output val-
ues recurrent [16], and separate LSTMs can be used for predicting
phone durations and the other acoustic features [20]. Sequence-to-
sequence (seq2seq) transcoder models use an encoder/decoder ar-
chitecture of multi-layered RNN networks to map a variable-length
input sequence onto a variable-length output sequence via a fixed
size vector [21]. Sequence-to-sequence models have recently been
applied with success for text-to-speech synthesis [22, 23], approach-
ing WaveNet [24] in terms of quality at lower computational cost
and latency. At the time of writing, no paper that demonstrated a
sequence-to-sequence being applied to the task of speech emotion
conversion could be found.

This paper presents a seq2seq modelling of F0 for speech emo-
tion conversion †. In the above research on voice transformation,
the proposed models learns to predict the F0 values corresponding

†Project code and audio samples are available online at: https://
github.com/carl-robinson/voice-emotion-seq2seq



to the target emotion without considering the actual F0 values of the
neutral speech. Moreover, the F0 values and the durations of the
F0 contours are modelled and processed separately during learning
and prediction. For instance, the duration of the F0 contours are of-
ten normalised over time by stylisation methods such as the DCT
and CWT, so instead the durations are modelled and processed sep-
arately to the F0. In contrast, the proposed sequence-to-sequence
models simultaneously represent both the pitch values and the dura-
tion of the contours, so pitch and time information are jointly mod-
elled. Furthermore, the output contour can be easily conditioned on
both the source input signal and its linguistic context, presenting the
opportunity for improved speech emotion conversion.

2. PROPOSED MODEL

The proposed model for the F0 conversion is a transcoder that maps
between a source sequence for neutral speech and a target sequence
for a single emotion (i.e., anger, sadness, joy, or fear). A voice trans-
formation system capable of converting neutral speech to emotive
speech is then constructed, based on the sequence-to sequence neu-
ral network architecture (seq2seq). The conversion process involves
three main steps: 1) an extraction of the F0 contours from the neu-
tral source speech signal; 2) a transformation of those contours us-
ing the seq2seq model; 3) an application of the transformed F0 con-
tours back into the neutral source speech signal, which produces a
new speech signal containing the desired expressive form of the ut-
terance. The remaining of this section introduces the core seq2seq
architecture used and the application of the seq2seq network predic-
tions to convert the original speech signal.

2.1. Sequence-to-Sequence Architecture

2.1.1. Encoder-Decoder Architecture

An auto-encoder is a variant of a neural network in which the out-
put is the approximation of the input data. It is composed of an
encoder module that learns a latent lower-dimension representation
of the data, and a decoder that reconstructs the observed data from
this latent code. A transcoder is similar, except that the objective is
no longer to approximate the input vector, but another data vector.
Basic auto-encoders/transcoders do not process sequences, and the
input and output data must be the same length. The seq2seq encoder-
decoder architecture overcomes these limitations [21].

For speech emotion conversion, the input and output vectors are
variable length sequences of pitch values calculated on each sylla-
ble/phoneme, the fundamental building blocks of speech prosody.
Let x = [x1, . . . , xTx ] the source F0 sequence corresponding to
neutral speech, and y = [y1, . . . , yTy ] the target F0 sequence cor-
responding to emotional speech. The seq2seq model is trained to
predict the target sequence conditionally to the source sequence,

p(y|x) =
Ty∏
t=1

p(yt|y<t,x) (1)

To do so, an encoder RNN is first used to map the variable length
input x into a fixed length context vector c [25],

ht = f(xt, ht−1) (2)
c = g(h1, . . . , hTx) = hTx (3)

where: f is the recurrent function, for instance a RNN-LSTM.

Then, a decoder RNN is used to map the fixed length code c to
the target sequence y,

p(y|x) =
Ty∏
t=1

p(yt|y<t, c) (4)

The decoder also uses teacher forcing, in that it predicts the next
element of a target sequence by taking into account the element it
predicted on the previous step.
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Fig. 1. Encoder-decoder sequence-to-sequence architecture with at-
tention mechanism.

During inference, the predicted target sequence is obtained by
maximising the conditional probability:

ŷ[1:Ty ] = argmax
y[1:Ty]

p(y[1:Ty]|c) (5)

The prediction starts by supplying the decoder with a target sequence
of length 1 (the start of sequence character, ’SOS’), and the context
vector. It then calculates prediction probabilities for all the possible
values in the embedding, and uses the argmax to select the next value
(i.e. the first F0 value in the converted output sequence). It then
feeds the output value back into the decoder in order to generate the
next value in the sequence, and repeats this process until the decoder
generates an end of sequence character ’EOS’.

2.1.2. Attention Mechanism

Attention mechanisms augment the performance of the basic
seq2seq model by allowing the implicit alignment of input and out-
put sequences, and are the standard today in seq2seq architectures
[26, 27], with some recent applications to speech processing [28].
Basically, the attention mechanisms allows to perform an internal
alignment between the source and the target F0 sequences, and to
identify the most important past F0 values to be used for conver-
sion at the current time of the target sequence. An illustration of the
seq2seq architecture with the attention mechanism for the conver-
sion of F0 contours is provided in Figure 1.



Fig. 2. Original and transformed voiced and unvoiced phoneme F0 contours across an entire phrase.

2.1.3. Implementation Details

The seq2seq model was learned separately on the F0 contours cor-
responding to the vowel of each syllable, and additional linguistic
conditioning was optionally added to indicate the position of the
syllable within the phrase. The following specifications were used
for the implementation of the proposed seq2seq model:

Architecture: Our encoder contained two layers of 128 bidirectional
LSTM cells, to capture the full F0 contours of each phoneme (Fig-
ure 1). Dropout on the input values was set at 0.5. Residual connec-
tions were not used as these conflicted with the attention mechanism,
essentially bypassing the non-linearity functions and passing the raw
input values directly to the attention mechanism. Our decoder was
the same except that it had three layers, and residual connections
were used. LSTM peepholes degraded results significantly, so were
not used.

F0 embedding: As the seq2seq model used an embedding layer, the
real-valued F0 values were quantized beforehand to produce a finite
range of discrete integers. This was restricted to the range 50 to 550
Hz, to encompass the vocal ranges of both males and females.

Optimization: Cross entropy, which indicates the distance between
the learned and observed distributions, was used as the loss function
for learning. A softmax activation layer was used as the output layer
of our neural network. Our proposed model outputs a probability
for each element in the target embedding (each a unique F0 integer
value, restricted to the range 50 to 550 Hz). The ADAM optimiser
was used for this, with an initial learning rate of 0.001.

2.1.4. Linguistic Conditioning

To add further context to the model, a preliminary conditioning of
the network on the linguistic context was investigated. In particular,
the position of the syllable within a phrase is known as one of the
most important factor of variations of the syllable F0 contour, espe-
cially for the initial and last syllables of the phrase. To do so, the F0
values for a syllable were tagged with a prefix that indicates whether
they belong to the first, last or other positions within the phrase. This
caused the model to treat the three types of contour separately, and
allowed it to generate the important inflections often found at the
start and the end of a phrase. Models with and without this condi-
tioning were also trained for comparison in the experiment.

2.2. Neutral to Expressive Conversion

The trained seq2seq model is then used to predict the expressive
F0 contours for all the vowels of a speech utterance in the desired
expressivity. In Figure 2, the solid lines are the original neutral
contours, while the dotted lines are the transformed expressive con-
tours (in this case, joy). Like-phonemes have the same colour, while
black lines are unvoiced phonemes or periods of silence. The pre-
dicted contours are applied to the neutral speech signal using the
superVP phase vocoder, by time-stretching the neutral speech to fit
with the predicted F0 contour lengths, and linearly interpolating the
predicted F0 contours in the unvoiced and silence segments, and ap-
plying the F0 conversion only on the voiced frames if the warped
neutral speech. The harmonicity (harmonic to noise ratio) of the
neutral speech is used to determine which parts of the interpolated
F0 contour to use for conversion. Using a conservative value of 0.7
produced the least audible distortion.

3. EXPERIMENT

An experiment was conducted to evaluate and compare the proposed
seq2seq architectures, consisting in a speech emotion recognition
task by human listeners of original acted speech utterances and con-
verted neutral speech utterances.

3.1. Speech Emotion Database

The emotional speech database used for this study is the same as
the one previously used and described in [12]. The database com-
prises one female French actor speaking 10 different utterances with
4 emotions (joy, fear, sadness, anger), each acted with 5 levels of
intensity (i01-i05), plus a neutral version (i00). This provided 40
recorded utterances of neutral speech for source data for each inten-
sity, and a total 200 expressive speech utterances for all intensities
(10× 4× 5). Recordings were stored in 16-bit uncompressed audio
files at 48000 KHz, and corresponding prompts were stored in plain
text files with UTF-8 encoding. The fundamental frequency (F0)
values were estimated using SuperVP, and then linearly interpolated
between voiced regions. Phoneme, syllable, and phrase alignment
were created by using the ircamAlign library [29] from the speech
files and the text prompts. Finally, the F0 contours were created for
each vowel of the speech utterance, and linguistic context was calcu-
lated from the alignement by calculating the position of the syllable
within the corresponding phrase.
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Joy 91.3% 2.4% 6.3% 0.0%
Sadness 4.4% 85.7% 0.0% 33.3%
Anger 2.2% 2.4% 70.3% 7.8%
Fear 2.1% 9.5% 23.4% 58.9%
Total 100% 100% 100% 100%

Table 1. Confusion matrix of participant responses for the original
emotion samples, as performed by the actor.

Perceived
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d. Joy 74.8% 13.0% 9.2% 12.9%

Sadness 17.6% 40.2% 18.5% 22.5%
Anger 5.9% 13.6% 64.9% 14.5%
Fear 1.7% 33.2% 7.4% 50.1%
Total 100% 100% 100% 100%
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d. Joy 67.8% 20.9% 30.7% 17.0%

Sadness 19.4% 25.7% 7.7% 25.5%
Anger 9.6% 25.5% 42.4% 21.3%
Fear 3.2% 27.9% 19.2% 36.2%
Total 100% 100% 100% 100%

Table 2. Confusion matrices of participant responses for emotion
conversion with linguistic conditioning (top), and without (bottom).

3.2. Model Setups

A seq2seq model was learned for each emotion separately, from the
source and target F0 contours coming from the parallel utterances
of the speech emotion database. Since the speech emotion database
is parallel, each F0 syllable contour of a neutral utterance can be
systematically paired with a its corresponding F0 contour in another
expressivity. For learning, the source sequence was chosen as the
F0 contour corresponding to the neutral version of the syllable and
the target sequence as the F0 contour corresponding to the expressive
version of the syllable. The complete dataset of source/target pairs of
F0 contours was first split by utterances, to ensure that the utterances
used for training were not used for testing. Of the 10 utterances
available, 6 were used for training and 4 for testing. The training data
was then split again, 85% for training and 15% for validation. This
resulted in around 1100 syllable F0 contour pairs used for training,
and 170 used for validation.

3.3. Experiment Methodology

Three sets of 32 files were manually selected for evaluation: 32
from the syllable-position conditioned model; 32 from the non-
conditioned model; and 32 from the original non-converted expres-
sive samples provided by the actor (for use as a control). Each set
comprised 8 samples from each of the 4 emotions. Additionally,
each emotion set contained 2 examples for each of the 4 test phrases,
to reduce the bias from the wording of the samples influencing the
participant’s choice. A total of 96 files were available for evaluation.
The experiment consisted in a on-line speech emotion recognition
task by human listeners. The survey asked participants to identify

the emotion for 20 files, selected at random for each participant from
the pool of 96 files. For each audio file, the participant were asked to
select one emotion among four possible (happiness, sadness, anger,
fear). Participants were encouraged to use headphones and to do the
experiment in quiet listening conditions.

3.4. Results and Discussion

The survey was completed by 87 participants, providing 1734 re-
sponses. Table 3.2 presents recognition rates obtained with the orig-
inal acted speech utterances, and Table 2 those obtained from the
conversion obtained by the proposed model with and without lin-
guistic conditioning.

Firstly, the recognition rates obtained for the original acted sam-
ples used as control highlight the difficulty of this task. For instance,
joy and sadness are strongly recognised by participants (91.3% and
85.7%) whereas anger and fear are much more ambiguous (70.3%
and 58.9%). Fear is very often confused with anger which may be
due to the actor’s performance, or to a general ambiguity that exists
between emotions expressed by speech. Secondly, the recognition
rates obtained for the converted speech are fairly good and consis-
tent with the ones reported for the acted emotions. In particular,
converted joy, anger, and fear were consistently recognised (respec-
tively, 74.8%, 64.9%, and 50.1%), at rates comparable to their orig-
inal expressions. Converted sadness is the exception, being much
less well recognised than its original version, and often perceived as
fear.

The model with linguistic conditioning performed considerably
better across all four emotions. Participants correctly identified joy
74.8% of the time, an increase of 7.0% over the non-conditional
model. Responses improved by 13.9% for fear, and by 14.5% for
sadness. In the non-conditioned model results, sadness was indis-
tinguishable from the other three emotions, whereas in the condi-
tioned model results, while still often confused for fear, the majority
of sadness responses were correct. The results for anger improved
the most, increasing by 22.5% to a value of 64.9%. By comparison,
the results obtained by the proposed seq2seq model are only slightly
worse than those obtained on the same speech emotion database by
[12]. This is an encouraging result as, unlike the model proposed by
[12], the proposed approach explicitly modelled the durations of the
syllables, and did not use forced alignment of the predicted durations
to the original ones for the experiment.

4. CONCLUSION

In this paper, we presented a sequence-to-sequence architecture for
speech emotion conversion based on F0 conversion learned from par-
allel databases. Experimental results showed can generate F0 con-
tours that can convert the emotion of neutral utterances effectively.
The addition of syllable position conditioning helped to improve the
quality of the conversion for all emotions, especially anger. The
sequence-to-sequence architecture will be next applied to multiple
speakers in order to improve the generalisation ability of the net-
work and its adaptation to a specific speaker’s strategy. Also, further
research will focus on extending the sequence-to-sequence architec-
ture to allow a parametric modelling and conversion of emotional
speech (F0, duration, intensity, voice quality). Finally, more ad-
vanced linguistic embedding strategies will be explored.
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