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Time-dependent processes are often analyzed using the power spectral density (PSD) calculated by
taking an appropriate Fourier transform of individual trajectories and finding the associated ensemble
average. Frequently, the available experimental datasets are too small for such ensemble averages, and
hence, it is of a great conceptual and practical importance to understand to which extent relevant
information can be gained from Sðf; TÞ, the PSD of a single trajectory. Here we focus on the behavior of
this random, realization-dependent variable parametrized by frequency f and observation time T, for a
broad family of anomalous diffusions—fractional Brownian motion with Hurst index H—and derive
exactly its probability density function. We show that Sðf; TÞ is proportional—up to a random numerical
factor whose universal distribution we determine—to the ensemble-averaged PSD. For subdiffusion
(H < 1=2), we find that Sðf; TÞ ∼ A=f2Hþ1 with random amplitude A. In sharp contrast, for superdiffusion
ðH > 1=2Þ Sðf; TÞ ∼ BT2H−1=f2 with random amplitude B. Remarkably, for H > 1=2 the PSD exhibits
the same frequency dependence as Brownian motion, a deceptive property that may lead to false
conclusions when interpreting experimental data. Notably, forH > 1=2 the PSD is ageing and is dependent
on T. Our predictions for both sub- and superdiffusion are confirmed by experiments in live cells and in
agarose hydrogels and by extensive simulations.

DOI: 10.1103/PhysRevX.9.011019 Subject Areas: Biological Physics,
Interdisciplinary Physics,
Statistical Physics

I. INTRODUCTION

The power spectral density of any time-dependent
process Xt is a fundamental feature of its spectral content,
dynamical behavior, and temporal correlations [1]. It is
an important measure for various processes across many

disciplines, including loudness of musical recording [2,3],
evolution of climate data [4], time gaps between large
earthquakes [5], retention times of chemical tracers in
groundwater [6], noise in graphene devices [7], fluores-
cence intermittency in nanosystems [8], current fluctua-
tions in nanoscale electrodes [9], stochastic processes with
random reset [10], some extremal properties of Brownian
motion [11], diffusion in strongly disordered systems
[12,13], and ionic currents across nanopores [14], to name
a few diverse examples.
In its standard definition, the power spectral density

(PSD) is the Fourier transform of the autocorrelation
function of Xt over an infinitely large observation time
T; i.e., it is an ensemble-averaged property taken in the
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limit T → ∞. In many situations, however, one cannot
create a sufficiently large statistical sample to achieve
a reliable ensemble average, and even though the limit
T → ∞ can be formally taken in mathematical expressions,
it cannot be reached in experiments. Instead, one often
deals with either a single or a few individual finite-length
realizations of the process, particularly, in experimental
data dealing with in vivo systems [15], climate change [16],
or financial markets [17]. In this regard, a question of
immense conceptual and practical importance is whether
one can learn relevant information about the system from
the PSD of just a single or a few finite-length realizations.
Several recent studies examined the PSD from such

single-trajectory data. Power spectra of individual time
series were examined for a stochastic model describing
blinking quantum dots [18,19] and also for single-particle
tracking experiments with tracers in artificially crowded
fluids [20]. Notably, the scaling exponent of the power
spectrum computed from a few single-trajectory PSDs
remains very stable. In addition, the power spectra of
the velocity of motile amoeba revealed a robust large-f
asymptotic behavior of the form 1=f2 for all measured
individual trajectories [21,22].
Without a solid mathematical theory, these observations

[18–22] may be considered merely as curious coincidences.
However, in a recent work [23] (see also the perspective
[24]), it was proven that for standard Brownian motion,
the single-trajectory PSD Sðf; TÞ in the large-f limit and at
finite T exhibits the same f dependence as its traditional
ensemble-average counterpart. Thismathematical prediction
was fully corroborated by numerical simulations and experi-
ments with polystyrene beads in aqueous solution [23].
Despite its ubiquitous appearance in nature [25],

Brownian motion is just a particular example of a stochastic
process, and there is no evidence that the same behavior
should hold for other naturally occurring transport proc-
esses. In this regard, it seems highly desirable to have
analogous proof for anomalous diffusion, with mean-
squared displacement (MSD)

hX2
t i ∼ tα; ð1Þ

and anomalous-diffusion exponent α ≠ 1, where the
brackets here and henceforth denote the average over the
statistical ensemble.
Such processes are widely observed in soft matter,

condensed matter, and biological systems, e.g., diffusion
in viscoelastic and crowded systems, the motion of proteins
[15,26] or submicron tracers in living cells [27,28], in
artificially crowded liquids [29,30], telomere diffusion in
the cell nucleus [31], diffusion in disordered media [32],
dynamics of ultracold atoms [33], and in lipid membranes
[34–37]. Anomalous diffusion is also found in other
systems, including heartbeat intervals [38], DNA sequence
landscapes [39], and even in the daily fluctuations of
climate variables [40] and economic markets [17].

Here we calculate exactly for any T, f, and α the full
probability density function (PDF) of a single-trajectory
PSD Sðf; TÞ—a random, realization-dependent variable—
for the widely observed process of fractional Brownian
motion (FBM) [41,42] (see also Sec. II for more details).
Analogous to the parental FBM process, the PDF of the
PSD of its individual realizations appears to be entirely
characterized by its two first moments: We thus derive an
explicit expression for the ensemble-averaged PSD

μ ¼ μðf; TÞ ¼ hSðf; TÞi; ð2Þ

the first moment of the PDF, which is a standard property,
and we also go beyond the textbook definition and
determine its variance

σ2 ¼ σ2ðf; TÞ ¼ hS2ðf; TÞi − hSðf; TÞi2: ð3Þ

These results permit us to quantify the effective broadness
of the PDF via its coefficient of variation γ ¼ σ=μ. We
realize that (for any f and T and regardless of the value of
the anomalous-diffusion exponent) γ always exceeds the
value 1 such that the standard deviation σ of the single-
trajectory PSD is always greater than its ensemble-averaged
value μ. This observation implies that the PDF is broad and
cannot be characterized exhaustively solely by its first
moment, which justifies a posteriori our quest for the form
of the full PDF. Moreover, we find that the value achieved
by γ in the limit fT → ∞ is very meaningful, and on this
basis, we offer a novel and very robust criterion, which
permits us to prove the anomalous character of random
motion in situations where the analysis of the MSD
deduced from experimental data leads to ambiguous
conclusions.
Our theoretical analysis then culminates at the observa-

tion that for sufficiently large values of f a single-trajectory
PSD Sðf; TÞ is linearly proportional (with a universal,
dimensionless, random proportionality factor) to its mean
value μ, which embodies the full dependence on T and f.
This finding generalizes the previous observation made in
Ref. [23] for standard Brownian motion to a wide class of
anomalous diffusion. Here, however, the value of the
anomalous-diffusion exponent appears to be crucially
important: For α < 1 (subdiffusion), the PSD attains a
stationary form 1=fαþ1 for sufficiently large f and T, while
in the superdiffusive case (α > 1), the leading behavior of
the PSD is given by Tα−1=f2. I.e., the PSD is ageing and is
deceivingly proportional to 1=f2, where the exponent 2
characterizing the f dependence is the same as for standard
Brownian motion (α ¼ 1) [23] regardless of the actual
value of α > 1. As a consequence, one should exercise a
great deal of care in the interpretation of the data for
superdiffusive motion and rather concentrate on the ageing
behavior (T dependence) than on the f dependence,
of Sðf; TÞ.
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Further on, we compare a variety of our analytical
predictions against the corresponding analysis of single-
trajectory data garnered from experiments in quite diverse
systems: the dynamics of telomeres in the nucleus of live
cells, polystyrene microspheres in agarose hydrogels, and
motile Acanthamoeba castellanii and their intracellular
vacuoles. Some features of the predicted behavior of the
PDF, which we cannot access in experiments, are also
verified by an extensive numerical analysis. As we show,
our analytical predictions on the f dependence of the PSD
in the subdiffusive case, ageing behavior, and the deceptive
1=f2 dependence in the superdiffusive case, as well as the
corresponding distributions of the universal random ampli-
tude are fully in line with experimental observations in
biologically relevant systems.
We remark that the four systems used in our exper-

imental analysis are just a few particular examples of
systems with a FBM-type dynamics. In general, FBM
encompasses a broad range of naturally occurring proc-
esses with continuous paths and long-ranged temporal
correlations, which entail both sub- and superdiffusive
behaviors, depending on whether the increments of particle
displacement are negatively or positively correlated. In
particular, physically FBM processes describe the over-
damped, antipersistent motion of particles in viscoelastic
environments [20,42,43], as well as the persistent super-
diffusion in actively driven systems [44]. The characteristic
antipersistent signature of subdiffusive FBM was identified
in the dynamics of chromosomal loci and ribonucleic-acid-
protein particles in live bacterial cells [45], lipid granules in
yeast cells in the millisecond range [27], tracer beads in
wormlike micellar solutions [29], lipid molecules in dilute
bilayer membranes in supercomputing studies [35,46,47],
and chromatin in Langevin dynamics simulations [48].
With different observables, FBM-type motion was further
identified in the dynamics of chromosomal telomeres in
living U2OS cells [49] and nanosized particles in crowded
dextran solutions [20,30,50].
FBM is thus a very generic stochastic process, and it

combines both subdiffusive and superdiffusive motion in a
common framework; therefore, we regard it here as the first
prototype example for the study of single-trajectory PSD.
Of course, FBM does not cover all possible kinds of
anomalous diffusion [42]. Moreover, in some instances,
FBM dominates the dynamics of a system at intermediate
timescales, and it is tempered to become standard diffusion
at longer times, or dynamical transitions between different
types of FBM may take place [51,52]. A systematic
analysis of other representative examples of anomalous
diffusion, combinations of different anomalous diffusions,
and processes with dynamical transitions between different
types of behavior is thus ultimately necessary in order to
attain a full understanding of the spectral content of a
single-trajectory PSD. In turn, such an analysis will provide
robust criteria eventually permitting us to distinguish

between different types of random motion. Our work thus
represents an essential first step in this direction.
Theoutline of this paper is as follows: InSec. II,wedescribe

the statistical properties of fractional Brownian motion,
present the definitions of the random variables of interest
here, namely, the power spectral density of individual trajec-
tories of FBM in the case of one-dimensional dynamics, as
well as for a more general case of a d-dimensional dynamics
with projections on the coordinate axes. We also present the
definition of the moment-generating function of the PSD of
individual FBM trajectories. The desired PDF then follows
from the moment-generating function upon a mere inversion
of the Laplace transform. In Sec. III, we describe our
experimental systems which exhibit anomalous, non-
Brownian dynamics and also briefly recall how both the
MSDand the PSDcanbe deduced from the experimental data.
At the end of this section,we also describe the algorithmof our
numerical analysis. Section IV presents our main exact
analytical results and a discussion of their asymptotic behav-
ior. On this basis, we formulate here a robust, novel criterion
which will permit us to prove the anomalous or normal
(standard Brownian) character of dynamics. This criterion is
based on a statistical sample and is validated by numerical
simulations. Further on, in Sec. V, we compare our analytical
predictions against the results of simulations and experimental
data garnered from experiments performed for four different
systems exhibiting an anomalous behavior. In Sec. VI, we
present a brief summary of our results and a perspective.

II. FRACTIONAL BROWNIAN MOTION AND
ITS POWER SPECTRAL DENSITIES

FBM is a Gaussian stochastic process, and hence, it is
entirely characterized by its first moment and the covari-
ance, which defines its autocorrelation at two different time
instants t1 and t2. FBM has zero mean value, and its
covariance function is given by

hXt1Xt2i ¼ D½t2H1 þ t2H2 − jt1 − t2j2H�; ð4Þ

where H ∈ ð0; 1Þ is the so-called Hurst index [41,42].
Comparing the expression in Eq. (4) for t1 ¼ t2 with
Eq. (1), one infers that for FBM the anomalous-diffusion
exponent α is simply related to H, α ¼ 2H.
Standard Brownian motion, on which the analysis in

Ref. [23] is concentrated, is recovered for a particular case
H ¼ 1=2 only. In this case, the increments of the process
are independent, andD is the standard diffusion coefficient.
When H > 1=2 (corresponding to α > 1), the increments
are positively correlated, such that if there is an increasing
pattern in the previous steps, it is likely that the current step
will be increasing as well, resulting ultimately in a super-
diffusive motion. For H < 1=2, the increments are neg-
atively correlated, such that it is most likely that after an
increasing step a decreasing one will follow, entailing
a subdiffusive motion. In the two latter cases, D can
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be thought of as a proportionality factor with units
length2=time2H.
We focus here on the single-component single-trajectory

PSD

Sðf; TÞ ¼ 1

T

����

Z
T

0

expðiftÞXtdt

����
2

; ð5Þ

which is a random variable dependent on a given realization
Xt of a one-dimensional FBM and is parametrized by the
observation timeT and the frequencyf. For its generalization
over the d-dimensional case, we represent a trajectory Rt

of a d-dimensional FBMasRt ¼ fXð1Þ
t ; Xð2Þ

t ;…; XðdÞ
t g [53].

Here, XðjÞ
t is the projection of Rt onto the axis xj and is

statistically independent of other components. With this
definition, we consider the k-component version of a
d-dimensional single-trajectory PSD,

Skðf; TÞ ¼
1

T

Xk

j¼1

����

Z
T

0

exp ðiftÞXðjÞ
t dt

����
2

; ð6Þ

where k ¼ 1;…; d is the number of the tracked components.
For k ¼ 1, Eq. (6) reduces to Sðf; TÞ.
We note that the standard textbook definition of the

PSD is based on the ensemble-averaged expressions in
Eqs. (5) and (6). Our aim here is much more ambitious: We
proceed to calculate exactly the full PDF of the random
variable Skðf; TÞ for arbitrary H, k, f, and T. This can be
done rather straightforwardly if we manage to determine
the moment-generating function of the random variable
Skðf; TÞ defined formally by

Φλ ¼
�
exp

�
−
λ

T

Xk

j¼1

����

Z
T

0

exp ðiftÞXðjÞ
t dt

����
2
��

; ð7Þ

with λ ≥ 0. The desired PDF P½Sk� follows from Eq. (7) by
a mere inversion of the Laplace transform with respect to
the parameter λ. Exact results for both the moment-
generating function and the PDF, as well as asymptotic
expressions of the first two moments of the PDF are
presented in Sec. IV. Details of the derivations, which
are rather lengthy, and also quite cumbersome exact
expressions for the first two moments of the PDF [valid
for arbitrary values of the parameters f and T and for
arbitrary H ∈ ð0; 1Þ] are presented in the Supplemental
Material [54].

III. EXPERIMENT AND NUMERICAL ANALYSES

A. Experimental systems

We study experimentally the dynamics of polystyrene
microspheres in agarose hydrogels, telomeres in the
nucleus of live cells, motile Acanthamoeba castellanii
amoeba, and their intracellular vacuoles.

1. Agarose hydrogel

We record the motion of 50-nm microspheres in agarose
hydrogel. A 1.5% agarose gel is prepared from agarose
powder (Cat. 20-102GP, Genesee Scientific, San Diego,
CA) without further purification by dissolving it in
phosphate-buffered saline. Carboxylate-modified polysty-
rene microspheres with 50-nm nominal diameter (Cat.
PC02002, Bangs Laboratories, Fishers, IN) are first heated
to 60 °C in 0.5% Tween 20 and introduced into the agarose
solution also at 60 °C. The agarose and microsphere
solution is allowed to mix at 60 °C for 15 min and then
transferred to a hot glass-bottom Petri dish and left to
slowly cool to room temperature.
The microspheres are imaged in an inverted microscope

equipped with a 40 × objective (Olympus PlanApo, N.A.
0.95) and a scientific CMOS camera (Andor Zyla 4.2)
operated at 71 frames/s. The first 2048 images are used for
further tracking and analysis. Tracking of the microspheres
in the plane is performed in LABVIEW using a cross-
correlation-based tracking algorithm [55]. Immobile par-
ticles and particles that exhibit very little motion are
discarded. A total of 20 trajectories are analyzed in terms
of their PSD.

2. Telomeres

Trajectories of telomeres in the nucleus of untreated
U2OS cells are acquired at 8 frames/s and evaluated as
described before [56]. It was shown previously that the
time-averaged mean-squared displacement (TA MSD) of
these trajectories features a FBM-like subdiffusive scaling
for short and intermediate times with a mean exponent
hαi ≈ 0.5. From these previously analyzed data, we select
19 individual trajectories, each 2500 frames in length with
scaling exponents in the range α ¼ 0.5� 0.05 for the PSD
analysis.

3. Amoeba and intracellular vacuoles

Trajectories of amoeba and intracellular vacuoles are
recorded using A. castellanii cultured as previously
described [44]. Imaging is done using a Hamamatsu
ORCA ER2 camera on an Olympus IX71 microscope,
and the images are recorded with the MATLAB Image
Acquisition Toolbox (Mathworks, Inc.) at 9 frames/s. In
addition, every 2 s, the image is segmented using an edge
detection algorithm in MATLAB, and the center of mass of
the amoeba is calculated. To record over long periods, the
amoeba is kept in the center of the image by automatically
moving along a scanning stage (Märzhäuser, SCAN IM
112 × 74). In addition, the position of intracellular vacuoles
is detected using a home-written segmentation algorithm in
MATLAB. In brief, first edge detection is carried out,
followed by a Hough transformation to find circles and
an algorithm to verify the vacuoles by their light edge. The
center of the circles in the images is determined and gives

DIEGO KRAPF et al. PHYS. REV. X 9, 011019 (2019)

011019-4



the position of the vacuoles. All trajectories are optically
verified. Previously, it was shown that the vacuole intra-
cellular motion within A. castellanii is superdiffusive [44].
Four individual amoeba trajectories, each consisting of

16 384 frames, are analyzed in terms of their PSD. Short
vacuole trajectories are discarded, and 50 vacuoles trajec-
tories, all from the same cell, are analyzed. In order to avoid
differences in trajectory lengths, only the first 2048 frames
in each vacuole trajectory are used in the analysis.

B. Mean-squared displacement

The time-averaged MSD of individual trajectories Xp,
where p is an appropriately discretized time variable, is
defined as (see, e.g., Ref. [42])

δ2ðΔÞ ¼ 1

N − Δ

XN−Δ

p¼1

ðXpþΔ − XpÞ2: ð8Þ

This property is computed in MATLAB as a function of the
lag time Δ for all analyzed trajectories. The MSD of the
representative microspheres, amoeba, and vacuole trajec-
tories along with their ensemble mean are shown in Fig. 1.
The MSD from the analyzed telomere trajectories were
previously reported [56]. The anomalous exponent as
obtained from the MSD for microspheres is αS ¼ 0.87
for short times and αL ¼ 0.61 for longer times [Fig. 1(a)],
for telomeres α ¼ 0.5 (see Ref. [56]), for vacuoles α ¼
1.33 [Fig. 1(b)], and for the amoeba α ¼ 1.97 [Fig. 1(c)].

C. PSD analysis

Single- and two-component PSDs of individual trajec-
tories [as defined in Eqs. (5) and (6), respectively] are
obtained in MATLAB from the Fourier-transformed compo-
nents Xð1Þ

t and Xð2Þ
t of three-dimensional trajectories. Care

is taken that all trajectories of the same type include the
same number of data points and the same frame rate.
For analyzing the fluctuations of the PSD, i.e., to obtain

the empirical distributions of the amplitudes of the PSD

for sub- and superdiffusive cases, the gross scaling 1=fβ

is obtained from the ensemble-averaged PSD, where
β ¼ 2H þ 1 for the subdiffusive cases (microspheres
and telomeres) and β ¼ 2 for the superdiffusive ones
(vacuoles). From these datasets, we extract the values
A0 ¼ Sðf; TÞfβ [see Eq. (12) below] in the following
frequency ranges: (i) 11 Hz < f < 87 Hz for micro-
spheres, (ii) 1 Hz < f < 10 Hz for telomeres, and
(iii) 1 Hz < f < 5 Hz for vacuoles. We do not extract
the fluctuations of the amoeba because only four trajecto-
ries are used. Then, we normalize the fluctuations accord-
ing to A ¼ A0=hA0i. The same procedure is followed to
obtain B [see Eq. (14) below] for the vacuoles. These data
are then compared to the theoretical predictions as
described in Sec. IV below.

D. Numerical algorithms

The numerical simulations of FBM are far more com-
plicated than the ones used, e.g., for a standard Brownian
motion. FBM is not a Markov process and has long-range
correlations. In order to reproduce FBM numerically, we
use the exact Davies-Harte circulant method (see, e.g.,
Refs. [57–61]). Because of the use of the fast Fourier
transform, the required CPU time for reproducing a T-steps
trajectory is of order T logðTÞ (and not of order T2 as a
naive approach would give). The Davies-Harte approach is
a very powerful exact method, and for the samples of the
size we use, its running time is comparable to the one of
effective approximate methods [60]. We use trajectories of
T ¼ 221 to T ¼ 223 discrete time steps. The total CPU time
we use for all numerical runs is of the order of a few months
of one core of Intel(R) Xeon(R) CPU E5-2620 0 @
2.00 GHz.

IV. ANALYTICAL PREDICTIONS

Our first step consists of calculating the moment-
generating function Φλ of the k-component single-
trajectory PSD [see Eq. (6)] defined in Eq. (7). We obtain
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FIG. 1. MSD analysis. (a) TA MSD Eq. (8) as a function of lag time Δ for 20 individual microsphere trajectories together with their
ensemble average. (b) TA MSD for 20 individual representative vacuole trajectories together with the ensemble average from 50
trajectories. (c) TAMSD for four individual amoeba trajectories together with their ensemble average. In all three panels, the thick black
lines show the ensemble averages, and the gray dashed lines show power-law behavior MSD, which scales as Δα.
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(see the Supplemental Material [54] for the details of the
derivation)

Φλ ¼ ½1þ 2μλþ ð2 − γ2Þμ2λ2�−k=2; ð9Þ

where μ is the first moment of a single-component single-
trajectory PSD Eq. (2), σ2 is the variance of this random
variable Eq. (3), and γ ¼ σ=μ is the coefficient of variation
of the PDF of a single-component single-trajectory PSD
Sðf; TÞ Eq. (5). Inverting the Laplace transform with
respect to λ, we readily obtain the PDF of Skðf; TÞ,

P½Skðf;TÞ ¼ S� ¼
ffiffiffi
π

p

2
k−1
2 Γðk=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2− γ2

p
ðγ2− 1Þk−14

×
S

k−1
2

μ
kþ1
2

exp

�
−

1

2− γ2
S
μ

�
Ik−1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
γ2− 1

p

2− γ2
S
μ

�
;

ð10Þ

where IνðzÞ is the modified Bessel function of the first kind.
We emphasize that the expressions in Eqs. (9) and (10) are
exact and hold for any f, T, and also for any value of the
Hurst index H. We note that Φλ and P½Skðf; TÞ ¼ S� are
entirely defined by the first two moments of Sðf; TÞ, and
hence, all higher moments of the k-component single-
trajectory PSD Skðf; TÞ can be expressed solely through
the first two moments of Sðf; TÞ. This fact is a direct
consequence of the Gaussian nature of the parental process
Xt and suggests, in turn, that the expressions in Eqs. (9) and
(10) may hold, in general, for arbitrary Gaussian processes,
not necessarily for the FBM only. The dependence of μ, σ2,
and hence, of γ on the characteristic parameters will
depend, of course, on the case at hand.
For FBM processes, the exact dependence of μ, σ,

and hence, of γ on f and T for any value of H ∈ ð0; 1Þ
is presented in the Supplemental Material [54]. Below, we
discuss their rather complex behavior focusing first on the
coefficient of variation γ, which characterizes the effective
broadness of the PDF in Eq. (10).
The coefficient of variation γ, which enters Eqs. (9)

and (10), is a dimensionless numerical factor that depends
on f and T only through the function ω ¼ fT. Figure 2
shows γ as a function of ω for six different Hurst indices
spanning the range 1=4 ≤ H ≤ 7=8. The behavior of γ
has several characteristic features, which can be clearly
observed in Fig. 2:

(i) In the limit ω → 0, the coefficient γ tends to the
universal value

ffiffiffi
2

p
, regardless of the value of H.

Next, γ is an oscillatory function of ω, and the
oscillations are prominent at moderate values of ω.
In the limit ω ≫ 1, the oscillatory terms fade out,
and γ is given by very simple asymptotic formula
(see the Supplemental Material [54] for derivation)

γ ∼ ½1þ ð1þ cHω1−2HÞ−2�1=2; ð11Þ

with cH ¼ Γð1þ 2HÞ sin ðπHÞ. This asymptotic
form is depicted by thin solid curves in Fig. 2.

(ii) We see that γ ≥ 1 in the whole range of variation of
ω. This signifies that the standard deviation of the
single-component single-trajectory PSD always ex-
ceeds its mean value. Consequently, the PDF in
Eq. (10) is effectively broad, and the analysis of the
power spectrum using the standard ensemble-
averaged PSD μ only is rather meaningless.

(iii) A most remarkable feature—rendering γ a crucial
and highly practical property for FBM-type proc-
esses—is that it offers the sought criterion for
anomalous diffusion, since the values attained by
γ in the limit ω → ∞ are distinctly different:

ffiffiffi
2

p
,ffiffiffi

5
p

=2, and 1, independent of the exact value of H
but solely dependent on whether one has a super-
diffusive (H > 1=2), diffusive (H ¼ 1=2), or sub-
diffusive (H < 1=2) behavior, respectively. These
analytical predictions are fully confirmed by numeri-
cal simulations for a number of H values.

Before we proceed, it may be expedient to dwell some
more on the last point. When dealing with particle-tracking
experiments, one often observes values of α that are only
slightly different from 1. Consequently, in these cases, it is
not obvious whether one is dealing with anomalous
diffusion, or simply if the fitting of the curves started
too early and includes transient behavior. On the other
hand, the asymptotic value of γ at large frequencies
provides, in principle, an immediate answer to this question
and reveals whether the underlying diffusion process is
normal or anomalous. Such an unequivocal confirmation of
anomalous diffusion can provide extremely valuable evi-
dence to drive efforts into searching for microscopic

FIG. 2. Coefficient of variation γ as a function of ω ¼ fT.
Colored solid curves represent exact values of γ (arrows indicate
the corresponding values of H) defined by Eq. (47) in the
Supplemental Material [54], while thin solid curves depict the
asymptotic expression in Eq. (11). Horizontal dashed lines
correspond to

ffiffiffi
2

p
(top),

ffiffiffi
5

p
=2 (middle), and 1 (bottom). Symbols

represent numerical results averaged over 104 realizations of
trajectories consisting of T ¼ 223 discrete time steps.
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mechanisms underlying the dynamics and lead eventually
to a deeper comprehension of the processes in the system
under study.
Note that here, however, we resort to proof-of-concept

numerical simulations, because the confirmation of this
prediction requires a rather big statistical sample, which we
are unable to create in the current experimental analysis.
We nonetheless perform such an analysis below in Sec. V
(see Fig. 4): It appears to be instructive and shows that even
a small sample containing only a few tens of trajectories
can provide a meaningful representation of the overall
trend. Given the current rapid progress in single-particle
tracking techniques, sufficiently large experimental sam-
ples are certainly within reach.
Even though γ allows us to determine whether the process

is subdiffusive or superdiffusive, it does not permit one to
deduce the value of the anomalous-diffusion exponent α.
Below, we discuss how one can find this further piece of the
puzzle by analyzing the asymptotic behavior of the ensem-
ble-averaged PSD μ and the corresponding limiting behavior
of the PDF in Eq. (10). Consider first the case of subdiffusion
(H < 1=2). We suppose that ω is sufficiently large, such that
γ − 1 ≤ ε, where ε is a small parameter. In virtue of relation
(11), the above inequality holds for ω within the interval

ω ∈ ðωðsubÞ
l ;∞Þ where ωðsubÞ

l ¼ 1=ð2cHεÞ1=ð1−2HÞ (e.g., for
H ¼ 1=4 and ε ¼ 0.01 one gets ωl ≈ 6.4 × 103). In this
limit, the denominator in Eq. (9) becomes a full square, i.e.,
Φλ ≃ ½1þ μλ�−k, with accuracy set by ε. This means, in turn,
that the PDF of Skðf; TÞ becomes, up to terms of order of ε,
the gamma distribution with shape parameter k and scale
parameter μ. Consequently, in this case, the k-component
single-trajectory PSD obeys the equality in distribution

Skðf; TÞ
μðsubÞ

¼d AþOðεÞ; ð12Þ

where the omitted terms are small in ε, and A is a random
numerical factor with distribution

PðAÞ ¼ Ak−1 expð−AÞ=ΓðkÞ: ð13Þ

In the superdiffusive case (H > 1=2), we again assume
thatω is sufficiently large such that the inequality

ffiffiffi
2

p
− γ ≤

ε holds. By virtue of relation (11), this is true when ω ∈
ðωðsupÞ

l ;∞Þwith ωðsupÞ
l ¼ ð2 ffiffiffi

2
p

cH=εÞ1=ð2H−1Þ (e.g., forH ¼
3=4 and ε ¼ 0.01, we have that ωðsupÞ

l ≈ 7.1 × 104, i.e., a
somewhat bigger value than the one in the subdiffusive
case). In this limit, the coefficient in front of the term
quadratic in λ in the denominator in Eq. (9) [i.e., ð2 − γ2Þ],
is less than ε such that Φλ ≃ ½1þ 2μλ�−k=2 and, in turn, the
PDF of Skðf; TÞ becomes the gamma distribution with
scale 2μ and shape parameter k=2. Consequently, the
k-component single-trajectory PSD follows the equality
in distribution

Skðf; TÞ
μðsupÞ

¼d 2BþOðεÞ; ð14Þ

where B is a random numerical factor with distribution

PðBÞ ¼ Bk=2−1 expð−BÞ=Γðk=2Þ: ð15Þ

Therefore, the equalities in Eqs. (12) and (14) suggest
that for both the subdiffusive and superdiffusive cases
the single-trajectory PSD should always be linearly
proportional to its ensemble-average value μ (which
incorporates the dependence on frequency) at large
values of ω. The proportionality factor is merely a
random number with distribution given by Eqs. (13) or
(15), which does not entail any additional dependence
on f or T.
Below, we specify the spectral content of μ. In the

Supplemental Material [54], we show that for subdiffusive
FBM at sufficiently large values of T and f, μ has the
scaling form

μðsubÞ ¼ 2cHD
f2Hþ1

: ð16Þ

In the superdiffusive case H > 1=2, at large T and f,

μðsupÞ ¼ 2D
f2

T2H−1 þ 2cHD
f2Hþ1

þ oð1Þ; ð17Þ

where the Landau symbol oð1Þ states that the omitted terms
vanish as T → ∞. Result (17) unveils two remarkable
features of the ensemble-averaged PSD in the superdiffu-
sive case:

(i) First, regardless of the value of H, for large T, the
frequency dependence has the universal 1=f2 form,
precisely that of the PSD for standard Brownian
motion. Therefore, experimental analyses of the
frequency dependence of the PSD in the super-
diffusive case may lead to the false conclusion that
one deals with Brownian motion (H ¼ 1=2). Con-
sequently, one should exercise care in interpreting
the data in this case: While Brownian motion has a
PSD that scales as 1=f2, the observation of exclu-
sively such a dependence does not guarantee that
one indeed deals with Brownian motion.

(ii) Second, a crucial difference from Brownian mo-
tion is the dependence of the amplitude on the
observation time T. This ageing behavior can be
used to distinguish the T-independent PSD for
Brownian motion from the superdiffusive case: H
can be deduced by analyzing the spectrum at
some fixed frequency given that one ex-
pects Skðf; TÞ ∼ T2H−1.

Lastly, we show that the value ofH can be deduced from
the spectrum evaluated at zero frequency,
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Skðf ¼ 0; TÞ ¼ 1

T

Xk

j¼1

�Z
T

0

XðjÞ
t dt

�
2

; ð18Þ

which represents the sum (divided by T) of squared areas
under the projections of the random curve Xt on different
axes. In the Supplemental Material [54], we show that the
ensemble-averaged PSD at zero frequency is universally
(for both subdiffusive and superdiffusive H) described by

μðf ¼ 0; TÞ ¼ DT2Hþ1

ðH þ 1Þ ð19Þ

(see also the result in Ref. [10] with the reset rate set equal
to zero). On the other hand, the variance of the single-
trajectory PSD obeys (see the Supplemental Material [54]),
again for any H,

σ2ðf ¼ 0; TÞ ¼ 2D2T4Hþ2

ðH þ 1Þ2 : ð20Þ

This result signifies that the coefficient of variation
γ ¼ ffiffiffi

2
p

, regardless of the value of H, such that the PDF of
Skðf¼ 0;TÞ is the gamma distribution with scale 2μðf ¼
0; TÞ and shape parameter k=2 for any T. As a consequence,
Skðf ¼ 0; TÞ obeys exactly the single-trajectory relation in
Eq. (14) with the correction term OðεÞ identically equal to
zero implying that the Hurst index can be deduced directly
from the PSD at zero frequency.

Below, we explore both possibilities to deduce H from
a single-trajectory data, taking advantage of the ageing
behavior of Skðf; TÞ and of the dependence of the PSD at
zero frequency on the observation time T.

V. COMPARISON WITH EXPERIMENTAL
AND NUMERICAL DATA

We test our predictions for the PSD of single trajectories
in four different experimental datasets and multiple numeri-
cal simulations. The experimental data consist of two
systems exhibiting subdiffusive behavior and two systems
exhibiting superdiffusion. For subdiffusive dynamics, we
analyze the motion of 50-nm microspheres in agarose gels
and telomeres in the nucleus of mammalian cells [56]. For
superdiffusive behavior, we study the motion of live
amoeba and their intracellular vacuoles. Representative
MSDs of individual trajectories in all these systems are
presented in Fig. 1 along with their respective averages of
the time-averaged MSDs. Examples of PSDs of the single
trajectories are shown in Figs. 3(a)–3(d).
The time-averaged MSDs of telomeres scale with an

exponent α ¼ 0.5 (i.e., H ¼ 0.25) for short and intermedi-
ate times [56], predicting a PSD Sðf; TÞ ∼ A=f1.5. As
shown in Fig. 3(a), the individual trajectories agree with
this prediction, and the ensemble-averaged PSD from 19
trajectories yields μðsubÞ ∼ 1=f1.49. We also show that the
experimentally observed fluctuations in the PSDs remark-
ably confirm the predicted universal distribution Eq. (13)
for both one- and two-component PSDs, i.e., for k ¼ 1 and
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FIG. 3. Power spectrum analysis of experimental datasets. (a)–(d) PSD of representative trajectories along with the ensemble-averaged
PSD for telomeres in the nucleus of HeLa cells, 50-nm microspheres in 1.5% agarose gel, intracellular vacuoles within amoeba, and the
motion of amoeba. The dashed thick lines show the 1=f1.49 trend for panel (a), 1=f1.76 for panel (b), and 1=f2 for panels (c) and (d). In
each case, the PSDs of four trajectories are presented (log sampled with a factor 1.1 for clarity) together with the ensemble-averaged
PSD (thicker black lines, n ¼ 19, 20, 50, and 4 trajectories for telomeres, microspheres, vacuoles, and amoeba, respectively). (e)–(g)
Distribution of amplitudes of the PSD for one and two components [see Eqs. (13) and (15)]. (h) PSD evaluated at zero frequency. The
zero-frequency spectra are shifted for clarity and displayed together with the fitted power-law functions (gray solid lines). The
experimental results throughout agree excellently with the theoretical predictions.
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k ¼ 2, respectively [Fig. 3(e)]. Similar agreements are
found for the motion of 50-nm microspheres in 1.5%
agarose gel. As shown in Fig. 1(a), the MSD of these
particles scales with an exponent α ¼ 0.87 (H ¼ 0.43) for
short times and α ¼ 0.61 (H ¼ 0.30) for long times. The
PSD yields μðsubÞ ∼ 1=f1.76 [Fig. 3(b)], and the PSD fluctua-
tions also follow closely a gamma distribution [Fig. 3(f)] as
predicted by Eq. (13).
The motion of amoebae and their intracellular vacuoles

are good examples of superdiffusive dynamics. Intracellular
vacuoles are subdiffusive at short lag times and super-
diffusive with α ¼ 1.33 at long lag times [Fig. 1(b)]. This
behavior is typical of active motion in the cytoplasm [62].
Interestingly, the MSDs of the center of mass of the
investigated amoebae show almost ballistic motion with
α ¼ 1.97 [Fig. 1(c)]. The PSDs of the motion of both the
amoebae and the vacuoles therein clearly show the predicted
deceptive 1=f2 behavior [Figs. 3(c) and 3(d)]. The distri-
bution of the PSD amplitudes is also shown for the vacuoles
in Fig. 3(g) together with the predicted gamma distributions
Eq. (15), revealing an excellent agreement for k ¼ 1. The
discrepancy with our two-component analytical prediction
for small B values is likely associated with small amplitude
antipersistent motion of the vacuoles, as is evident from the
trajectories.
In Fig. 3(h), we present the averaged spectra at zero

frequency for both subdiffusive and superdiffusive cases
[see Eqs. (19) and (20) in Sec. IV]. We use 19, 20, 50 and 4
trajectories for the telomeres, microspheres, vacuoles, and
amoeba, respectively, to get directly the Hurst exponents
H ¼ 0.30, 0.18, 0.67, and 1.92. Despite the small sizes of
our statistical samples, the obtained values of H agree well
with the values deduced from the corresponding MSDs.
We revisit next the behavior of the coefficient of

variation γ of the single-trajectory PDF (see Fig. 2) and
address the question whether meaningful information can
already be drawn from small statistical samples of exper-
imental data. In Fig. 4, we plot the value of γ as a function
of ω ¼ fT obtained from only 19 experimentally recorded
trajectories of telomeres, 20 trajectories of microspheres in
agarose hydrogels, and 50 intracellular vacuole trajectories,
as well as from a larger number of trajectories (150) of
micrometer-sized beads in an aqueous solution [23]. The
microspheres in aqueous solution provide an excellent
example of standard Brownian motion, i.e., H ¼ 0.5.
One observes that, indeed, in the large-ω limit, γ converges
to distinctly different values for the superdiffusion, normal
diffusion, and subdiffusion cases. For vacuoles, at large ω,
the coefficient of variation γ is observed to converge to
1.55� 0.01; for Brownian motion (beads in aqueous
solution), it is observed to converge to 1.21� 0.01, for
telomeres to 1.05� 0.01, and for the microspheres in
agarose gels to 1.07� 0.01. In line with our analytical
prediction of a universal value of γ for subdiffusive FBM,
the obtained values for telomeres and microspheres are very

close to each other. Overall, the experimentally determined
values for γ are only about 10% larger than our analytical
predictions (

ffiffiffi
2

p
≈ 1.41 for vacuoles,

ffiffiffi
5

p
=2 ≈ 1.12 for

beads in aqueous solution [23], and 1 for telomeres and
microspheres). Given the small size of the statistical
sample, we consider such a favorable agreement quite
remarkable. In comparison, the perfect agreement of our
predictions with γ values from FBM simulations (cf. Fig. 2)
rather represents an exceptional situation due to the big
statistical sample (104 trajectories). Moreover, in experi-
ments, many different, sometimes uncontrollable factors,
e.g., detector noise, may come into play which leads to an
increasing variance of the single-trajectory PSD and hence
to elevated values of γ. We plan to examine this important
aspect in more detail in our future work.
We further perform extensive analyses of single-

trajectory PSDs for different values of H using numerical
simulations. Figures 5(a) and 5(b) show the results for
single-trajectory PSDs as a function of the frequency (for
sufficiently large T) for different values of H between 1=5
and 4=5. Namely, the subdiffusive cases (H < 1=2) are
shown in Fig. 5(a), and other cases (H > 1=2) are shown in
Fig. 5(b). One observes excellent agreement between the
predicted behavior Eqs. (12) and (16), and the numerics
even for a small statistical sample consisting of ten
realizations. In Fig. 5(c), we also demonstrate that the
single-trajectory PSD for a specific subdiffusive case
(H ¼ 1=3) is not ageing. On the other hand, Figs. 5(e)
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FIG. 4. Coefficient of variation γ as a function of ω ¼ fT in
small statistical samples of experimental data. Dashed horizontal
lines highlight the analytical predictions made in Sec. IV with
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of γ drawn from experiments. Blue diamonds, vacuoles (50
trajectories); red squares, 1.2-μm beads in aqueous solution (150
trajectories) [23]; green circles, 50-nm microspheres in agarose
hydrogel (20 trajectories); cyan triangles, telomeres in the
nucleus of mammalian cells (19 trajectories).
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and 5(f) illustrate the ageing behavior of a single-trajectory
PSD forH ¼ 2=3 and 4=5, at three fixed frequencies. Here,
the straight lines indicate the predicted ageing dependence
T2H−1, Eq. (17), while the symbols represent the results of
numerical simulations averaged over 50 realizations. We
again observe a perfect agreement with our theoretical
predictions.

VI. DISCUSSION

In summary, here we combine theoretical, numerical,
and experimental analyses to provide a comprehensive
answer to the conceptually and practically important
question: Which information can be reliably obtained from
the spectral content of a single realization of naturally
occurring anomalous-diffusion processes? Given the wide-
spread occurrence of 1=f-type spectra in the analysis of
experimental systems and signals across almost every field
of physics, such an analysis is very pertinent. Focusing on a
wide class of such processes—the so-called fractional
Brownian motion—we derive exactly the distribution of
a single-trajectory PSD and analyze its asymptotic forms
for both subdiffusive and superdiffusive dynamics. On this
basis, we unveil several striking features:

(i) At a fixed observation time and in the limit of
high frequencies, this distribution reduces to simple

forms with a unique scaling given by the ensemble-
averaged PSD, which incorporates the full depend-
ence on f and T. As a consequence, one expects
that for an arbitrary realization of the process,
a single-trajectory PSD should exhibit the same
large-f dependence as a traditional ensemble-
averaged PSD.

(ii) Our experiments and numerical simulations impres-
sively evidence that this 1=fβ dependence is indeed
observed for both super- and subdiffusive FBM-type
processes. For subdiffusive processes, the exponent
characterizing the spectrum is equal to 2H þ 1, and
hence, the anomalous-diffusion exponent can be
obtained by evaluating the slope of the PSD. For
superdiffusive processes, in contrast, the exponent is
deceptively universal and equal to 2, which can lead
to the false conclusion that one deals with ordinary
Brownian motion, while in reality the process is
superdiffusive. We find this prediction particularly
important since it will permit us to avoid a mis-
interpretation of the experimental results.

(iii) For superdiffusive processes, the amplitude of the
PSD is ageing, i.e., dependent on the observation
time. However, it is difficult to observe this depend-
ence on a single trajectory since the T dependence is
weaker than the large fluctuations between nearby
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slopes 2H − 1 as shown in Eq. (17). Symbols represent numerical results averaged over 50 realizations.

DIEGO KRAPF et al. PHYS. REV. X 9, 011019 (2019)

011019-10



frequencies. Here, a statistical sample (comprising,
however, only 50 trajectories) is used in order to
observe the ageing trend and to extract the value of
the anomalous-diffusion exponent from the ageing
behavior.

(iv) We show that the coefficient of variation γ of a
single-trajectory PSD provides a novel criterion for
anomalous diffusion. For FBM, its large-f form
assumes only three different values depending on
whether we observe subdiffusion, normal diffusion,
or superdiffusion. Our analytical predictions are in a
perfect agreement with the results of numerical
simulations for a representative statistical sample
(104 trajectories), but they are also in line with the
experimental results obtained from a fairly small
statistical sample (19 to 50 trajectories).

(v) Lastly, our theoretical, numerical, and experimental
analysis shows unequivocally that the coefficient of
variation always exceeds the value 1, meaning that
the standard deviation of a single-trajectory PSD is
generically bigger than its mean value. In standard
nomenclature of the statistical analysis, the distri-
butions which possess such a property are consid-
ered to be effectively broad. This implies that the
analysis of the spectral content of individual trajec-
tories in terms of only the ensemble-averaged PSD
has limited meaning, which justifies completely our
quest for the full PDF of this important characteristic
property.

To conclude, from an experimental perspective, our
results serve as a reliable framework in the interpretation
of noisy data obtained from a single trajectory—it has
become routine to garner few individual particle trajectories
of impressive length in the wake of superresolution
microscopy and supercomputing. In perspective, our results
will thus play an important role in extracting more physical
information from them.
Finally, we remark that especially in the complex

environment of biological cells, where a vast array of
specific and nonspecific interactions transpire, FBM does
not account, of course, for all possible types of observed
anomalous diffusions. Therefore, additional stochastic
mechanisms may be superimposed, such as short-time or
even simultaneous scale-free trapping time dynamics
[27,28,63,64]. In other instances, FBM may be tempered
or there may occur dynamical transitions between different
types of FBM [51,52]. Extensions of our analysis over
other possible kinds of anomalous diffusion, such as the
FBM models with dynamical transitions [51], “diffusing
diffusivity” models [65], scaled Brownian motion [66], or
continuous-time random walks with a broad distribution of
waiting times [67] are necessary in order to get a full
understanding of the behavior of the PSD in experimentally
relevant systems. We believe that our work presents an
important first step towards such an understanding and will
prompt a systematic case-by-case analysis.
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M.M. Tamkun, and D. Krapf, Ergodicity Breaking on the
Neuronal Surface Emerges from Random Switching be-
tween Diffusive States, Sci. Rep. 7, 5404 (2017).

[65] A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov,
Brownian Yet Non-Gaussian Diffusion: From Superstatis-
tics to Subordination of Diffusing Diffusivities, Phys. Rev. X
7, 021002 (2017).

[66] J.-H. Jeon, A. V. Chechkin, and R. Metzler, Scaled Brow-
nian Motion: A Paradoxical Process with a Time Depen-
dent Diffusivity for the Description of Anomalous Diffusion,
Phys. Chem. Chem. Phys. 16, 15811 (2014).

[67] H. Scher and E.W. Montroll, Anomalous Transit-Time
Dispersion in Amorphous Solids, Phys. Rev. B 12, 2455
(1975).

SPECTRAL CONTENT OF A SINGLE NON-BROWNIAN … PHYS. REV. X 9, 011019 (2019)

011019-13

https://doi.org/10.1002/9781118197714.ch5
https://doi.org/10.1038/srep11690
https://doi.org/10.1103/PhysRevLett.104.238102
https://doi.org/10.1063/1.3651800
https://doi.org/10.1063/1.3651800
https://doi.org/10.1103/PhysRevLett.109.188103
https://doi.org/10.1103/PhysRevLett.109.188103
https://doi.org/10.1073/pnas.1806297115
https://doi.org/10.1016/j.bpj.2012.09.040
https://doi.org/10.1039/c2sm25220a
https://doi.org/10.1039/c2sm25220a
https://doi.org/10.1103/PhysRevE.90.030701
https://doi.org/10.1103/PhysRevE.90.030701
https://doi.org/10.1088/1367-2630/aae4b2
https://doi.org/10.1209/0295-5075/94/20008
https://doi.org/10.1209/0295-5075/94/20008
http://link.aps.org/supplemental/10.1103/PhysRevX.9.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.9.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.9.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.9.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.9.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.9.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.9.011019
https://doi.org/10.1016/S0006-3495(02)75672-5
https://doi.org/10.1088/1367-2630/aa8fe1
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1080/10618600.1994.10474655
https://doi.org/10.1080/10618600.1994.10474655
https://doi.org/10.1137/S1064827592240555
https://doi.org/10.1137/S1064827592240555
https://doi.org/10.1017/S0269964803173081
https://doi.org/10.1017/S0269964803173081
https://doi.org/10.1038/nmat1404
https://doi.org/10.1038/nmat1404
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1038/s41598-017-05911-y
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1039/C4CP02019G
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1103/PhysRevB.12.2455

