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Higher energy and safer sodium ion batteries via an
electrochemically made disordered Na3V2(PO4)2F3
material
Guochun Yan1,2,7, Sathiya Mariyappan1,2, Gwenaelle Rousse1,2,3, Quentin Jacquet1, Michael Deschamps2,4,

Renald David5, Boris Mirvaux1,2, John William Freeland6 & Jean-Marie Tarascon1,2,3

The growing need to store an increasing amount of renewable energy in a sustainable way

has rekindled interest for sodium-ion battery technology, owing to the natural abundance of

sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of

intense research focused on improving the energy density by harnessing the third sodium,

which has so far been reported to be electrochemically inaccessible. Here, we are able to

trigger the activity of the third sodium electrochemically via the formation of a disordered

NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can

reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the

last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/

charge compensation mechanism associated to the new phase and find that it remains

disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full

sodium-ion cells based on this phase as positive electrode and carbon as negative electrode

show a 10–20% increase in the overall energy density.
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The development of new types of high-performance energy
storage and conversion technologies is urgently needed to
meet the growing demands for portable electronic equip-

ment, electric vehicles, and large-scale smart grids1,2. Batteries, as
one of the most versatile energy storage technologies, play a
central role in the transition from fossil-based fuels to renewable
energy. While the Li-ion technology is a key enabler in the
transport sector, it falls short in the stationary storage sector
because of high cost linked to the limited abundance of lithium.
Sodium-ion battery technology has recently aroused great inter-
est, among all the scientific community, as a valid and more
environmentally friendly alternative to Li-ion, owing to the
abundance of sodium all over the planet3,4. Present sodium ion
systems rely on carbon as the negative electrode and of either Na-
based layered oxides or polyanionic compounds as the positive
electrode5–9. Through comparative studies, it has been demon-
strated that the Na3V2(PO4)2F3/C system presently offers both
cycling stability and power rate advantages over systems using the
Na-based layered oxide NaxMO2 (where x ≤ 1 and M= transition
metal ion(s))9–12.

Thus, this paper further focusses on the polyanionic Na3V2

(PO4)2F3 positive electrode material, now on termed as NVPF,
from which one can reversibly remove two sodium ions per
formula unit via two-step redox plateaus of equal amplitudes
centered at ~3.7 and ~4.2 V vs. Na+/Na0. Besides, NVPF elec-
trodes offer a sustained reversible capacity of 128 mAh g−1

together with a specific energy of 500Wh kg−1, while showing
excellent capacity retention and rate capability9,13,14. However, to
make sodium ion cells based on NVPF technologically relevant,
there is a need to increase their specific energy, which is less
competitive than today’s Li-electrodes (~600Wh kg−1 for
LiCoO2-type materials), hence the various attempts to boost the
capacity of NVPF electrodes. A first approach has consisted in the
successful and reversible electrochemical insertion of 0.5 sodium
ion in Na3V2(PO4)2F3 or 1 sodium ion in Na3V2(PO4)2O2F at
potentials of ~1.6 V, respectively15–17. Such a low potential limits
the specific energy gain associated to the insertion of extra
sodium ions but in contrast provides the feasibility to use Na3+x

V2(PO4)2F3 composites as a sodium reservoir, as previously
demonstrated, to compensate for the sodium loss at the carbon
negative electrode during the first cycling15.

Another obvious path to increase the specific energy of NVPF
consists in harnessing the remaining sodium
(Na1V2(PO4)2F3–Na0V2(PO4)2F3) at high potential so as to reach
theoretical energy densities of ~800Wh kg−1. A significant
amount of research effort has been directed toward this goal, but
have remained unproductive in accordance with density func-
tional theory calculations stating that the removal of the third
sodium ion should occur at potential (>4.9 V) that is too high for
present electrolytes18,19. The accessibility of the third sodium ion
in NVPF was thus remaining an open question.

Inadvertently, in our search toward exploring better electro-
lytes for the NVPF/C sodium ion system20 we observed, by
prolonged charging time at high potential, the feasibility to
modify the voltage-composition profile of the charge/discharge
curve (e.g smoothing of the voltage features), hence providing a
hint of some sodium electrochemical activity at high potential
(Supplementary Figure 1). This inspired us to undertake a deeper
exploration of Na3V2(PO4)2F3 oxidation at high voltage.

Here in this work, we demonstrate the feasibility to electro-
chemically remove nearly three sodium ions upon oxidation till
4.8 V vs Na+/Na0 with the concomitant formation of a new
disordered “NVPF” phase that can reversibly uptake and release
around three sodium ions on the following cycle; two between 4.2
and 3.6 V and the last one at 1.6 V. This provides a 20% gain in
specific energy for NVPF/C sodium ion cells. We also

demonstrate the benefits of the low voltage plateau to secure the
use and the storage of such cells down to zero volts, and the
feasibility of monitoring the state of charge (SoC) thanks to the S-
shape profile of the voltage-composition curves. Our findings
offer unprecedented insight into the development of highly per-
forming sodium ion systems.

Results
Activating the third sodium in Na3V2(PO4)2F3 electro-
chemically. Pristine single-phase Na3V2(PO4)2F3 material, as
defined by complementary X-ray diffraction (XRD), scanning
electron microscopy, and inductive plasma analysis (ICP), was
prepared via a two-step procedure as described in ref. 21. Figure 1
compares the voltage-composition curves and cycling perfor-
mances of various NVPF/Na cells charged by limiting the amount
of extracted sodium ions (Δx) to 2.0, 2.25, 2.5, 2.75, and 3.0 to
produce samples that from now on will be referred to as NVPF-2,
NVPF-2.25, NVPF-2.5, NVPF-2.75, and NVPF-3.0 respectively,
and then discharged to 3.0 V. The profile difference between the
first charge and subsequent discharge curve increases with Δx and
becomes the most pronounced for Δx= 3.0. This suggests an
electrochemical-driven irreversible structural change during the
first charging process, but once the first cycle is achieved, sub-
sequent charges and discharges superimpose. Note also a
smoothing of the stair-case discharge curve for Δx= 2.0 (Fig. 1a
left) with increasing Δx that can be equally visualized on the
corresponding derivative dQ/dV plots (Fig. 1a right). Such a shift
from a stair-case to an S-type voltage profile is usually viewed as a
positive asset for better SoC monitoring of the cell via the battery
management system while obviously the decrease in potential is
viewed as a negative asset for high-energy density. Whatever the
amount of extracted sodium, only two sodium ions can be
reversibly inserted, or slightly less for the Δx= 3.0 sample that also
shows the more pronounced capacity decay (Fig. 1b). Note that in
neither case the kinetics of the reversible process seems to be
affected as the power rate traces neatly superimpose irrespective
of Δx (see Supplementary Figure 2). The sodium content for the
various Δx samples at the end of charge was determined both by
Electron Diffraction X-ray analysis (EDX) (Supplementary
Figure 3) and ICP on electrodes recovered from the cells, which
were washed and dried. These values converge with those deduced
from coulometric titration at ±7%, overall three sodium ions are
extracted on charge while solely two can be reinserted down to 3.0
V, hence the question of the missing one sodium ion.

To address this point, another set of five NVPF/Na cells
were charged identically as the first ones but discharged to 1.0 V.
Importantly, the amplitude of the low voltage plateau (1.6–1.3 V)
previously spotted for NVPF (here NVPF-2) is now enlarged with
increasing Δx (Fig. 2a). Strikingly, its increasing amplitude
nicely matches with the extra amount of sodium ions
extracted beyond Δx= 2.0 as shown in the inset of Fig. 2a, as if
there was a transfer from the high (~4.75V) to the low
voltage plateau (~1.6 V). When cycled between 4.4 and 1.0 V, the
NVPF-3.0 sample shows a reversible electrode capacity of 200mAh
g–1 (Fig. 2b) as compared to 107mAh g−1 when the cycling is
limited between 4.4 and 3.0 V, in addition a more sustained capacity
retention for the larger (4.4–1.0 V) cycling voltage range (Fig. 2c vs.
Fig. 1b). This ~40 % gain in capacity translates into solely ~15%
benefit in energy density because most of the extra discharge
capacity is delivered at a low potential (Supplementary Figure 4).
Still, this new polymorph exhibits the highest energy density
reported so far among the NVPF compounds or their oxygenated
variants (see Supplementary Table 1).

At this stage, a delicate question is to understand the origin of
the large voltage drop when inserting the third sodium ion on
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discharge. Obviously it is not related to the vanadium redox
couple as it occurs upon reduction of both Na3V2(PO4)2F3 and
Na3V2(PO4)2FO2 independently of the involved couples are
V3+/V2+ and V4+/V3+15,16. In contrast, previous studies have
proposed that it could be due to changes in sodium mobility/
diffusivity19,22. To check this point, galvanostatic intermittent
titration-technique (GITT)-type measurements, which combine
current pulses and open-circuit sequences, were performed
during the second cycle for the NVPF-2.75 (Fig. 3). From the
potential jump observed immediately after the application of the
current pulse by ~1 s, we could deduce the variation of the cell
resistance, which encompasses short-time-constant phenomena,
such as electrolyte, electronic contact resistance, and charge
transfer resistances. It shows an increase during discharge that is
not correlated with the sudden potential drop. Moreover, changing
the carbon concentration (10 or 50%) had no effect on the
potential drop, therefore definitely ruling out possible electronic
limitations across the conductive matrix of the electrode, as shown
in Supplementary Figure 5. In contrast, there is just after the
potential drop (Fig. 3), a markedly increase of the potential
relaxation during the open circuit voltage (OCV) steps, which
indicates a long-time-constant phenomena corresponding to the

slowed down diffusion of sodium ion in the solid phase. Since
kinetics does not explain the voltage drop, it likely originates from
thermodynamics. The plot of the potential after relaxation as a
function of sodium stoichiometry (shown as a dashed line in
Fig. 3) shows a hysteresis with different traces on charge and
discharge, which point toward different reaction pathways. Thus,
the question arises on how the NaxV2(PO4)2F3 structure
accommodates the uptake and removal of sodium ions.

Structural evolutions when activating the third sodium in
Na3V2(PO4)2F3. To address this point, ex situ synchrotron XRD
measurements were performed on samples recovered from cells
that were charged to Δx= 2.0, 2.25, 2.5, 2.75, and 3.0 and on two
other sets of cells that were similarly charged and subsequently
discharged to 3 and 1 V, respectively. The powder was placed in
0.7 mm glass capillaries and XRD patterns, as shown in Fig. 4,
were recorded in transmission mode at the 11BM synchrotron
beamline at Argonne National Laboratory with a wavelength of
0.412 Å. The pristine Na3V2(PO4)2F3 sample can be refined
successfully with the Rietveld method (Supplementary Figure 6)
in the orthorhombic Amam space group with lattice parameters
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process alone is controlled by limiting the amount of Na+ extracted (Δx= 2.0, 2.25, 2.50, 2.75, and 3.0). a Voltage-composition curves (left) and their
corresponding dQ/dV curves (right). b The corresponding capacity retention plots
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a= 9.02976(14) Å, b= 9.04367(14) Å, and c= 10.75371(9) Å, in
agreement with previous reports21,23. Partial views of the refined
structure are shown in Fig. 5. NVPF exhibits a three-dimensional
structure built on V2O8F3 bi-octahedra bridged by PO4 tetra-
hedra, and sodium occupies three interstitial sites: Na1 (pyr-
amidal) fully occupied, and Na2 (pyramidal) and Na3 (capped
prism) being partially occupied. In this structure, V is distributed
on two crystallographic sites, which are similar in terms of
environment and distances, and consistent with V3+ (average
distance 1.98 Å, Fig. 5).

The charged samples show a pronounced evolution of XRD
patterns with increasing Δx that can easily be spotted at low θ
angles (Fig. 4a left). All Rietveld refinements are shown in
Supplementary Figure 7 with the corresponding Supplementary
Tables 2 to 7 gathering all deduced structural parameters. First, let
us note that the observed phase upon sodium extraction until Δx=
2 perfectly agrees with early literature report23. Na1V2(PO4)2F3

presents a pattern that can be indexed in a Cmc21 space group with
lattice parameters a= 8.81577(19) Å, b= 8.8288(3) Å, and c=
11.00215(16) Å (V= 856.32 Å3 and V/Z= 214.08 Å3). In this
structure, vanadium atoms are distributed on two crystallographic
sites, each corresponding to V3+ and V5+ oxidation states, while
sodium occupies a single pyramidal site with full occupancy (Fig. 5).
The further oxidized sample (Δx= 2.25) shows a similar pattern
that also can be indexed in Cmc21 with however slight changes in
lattice parameters (a= 8.8416(4) Å, b= 8.8567(5) Å, and c=
10.9804(3) Å), which reflects a decrease of sodium occupancy. For
Δx= 2.5 and above, there is appearance of new peaks that
progressively grow when Δx is increased, reflecting the presence
of a mixture of the Cmc21 phase and a new one. For Δx= 3, this
new phase appears as a single phase with an approximate chemical
composition Na0V2(PO4)2F3 and its XRD pattern can be indexed
with a tetragonal cell in space group I4/mmm, and lattice
parameters a= 6.19887(18) Å and c= 11.3865(8) Å. The unit cell
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volume is 437.53(3) Å3 and corresponds to V/Z= 218.76 Å3. This
increase, compared to the sample for Δx= 2, arises from a larger c
lattice parameter reminiscent of stronger electrostatic repulsions
that are no longer screened by sodium atoms. The Rietveld
refinement for Δx= 3 is shown in Supplementary Figure 7 with the
resulting structural parameters listed in Supplementary Table 3.
This structural description enlists only one crystallographic site for
V, and refined V–O and V–F bond lengths (average bond length
1.87Å) indicate an oxidation state of V in agreement with the
expected value of 4.5+, as also confirmed by bond valence sum
calculations. Through discharge down to 1 V, the Δx= 2.0, 2.25,
and 2.5 phases convert back to the Amam structure of the pristine
material further confirming the reversibility of the system within
the 4.4–1.0 V voltage range (Fig. 4b). Interestingly, the Δx= 2.75
and 3 samples stand as exceptions, since they never convert back
into the pristine Amam phase as shown in Fig. 4b and
Supplementary Figure 8. On the opposite, their patterns can be
indexed in the tetragonal I4/mmm space group, as for the charged
phases, and having sodium in a disordered state (i.e. Na occupies
several Wyckoff sites with partial occupancy). These disordered
reduced phases present the same symmetry and crystal structures
(Na distribution) as the high temperature form of Na3V2(PO4)2F321.
In this structure, Na atoms occupy two crystallographic sites
(Wyckoff sites 8h and 16l) that form a circle around fluorine atoms
(Fig. 5). Refining occupancies lead to 2.4 Na per formula unit when
the discharge is limited to 3 V, and 3.25 Na when the discharge is
pursued down to 1 V (see Supplementary Tables 4 and 5).
Consistently, the unit cell volume of the disordered phase V/Z=
222.87Å3 is larger than that of the pristine one V/Z= 219.54Å3

and of NVPF-2.0 discharged back to 1 V (V/Z= 220.57 Å3),
respectively.

Evidence of sodium disorder in the newly formed tetragonal
phase. To further characterize the extent of disorder in the
structure and its origin, we recorded the 23Na and 31P magic

angle spinning-nuclear magnetic resonance spectra of five sam-
ples: pristine NVPF, NVPF-2.5, NVPF-3.0 discharged to 3.0 and
1.0 V, and NVPF-2.0 discharged to 1.0 V (Fig. 6). The shifts of the
NMR resonance in these samples are Fermi contact shifts, which
results from the presence of unpaired electrons on V3+ or V4+

ions. Therefore, 31P NMR probes the state of the four neigh-
boring vanadium ions, while 23Na NMR provides a signature of
the oxidation states of the two adjacent vanadium ions although
sodium mobility and electron hoping may affect the observed
spectra. Upon charging, the “narrow” 23Na and 31P lines (sur-
rounded by V3+ ions in pristine NVPF, Fig. 6a, f) have reduced
shifts upon removal of vanadium electrons (Fig. 6e, j)24,25. A
detailed analysis is provided in the Supplementary Note 1. The
main conclusion that can be drawn from the NMR analysis
results from the comparison of the spectra of pristine NVPF and
NVPF-2.0 discharged to 1 V (i.e. Fig. 6a, f, e, j), and of NVPF-3.0
discharged to 3 and 1 V (Fig. 6c, d, h, i). On the one hand, it
clearly confirms, as observed before, that NVPF-2.0 returns to its
original ordered state upon discharge. On the other hand, for
NVPF-3.0 upon discharge, the broad distributions of environ-
ments in 23Na and 31P spectra results from a distribution of
vanadium oxidation states associated with sodium site occu-
pancies, which are responsible for the variety of Fermi contact
shifts on the neighboring phosphate groups and sodium ions,
thereby confirming the nature of the observed disorder. Alto-
gether, NMR results unambiguously confirm the presence of
sodium disorder in the Na3V2(PO4)2F3 phase formed by initial
removal of three sodium ions.

Charge compensation mechanism upon three sodium ions
extraction/insertion. To recap the overall picture of the structural
changes involved here, a tetragonal phase of approximate compo-
sition Na0V2(PO4)2F3 is formed when more than 2.5 sodium ions
are extracted. Upon discharge, this phase accommodates sodium in
a disordered way and does not convert back to the initial structure,
further confirming that upon oxidation we prepared a new type of
NVPF. This phase can uptake reversibly nearly three sodium ions
with limited volume change (ΔV/V= 3.0%) as deduced by in situ
XRD (Supplementary Figure 9) hence accounting for the good
cyclability of the material. Thus, a question that arises concerns now
is the origin of this disorder. Equally important is the charge
compensation mechanism occurring through this reversible pro-
cess, which is the evolution of the V oxidation state that we could
not access directly by XRD as it only gives hints through V–O and
V–F distances.

To get further insights into the evolution of the V oxidation
state upon Na extraction-insertion, X-ray absorption spectra
(XAS) was measured at the V L-edge and O K-edge for ex situ
samples at Na contents referred by an asterisk on the voltage-
composition curve (Fig. 7a). The normalized spectra acquired in
total fluorescence yield (TFY) mode are presented in Fig. 7b, c.
The V L-edges for the pristine NVPF show two peaks at 517.5
and 523.5 eV, which can be ascribed to the L2/L3 splitting with
the additional multiplet effect originated from large 2p-3d and
3d-3d Coulomb and exchange interactions, as suggested by
Abbate et al. for V2O3 and V2O5

26. During charge, the existing
peaks progressively shift to higher energies from 524.0 to 524.5
eV for instance, indicative of the vanadium oxidation since we
observed a similar evolution when comparing with reference
spectra taken on V2O3, Na1V2(PO4)3 and V2O5 having V at the
3+, 4+, and 5+ oxidation states, respectively (Supplementary
Figure 10). These signals shift back during discharge, showing the
reduction of vanadium back to the original valence, hence further
confirming a reversible process. To gain further insight into the
changes in electronic structure, we turn to the O K-edge reported
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2.75 sample after the first formation cycle. The cell was cycled at C/10 rate
and the relaxation time was controlled either by 4 h or by limiting dV/dt <
0.1 mV/s; The red and blue solid lines show the experimental GITT curve
on charge and discharge respectively, with the black dashed line showing
the equilibrium potential after each relaxation process. The red and blue
filled circles represent the Ohmic resistance at each point on charge and
discharge process respectively. The inset shows NVPF-2.75/Na cell cycled
at C/10, C/100, and C/500 within the range of voltage drop during the first
discharge process
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in Fig. 7c, where the most relevant feature lies in the pre-edge
signal. It is associated to the transition from O(1s) to the
antibonding V(3d)–O (2p) hybridized levels and the intensity is
related to the V–O covalence26. Since V–O covalence increases
with the oxidation state of vanadium, the intensity of the pre-edge
indirectly gives information on the valence of the vanadium
atoms. The pre-edge signal shows a clear intensity increase/
decrease upon sodium ion removal/uptake, indirectly confirming
the oxidation/reduction of vanadium, through the whole process
between 4.8 and 1 V.

While we demonstrated a change in V valence, we noted the
appearance of a well-defined peak at the O K-edge consistent with
the emergence of a single valence and environment of V on

charging. This observation is consistent with a recent synchrotron
XRD studies21 reporting the disproportionation of V4+ into equal
amounts of V3+ and V5+ in Na1V2(PO4)2F3. By fitting the pre-
edge signals of the O K-edge collected for our Na1V2(PO4)2F3
with four Gaussian peaks at 529.3, 531.5, 531.9, and 533.3 eV, we
form two sets of doublets corresponding to V5+ (529.3–531.9 eV)
and V3+ (531.5–533.3 eV). This treatment was extended to all
samples and we plotted the variation of the V5+/V3+ signal ratio
upon Na extraction (see Supplementary Figure 11 and Supple-
mentary Tables 8, 9). It continuously increases upon extraction
suggesting that the V4+ disproportionation happens all along the
extraction process with the opposite variation occurring during
discharge, except from a small shift of the V5+ t2g state. This shift
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can be attributed to an increase in the number of sodium
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discharged to 3.0 V and 1.0 V respectively. e, j NVPF-2.0 discharged to 1.0 V. The stars indicate spinning sidebands, the red arrow shows a small
contribution from neighboring V4+ ions in the pristine NVPF. The dashed lines are guide for the eyes. The 23Na spectra are shown without modification,
while the 31P spectra levels were adjusted for clarity
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neighbors, which will change the Madelung energy and shift the
V5+ peak, in agreement with XRD data.

Electrochemical performance of NVPF/C full cells by utilizing
the third sodium in NVPF. Next, we have implemented the
aforementioned fundamental/experimental knowledge to the
assembly of optimized NVPF/C cells. Figure 8 illustrates the per-
formances of full cells, having a mass ratio positive to negative
electrode of 2, and using an increasing fraction of the third plateau
capacity during the first cycle. The cells cycled between 4.3 and 2 V
show an increase in capacity from 107 to 121mAh g–1 for the
NVPF-2.5 as compared to NVPF-2.0 as shown in Fig. 8a. The extra
capacity gained by utilizing about half of this new third plateau
translates into a ~14% increase in energy (396–451Wh kg−1 based

on the mass of NVPF), while preserving excellent capacity retention
(Fig. 8b). Within this context, it is worth recalling that the highest
achievable energy will depend on the value of the mass ratio of
positive to negative (r), the voltage scanning domain, and the
amount of sodium removed on the third plateau during the first
charge. For instance, the maximum benefits in terms of capacity
and energy when cycling over the 4.3–2 V voltage range is obtained
with NVPF-2.6 sample using a NVPF/C mass ratio of 1.98 (Sup-
plementary Figure 12), which is for instance 2% higher than what
can be achieved with NVPF-2.5 using a mass ratio of 2.06 (Sup-
plementary Figure 12). Note also that we can recover the signature
of the low voltage plateau pertaining to the NVPF positive electrode
by lowering the full cell voltage to zero volt. In that case, with r= 2,
the increase in energy density approaches ~18% for NVPF-2.75
with respect to NVPF-2, but it must be recognized that some of the
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extra-gain comes from the low-voltage plateau, which application-
wise is not the most attractive. Altogether, these results unam-
biguously prove the energy density benefits of partially or wholly
harvesting the third sodium ion from NVPF.

Lastly and worth stressing is the low-voltage plateau occurring
at 1.6 V in NVPF/Na cell, which is shifted to 0.9 V in NVPF/C full
cells, with its amplitude increasing as Δx increases. To fully
explore this low-voltage domain, two cells were previously
charged to Δx= 2 and 2.75, and then cycled five times between
4.3 and 2.0 V first, and maintained at zero volts for 1 week prior

to be recharged and cycled again over the 4.3–2 V voltage
domain. Note that the NVPF-2 loses 4% of its capacity during the
0 V resting period, while no capacity lost is observed for NVPF-
2.75 sample (Fig. 8d and Supplementary Figure 13). Most likely,
the low-voltage plateau serves as a buffer to clamp the voltage of
both the NVPF positive and carbon negative electrodes to lower
values so as to minimize side reactions during the over-discharge
tests. From a practical perspective, this low-voltage plateau is an
inherent asset for facilitating the handling (transport and storage
of cells at zero volts) of NVPF/C sodium ion cells without
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prejudice in their following uses, which is not the case with the Li-
ion technology for instance.

Discussion
The results reported here introduce the feasibility to reversibly
remove, in contrast to previous beliefs, the third sodium ion from
NVPF, hence offering this material and the resulting NVPF/C ion
cells an additional asset for practical applications in terms of energy
density and ability to be stored at 0 V without a performance
penalty. Fundamental studies from complementary XRD, XAS, and
electrochemical experiments establish that this extraction is asso-
ciated with the oxidation of Vn+ beyond 4+ and is concomitant
with the formation, structurally wise, of a new tetragonal “NVPF”
phase, which can reversibly uptake three sodium ions; two and one
at high and low potentials, respectively. However, as it is often the
case with new results in the area of energy storage, the fundamental
science still needs to be understood. Specifically, what are the
mechanisms for sodium ion extraction/uptake, sodium ion trans-
port, and structural reacting paths? Some of these points are now
discussed in light of our experimental findings.

Classical extraction/insertion processes usually lead to charge
and discharge curves, which mirror each other. Such a condition
is no longer satisfied here since the first discharge profile differs
drastically from the charge one, once the third sodium is
extracted from the NVPF structure. This leads to the irreversible
formation of new “NVPF” disordered compound as deduced by
XRD, which remains as such through subsequent cycling. Such a
situation is not unique and has been observed in Li2FeSiO4 and
Li3VO4, where it was ascribed to the onset of a Li/M interstice
mixing upon reduction27,28. Such a scenario is quite unlikely here
owing to the large size difference between Na+ and V5+. Another
possibility would be a strengthening of the V=O bond at the
expense of a lengthening of the V–F bond toward the end of the
oxidation, making it more vulnerable toward bond breaking. This
could lead to the formation of F vacancies having the possibility
to permanently modify Na distribution. However, such a
hypothesis could not be validated owing to our inability to (i)
reach satisfactory Rietveld refinements upon introduction of F
vacancies and (ii) to detect fluorine by 19F NMR in the electrolyte
recovered from a cell that was fully charged using NaClO4 rather
than NaPF6-based electrolyte. Most likely, under strong oxidation
conditions, we change the energy of the Na vacancy landscape via
some subtle framework modifications, which cannot be clearly
determined with powder XRD. This could promote permanently
a more energetically favorable disordered Na path that, once
formed, remains on subsequent cycles.

Turning to the evolution of the vanadium oxidation state upon
Na+ extraction/insertion, our XAS data together with bond valence
sums deduced from XRD indicate that vanadium can reach an
average oxidation state approaching 4.5+. However, ambiguity
remains as whether oxidation states (V3+, V4+, and V5+) coexist
within the same material. Their coexistence upon sodium extrac-
tion was shown in Na3V2(PO4)2O1.6F1.4 via X-ray absorption near
edge structure spectroscopy29. In contrast, recent synchrotron
XRD studies, which we confirmed by soft XAS, support the exis-
tence of V disproportionation (2V4+→V3++V5+) in Na1V2

(PO4)2F3 that is associated with the instability of V4+ in VO4F2
octahedrons23,25,30. These observations indicate the feasibility of
having V4+ in O-substituted NVPF, but not in pure NVPF com-
pounds having VO5−xFx and VO4F2 octahedron. Let us recall that
within the NVPF-type structure, V ions sit in the center of octa-
hedra linked by vertices through fluorine atoms to form V2O8F3
bioctahedra, while in the O-substituted phases, V2O8+xF3−x bioc-
tahedra present V–O–V bonds along the c-axis. Obviously, the
large predominance of V–F–V bonds in contrast to V–O–V bonds

will limit the possibility of stabilizing vanadyl groups. We thus
believe that the difficulty in stabilizing V4+ in the fluoride envir-
onment provided by VO4F2 octahedron favors the dis-
proportionation of V4+ into V3+ and V5+.

Having consolidated, based on complementary GITT and
galvanostatic measurements, that the origin of the potential jump
is not kinetic in nature, a question remains regarding the onset of
this potential jump, which occurs at x= 2 in our newly dis-
ordered NaxV2(PO4)2F3 phase instead of x= 3 in NVPF or
O-substituted NVPF. A tentative answer can be deduced by
considering the phase that forms at high potential during charge,
which influences the discharge profile with the amount of sodium
release at high potential being nearly equal to that reinserted at
low potential. Let’s note that the I4/mmm structure contains two
different Na sites, A and B sites, that could be the Na2 and Na1
on Wyckoff positions 16l and 8h, respectively (Supplementary
Tables 4 and 5). One can simply imagine that, first, the A sites
depopulate (Na3V2(PO4)2F3 →Na1V2(PO4)2F3) followed by the B
sites at high potential, and then A sites refill prior to the B sites so
that the sodium ion liberated from B sites at ~4.7 V are solely
reinserted at ~1.6 V. Such a scenario leads to different metastable
intermediate states in agreement with the different thermo-
dynamic reaction paths observed via GITT measurements.
Moreover, it could then explain the need to have two reinserted
sodium ions corresponding to A sites, whatever the amount of
sodium ions extracted in charge, before the potential jump occurs.
The large potential difference (~4.7− 1.6= 3.1 V) between the
depopulation/repopulation of B sites could be explained by dif-
ferent sodium environments associated to different V(n+1)+/Vn+

redox couples. Further exploration of the sodium-driven local
structural changes in NVPF by combined transmission electron
microscopy, electron paramagnetic resonance, and operando XAS
studies are needed to further support this scenario, since neither
lab-XRD nor synchrotron sources can sort out differences
between sites occupancies.

Overall, this study contradicts the conventional understanding
of the electrochemical properties of Na3V2(PO4)2F3, by showing
that the third sodium ion can be reversibly removed, which leads
to a new polymorph having disordered rather than ordered
sodium sites, and a tetragonal symmetry instead of an orthor-
hombic one. We found that the amount of sodium ions removed
mirrors the amount reinserted at low potential and explained this
balance by the existence of two thermodynamic paths corre-
sponding to different sites occupancies sequences. Furthermore,
this report offers a new way to enhance the energy density of
Na3V2(PO4)2F3 batteries by 14% while preserving excellent cycle
life and suitable rate capabilities for applications. Lastly, we
demonstrate that the onset of the low insertion plateau con-
stitutes a practical step toward the design of sodium ion cells
having performances unaffected by maintaining or discharging
the cell to zero volts. Hence, these novel insights should help in
boosting the development of the sodium ion technology.

Methods
Electrochemical characterization. Electrodes were mainly consisting either of
11mm diameter disks punch out of Al supported calendared NVPF/Csp/PVDF tapes
with a 92/4/4 in weight ratio and a loading of 12mg cm–2. Powdered composite
mixtures (NVPF/Csp with a 90/10 in weight ratio) were occasionally used. A unit of
1M NaPF6 (Stella, Japan) dissolved in PC (BASF, Germany) was used as the elec-
trolyte, glass fiber (GF/D, Whatman) was used as separator, and sodium metal
(Sigma-Aldrich) and hard carbon were used as negative electrode for half cells and full
cells respectively, throughout the paper unless otherwise specified. In the initial stages
of the exploration of the third plateau of NVPF (Supplementary Figure 1), the elec-
trolyte 1M NaPF6 dissolved in PC/EC/DMC (1/1/1 in volume ratio) was used. The
Swagelok and coin-type cell were assembled in the glovebox (MBRAUN, Germany)
either in half cells or full cells, in which the current density of C/10 (1C= 128mA g–1)
was applied by a MPG-2 or VMP-3 potentiostat (Bio-Logic, France). The potentio-
static mode by limiting the current to less than C/100 at 4.8 V (vs. Na+/Na0) was only
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employed in the first formation charge process. The GITT (every Δx= 0.1) was
performed in the second cycle of NVPF-2.75 sample after the first activation cycle,
and the relaxing process was controlled either by dV/dt ≤ 0.1mV s–1 or 4 h.

Ex situ synchrotron XRD. First, the designed amount of sodium ions were
extracted from or reinserted into the NVPF structure electrochemically in the
Swagelok cell, and the recovered powder was washed with dimethyl carbonate
(DMC) and dried in vacuum before sealing it in 0.7 mm glass capillaries for syn-
chrotron XRD measurements. The ex situ synchrotron XRD measurements were
performed using the mail in user facility at 11BM synchrotron beamline, Argonne
National Laboratory (λ= 0.412Ǻ). All Rietveld refinements were performed using
the FullProf program31.

Ex situ soft X-ray absorption. A series of charged and discharged samples (NVPF
electrodes here) with certain amount of sodium ions extracted were prepared in the
Swagelok type cell, and the cycled samples are washed, dried, and sealed in argon
for XAS measurements before sealing in the bags made of Al-plastic film. Samples
were then mounted in a glovebox and transferred under Argon environment into
the beamline end station. The L-edge of V and O K-edge XAS spectra was obtained
in both surface (total electron yield) and bulk sensitive (TFY) simultaneously at
beamline 4-ID-C of the Advanced Photon Source. All spectra were aligned by the
simultaneous measurement of an MgO reference sample.

Magic angle spinning-nuclear magnetic resonance. The spectra were recorded
on a Bruker 4.7T (200 MHz for 1H) double resonance spectrometer, operating at
53MHz for 23Na and 81MHz for 31P, using a 1.3 mm double resonance magic
angle spinning probe, with a spinning rate of 50 kHz, and N2 for the bearing, drive,
and frame cooling gas flows. The 1.3 mm zirconia rotor were filled in a glovebox
under Argon. The effective RF field strength was set to 250 kHz for 23Na and 31P,
using a Hahn echo sequence over two rotor periods (i.e. 40 μs) to obtain a
distortion-free baseline. In the case of 31P, the spectra were recorded using variable
offset-cumulative spectrum—every 250 kHz—to record the complete signal32. The
spectra were fitted with DmFit for the quantification of each peak when needed,
using standard Gausso-Lorentzian peaks33. The spectra were referenced with a 1 M
NaCl solution in water for 23Na and 85% H3PO4 in water for 31P. The longitudinal
relaxation times T1’s were around 0.5 to a couple of milliseconds, and recycling
delays of 30 ms were used to ensure a complete recovery of the magnetization. For
23Na and 31P, 4096 and 16,384 transients were recorded for each spectrum/offset,
and exponential line broadening of 500 and 2000 Hz were applied, respectively.

Data availability
The data supporting the findings of this study are available from the authors on
reasonable request.
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