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Abstract. Future sea surface temperature and sea-ice con-
centration from coupled ocean–atmosphere general circula-
tion models such as those from the CMIP5 experiment are
often used as boundary forcings for the downscaling of future
climate experiments. Yet, these models show some consider-
able biases when compared to the observations over present
climate. In this paper, existing methods such as an absolute
anomaly method and a quantile–quantile method for sea sur-
face temperature (SST) as well as a look-up table and a rela-
tive anomaly method for sea-ice concentration (SIC) are pre-
sented. For SIC, we also propose a new analogue method.
Each method is objectively evaluated with a perfect model
test using CMIP5 model experiments and some real-case ap-
plications using observations. We find that with respect to
other previously existing methods, the analogue method is a
substantial improvement for the bias correction of future SIC.
Consistency between the constructed SST and SIC fields is
an important constraint to consider, as is consistency between
the prescribed sea-ice concentration and thickness; we show
that the latter can be ensured by using a simple parameteri-
sation of sea-ice thickness as a function of instantaneous and
annual minimum SIC.

1 Introduction and context

Coupled climate models are the most reliable tools that we
have today for large-scale climate projections, such as in the
Coupled Model Intercomparison Project Phase 5 (CMIP5;
Taylor et al., 2012). Regional-scale information is obtained

by using these global simulations as a basis for downscaling
exercises. Dynamical downscaling, as opposed to empirical
statistical downscaling (e.g. Hewitson et al., 2014), is car-
ried out either with (very) high-resolution regional climate
models (RCMs) (e.g. Giorgi and Gutowski, 2016) or high-
resolution atmospheric global circulation models (Haarsma
et al., 2016). In both cases, information about the projected
changes in sea surface conditions, such as sea surface tem-
peratures (SST), sea-ice concentration (SIC) and sea-ice
thickness (SIT), is required as a lower boundary condition for
the higher-resolution models. However, SST and SIC condi-
tions modelled by coupled atmosphere–ocean global circu-
lation models (AOGCMs or CGCMs) show important biases
for the present climate (Flato et al., 2013; Li and Xie, 2014;
Richter et al., 2014; Levine et al., 2013; Zhang and Zhao,
2015; Stroeve et al., 2012). For example, it has been high-
lighted that most of the CMIP5 models had difficulties in
reliably modelling the seasonal cycle and the trend of sea-
ice extent in the Antarctic over the historical period (Turner
et al., 2013). Therefore, the validity and reliability of such
coupled simulations is questionable for future climate pro-
jections (e.g. the end of the 21st century), and so is their use
as boundary conditions when performing dynamical down-
scaling of future climate projections.

Prescribing correct SST is crucial for atmospheric mod-
elling because SST determines heat and moisture exchanges
with the atmosphere (Ashfaq et al., 2011; Hernández-Díaz
et al., 2017). The absence of the Pacific cold tongue bias and
the reduction of the double ITCZ problem in AMIP experi-
ments with respect to the CMIP5 model experiments
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(Li and Xie, 2014) shows the importance of forcing atmo-
spheric models by SST close to the observations. For in-
stance, improvements in the modelling of tropical cyclone
activity in the Gulf of Mexico (Holland et al., 2010) and of
summer precipitation in Mongolia (Sato et al., 2007) were
obtained by bias correcting SST and other AOGCM out-
puts before using them as forcing for RCMs. At high lat-
itudes, SIC (Krinner et al., 2008; Screen and Simmonds,
2010; Noël et al., 2014) and, in some cases, SIT (Gerdes,
2006; Krinner et al., 2010) are two additional crucial bound-
ary conditions for atmospheric models. Krinner et al. (2014)
demonstrated that for the Antarctic climate as simulated by
an atmospheric general circulation model, prescribed SST
and sea-ice changes have greater influence than prescribed
greenhouse gas concentration changes. Large-scale average
winter sea-ice extent and summer SST have been identified
among the key boundary forcings for regional modelling of
the Antarctic surface mass balance (Agosta et al., 2013),
which is the only potentially significant negative contribu-
tor to the global eustatic sea level change over the course of
the 21st century (Agosta et al., 2013; Church et al., 2013;
Lenaerts et al., 2016). We note that while there is a consid-
erable body of scientific literature on the effect of varying
SST and SIC on simulated climate, very few studies focused
on the role of varying SIT in atmosphere-only simulations
(Gerdes, 2006; Krinner et al., 2010; Semmler et al., 2016),
although air–sea fluxes in the presence of sea ice are strongly
influenced by the thickness of the sea ice and the overlying
snow cover. Gerdes (2006) and Krinner et al. (2010) have
shown that the atmospheric response to changes in Arctic SIT
can induce atmospheric signals that are of similar magnitude
as those due to changes in sea-ice cover. In most atmosphere-
only general circulation models (AGCMs), SIT will therefore
also need to be prescribed along with SST and SIC. When
SST and SIC from a coupled climate model are directly used,
SIT from that same run should of course be used; however,
in the case that SST and SIC from the coupled model run
are bias corrected, as we strongly suggest here, we argue that
SIT should be prescribed in a physically consistent manner
in the atmosphere-only simulation.

In this study, we describe, evaluate and discuss differ-
ent existing and new methods for the construction of bias-
corrected future SST, SIC and SIT. These methods gener-
ally take into account observed oceanic boundary conditions
as well as the climate change signal coming from CMIP5
AOGCM scenarios to build more reliable SST and SIC con-
ditions for future climate, which should reduce the uncer-
tainties when used to force future climate projections. The
different methods have been evaluated using a perfect model
approach and by carrying out real-case applications to obser-
vations. Applied changes in mean and variances have been
investigated as well as the coherence of SIC and SST after
applying bias-correction methods. The analysis of the results
focuses on methods for sea ice, as the bias correction of SIC
is a more complicated issue to deal with. For SIT, we pro-

pose a diagnostic using SIC following Krinner et al. (1997),
and an example of its application is shown in Fig. 3. Because
there were no reliable observational data sets available until
recently (Lindsay and Schweiger, 2015; Kurtz and Markus,
2012, e.g.), we directly evaluate diagnosed SIT against new
observations. In the following, we present the bias-correction
methods, the data and the evaluation methods in Sect. 2.1.
The results of the evaluation are shown in Sect. 3. Because
SST and SIC are bias corrected separately, Sect. 3.3 presents
a few considerations about SST and SIC consistency after
performing bias corrections. The results are then discussed
together with general considerations on the bias correction
of oceanic surface conditions in Sect. 4. Finally, we sum up
our findings and draw conclusions in Sect. 5.

2 Data and methods

2.1 Data

The application and validation of the methods for bias cor-
rection have been achieved using observational SST and SIC
data from the Program for Climate Model Diagnosis and In-
tercomparison (PCMDI) that are generally used as boundary
conditions for Atmospheric Model Intercomparison Project
(AMIP) experiments (Taylor et al., 2000), called “PCMDI
obs.” or “observations” in this paper. The AOGCM’s histor-
ical and projected sea surface conditions come from CMIP5
simulations (Taylor et al., 2012). Only the first ensemble
members of the historical and the Representative Concentra-
tion Pathway (RCP; Moss et al., 2010) 4.5 and 8.5 simula-
tions have been considered. Most methods have been tested
using CNRM-CM5, IPSL-CM5A-LR and HadGEM-ES cou-
pled GCM. Data from NorESM1-M, MIROC-ESM, EC-
EARTH and CCSM4 have also been used as analogue can-
didates in the analogue method for sea ice. Prior to any ap-
plication of the bias-correction methods, AOGCM data have
been bilinearly regridded onto a common regular 1◦×1◦ grid.
For the evaluation of the diagnosed SIT, we used the Lindsay
and Schweiger (2015) data for the Arctic. For the Antarctic,
in spite of recent observations with autonomous underwater
vehicles by Williams et al. (2015), which tend to suggest the
occurrence of thicker Antarctic sea ice than previously ac-
knowledged, we will use the Kurtz and Markus (2012) data
because of their large spatial coverage.

2.2 Sea surface temperature methods

The bias correction of simulated SST is a relatively easy
and a straightforward issue to deal with. Different methods
have been developed and presented in the literature. Here we
re-evaluate two different frequently used methods. The first
is an absolute anomaly method (e.g. Krinner et al., 2008),
which consists of simply adding the SST difference for a
given month from an AOGCM scenario to the climatological
mean in the observations. The second is a quantile–quantile
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method presented in Ashfaq et al. (2011) in which for each
quantile and each month, the climate change signal coming
from the AOGCM scenario is added to the corresponding
quantile in the observations. Presenting these well-known
methods in detail is of limited interest for the main part of
this paper. However, interested readers can find a more com-
plete description of the methods in Appendix A.

2.3 Sea-ice concentration methods

SIC is more difficult to bias correct because it is a rela-
tive quantity that must be strictly bounded between 0 % and
100 %. This difficulty led some authors to neglect SIC bias
correction altogether in studies with prescribed corrected fu-
ture SSTs that did not specifically focus on polar regions
(e.g. Hernández-Díaz et al., 2017). In this section, we present
three methods: a look-up table, an iterative relative anomaly
and an analogue method.

2.3.1 Look-up table method

This method has been developed at the Royal Netherlands
Meteorological Institute (KNMI). It is used in Haarsma et al.
(2013) and within the framework of the High Resolution
Model Intercomparison Project (HighResMIP) (Haarsma
et al., 2016). A regression of SIC as a function of SST is
also used in the HAPPI project (Mitchell et al., 2017).

In this method, the assumption is made that SIC is a func-
tion of SST. Therefore, SSTs are ranked per 0.1 K bin and
the corresponding average SIC for each temperature bin be-
tween −2 and +5 ◦C is calculated. Relations between SST
and SIC have been found to be dependent on seasons and
hemispheres. Therefore, using monthly mean values of SST
and SIC from historical observations, look-up tables are built
separately for the Arctic and the Antarctic for each calen-
dar month (Fig. 1). Then, with the help of future SSTs, these
look-up tables (LUTs) are used to retrieve future SIC.

2.3.2 Iterative relative anomaly method

Here we follow a method described by Krinner et al. (2008).
It is based on relative regional sea-ice area (SIA) changes and
is essentially an iterative scheme of mathematical morphol-
ogy for image erosion and dilation (Haralick et al., 1987).
The Arctic and the Antarctic are divided into sectors of equal
longitude. In each sector, the average SIA is calculated by
spatially integrating SIC. With respect to the method de-
scribed in Krinner et al. (2008), we introduce the use of a
quantile–quantile method to determine the targeted SIA in
the bias-corrected projection. This targeted SIA is then cal-
culated for each sector and each quantile with the help of the
following equation:

SIAFut, est = SIAobs ·

(
SIAFut, AOGCM

SIAHist, AOGCM

)
. (1)

Figure 1. Look-up tables (a, c) linking SST and SIC for the Arc-
tic (a, b) and the Antarctic (c, d) built using 1971–2000 PCMDI
observations and the associated uncertainty (root mean square er-
ror) in the computed SIC average (b, d).

In Eq. (1), SIAFut, est is the estimated projected SIA for the
current month and sector, SIAObs the SIA from the observa-
tions, and SIAFut, AOGCM and SIAHist, AOGCM are the respec-
tively computed SIAs for the corresponding quantile to the
observations using SIC from a future scenario and a historical
AOGCM simulation. Starting from an observed present SIC
map and using the computed relative SIA change for a given
sector, the decrease (increase) in SIC is then realised using an
iterative process: SIC in each grid box is replaced by the min-
imum (maximum) SIC of all adjacent pixels (Fig. 2); the new
spatially integrated SIA is calculated and the operation is re-
peated until the obtained change converges towards the com-
puted targeted SIA retrieved from AOGCM-simulated sea-
ice data and observations. Afterwards, the decrease–increase
process is repeated on the hemisphere scale in order to en-
sure that the change in SIC reproduces the total hemispheric
SIA change.

2.3.3 Analogue method

In this method, we divide the Arctic and the Antarctic into
ns geographical sectors that correspond to different seas of
the Arctic and the southern oceans; we defined ns = 12 sec-
tors for the Arctic and ns = 7 sectors for the Antarctic (a map
of these sectors can be seen in the Appendix, Fig. B2). For
each sector and each month, the quantiles of the sea-ice ex-
tent (SIE: total area with SIC above 15 %) and the SIA are
computed from SIC observations over the AMIP period. Cor-
responding quantile changes in SIE and SIA are computed
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Figure 2. Iteratively constructing a “corrected” future SIC field using the iterative relative anomaly method (see Sect. 2.3.2).

using SICs from a CMIP5 AOGCM historical simulation and
a projected scenario run. Computed quantile changes are then
applied to the corresponding quantiles in the observations in
order to obtain targeted future SIA and SIE for each month,
quantile and sector. Then, a library of future SIC fields is
built by collecting SIC observations from the AMIP period
as well as SIC from CMIP5 projections. We build this library
by selecting a non-exhaustive list of CMIP5 AOGCMs that
represent the historical SIE annual cycle in both the Arctic
and Antarctic reasonably well after consulting the literature
(Turner et al., 2013; Stroeve et al., 2012; Shu et al., 2015);
a list of the AOGCMs used can be found in the Appendix
(Table B1). The presence of SIC maps from AOGCM pro-
jections in this library is justified by the need to take into
account physically plausible future SIC distributions outside
of the current observed range. Future SIC is then finally re-
constructed by searching the analogue for each quantile (q),
sector (s) and month (m) in the library, which is to say the
SIC field that minimises the cost function C expressed by

C(q, m, s)

=

√√√√(SIAs−SIAT(q, m, s)

SIAmax(q, m, s)

)2

+

(
SIEs−SIET(q, m, s)

SIEmax(q, m, s)

)2

, (2)

where SIAs and SIEs are the SIA and SIE of the processed
sectors of the analogue candidate from the library, SIAT(q, m, s)

and SIET(q, m, s) are the targeted projected SIE and SIA com-
puted using the quantile–quantile method, and SIAmax(q, m, s)

and SIEmax(q, m, s) are the maximum SIA and SIE of the pro-
cessed sector. The double criterion on both SIE and SIA was
introduced in order to distinguish cases in which the total
SIE in a sector is similar but the average SIC is very differ-
ent (and vice versa). In order to avoid issues introduced by
different land masks between AOGCM and PCMDI data, we
filled land grid points with sea ice using a nearest neighbour

method and masked all the grid points with the same land
mask built with land fraction from PCMDI data in order to
compute SIEs and SIAs for each region with the same ref-
erence. Analogues are attributed without taking into account
the month of the analogue candidate in the library. This al-
lows, for instance, for the attribution of a summer sea-ice
map from present observations for a future winter month re-
constructed sea-ice field. For each quantile (q), month (m)
and sector (s), this procedure yields a hemispheric SIC field
SICopt(i, q, m, s) that minimises the cost function for the given
sector, month and quantile. For a given month and quantile,
there are thus ns hemispheric SIC fields SICopt(i, q, m, s) . At
each grid point i, the corresponding ns SIC values are then
blended using a weight function w(i, s) depending on the dis-
tance d(i, s) of that grid point to the centre of each of the sec-
tors in order to obtain the final reconstructed SIC, SIC(i, q, m),
for a given quantile (q) and month (m):

SIC(i, q, m) =

ns∑
s=1

(
w(i, s)×SICopt(i, q, m, s)

)
, (3)

with

w(i, s) =

(
1+

(
d(i, s)

dr

)4
)−1

. (4)

Here, dr is a reference distance of 500 km, yielding a smooth
transition at the boundaries between two adjacent sectors. At
the centre of a sector, this yields a weight that is very close to
1 for the relevant field that was identified as optimal for that
sector and that is close to 0 for the fields identified as optimal
for the other sectors; at the boundary between two sectors,
the weights are typically 0.5 for the two relevant sectors and
close to 0 for the others.
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Figure 3. Spring (MAM) estimated mean SIT (m) using parame-
terisation from Krinner et al. (1997) and IPSL-CM5A-LR SIC data
from the historical run (1971–2000, a) and the RCP8.5 scenario
(2071–2100, b).

2.4 Sea-ice thickness method

2.4.1 Diagnosing sea-ice thickness from sea-ice
concentration

As described by Krinner et al. (2010), the parameterisation
of sea-ice thickness (SIT denoted hS in the following) as a
function of the local instantaneous SIC f and annual mini-
mum SIC fmin is designed to yield hS of the order of 3 m for
multi-year sea ice (deemed to be dominant when the local
annual minimum fraction fmin� 0), hS below 60 cm (with a
stronger annual cycle) in regions where sea ice completely
disappears in summer (that is, fmin = 0) and intermediate
values for intermediate cases:

hS =
(
c1+ c2f

2
min

)
· (1+ c3 (f − fmin)) , (5)

with c1 = 0.2 m, c2 = 2.8 m and c3 = 2 m. This corresponds
to the observed characteristics of Arctic and Antarctic sea
ice, with multi-year sea ice being generally much thicker
than first-year ice. The parameter c3 introduces a seasonal
ice thickness variation in areas where there is a concomitant
seasonal cycle of SIC. A more parsimonious formulation us-
ing only two parameters could have been designed to comply
with these constraints. However, for the sake of consistency
with previous work, we used the equation proposed by Krin-
ner et al. (1997), who designed the parameterisation to allow
for a fairly strong seasonal cycle of SIT also in regions with
intermediate values of fmin.

2.5 Evaluation

Evaluation of the above methods is mainly achieved with a
perfect model approach. A perfect model approach usually
consists of using model data as a substitute for observations
and trying to predict projected model data from that model;
this prediction can then be evaluated against the available
model projections (e.g. Hawkins et al., 2011). In the real
world, as observations of future climate are obviously not yet

available, an equivalent approach is impossible if one can-
not wait long enough for the future to become reality. An-
other type of perfect model approach involves “big brother”
experiments for evaluating downscaling techniques. In such
studies, high-resolution model output is degraded in resolu-
tion and downscaling methods are then applied to these low-
resolution data. The resulting synthetic high-resolution fields
are then compared to the original high-resolution output (e.g.
Denis et al., 2002; de Elía et al., 2006). Here, we consider
SST and SIC from the historical simulation of one coupled
AOGCM as being the observations. Then, we apply the dif-
ferent bias-correction methods using the climate change sig-
nal coming from a scenario of the same model. Obtained pro-
jected SST and SIC using this perfect model test are finally
compared with original SST and SIC from the AOGCM cli-
mate change experiment.

Additionally, we performed an assessment of real-case
applications using observations and climate change signals
coming from AOGCM projections. Changes in mean and
variance in the coupled model projection with respect to
the historical simulation are compared to the introduced
change in mean and variance in the estimated future SST
and SIC using bias-correction methods with respect to the
observed climatological data. We consider here that an ideal
bias-correction method should reproduce the same change in
mean and variance between the observations and the bias-
corrected projected SST and SIC as between the coupled
GCM historical simulation used and its climate change sce-
nario. For SIT, since the method is a diagnostic using SIC in
order to ensure consistency between these two variables, the
evaluation of the method is achieved by comparing estimated
SIT with observations that were not available until recently
(Lindsay and Schweiger, 2015; Kurtz and Markus, 2012).

As SST and SIC are bias corrected separately, Sect. 3.3
presents a few considerations about SST and SIC consis-
tency after performing bias corrections. The effects of the
corrections applied a posteriori in order to ensure physical
consistency between the two variables are evaluated within
the framework of the perfect model test.

3 Results

3.1 Sea surface temperatures

3.1.1 Perfect model test

Absolute anomaly or quantile–quantile methods have been
used for SST in previous bias-correction applications cited
previously in this paper. As a consequence, the utility of a
perfect model test here is limited for SSTs, and it was only
applied in order to be consistent with the evaluation of the
method for SIC. For both methods, the relation between the
bias-corrected projected SST and the SST directly obtained
from the AOGCM projection is trivial when we replace ob-
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Table 1. Mean and standard deviation change between present and future SST data sets for the North Atlantic (45 to 58◦ N, 105 to 85◦W).

Mean change SD change
(◦C) (◦C)

CNRM-CM5 RCP8.5 – CNRM-CM5 hist. +3.04 +0.59
Anomaly meth. app. – PCMDI obs. +3.06 +0.66
Quantile–quantile meth. app. – PCMDI obs. +3.04 +0.68

served SST with the one from the AOGCM historical simula-
tion, for instance in Eq. (A1). As a result, the resulting errors
were null or close to zero, and the results are therefore not
presented or discussed.

3.1.2 Real-case application

Here, we present the application of the anomaly and the
quantile–quantile methods in a real-case application. For
this application, we use SST from the PCMDI observation
data set over 1971–2000, from IPSL-CM5A-LR and CNRM-
CM5 historical simulation over the same period, and the
RCP8.5 scenario over 2071–2100. Histograms of the fre-
quency distribution of SST for different regions of the world
(Weddell Sea, central Pacific and North Atlantic) have been
plotted in order to compare frequency distributions in the
observations, in the GCM historical and future simulations,
and in the estimated bias-corrected future SST using the
quantile–quantile and anomaly methods (Fig. 4). In this fig-
ure, we can appreciate the change in mean and variance be-
tween the GCM historical simulation and the GCM future
scenario and between the PCMDI observations and the bias-
corrected SST scenario. Figure 4c also shows the large cold
bias of IPSL-CM5A-LR with respect to the observations in
the North Atlantic, as coupled models usually struggle to cor-
rectly represent the Atlantic Meridional Overturning Circu-
lation (AMOC). The change in mean and variance due to
the climate change signal is more explicitly presented for
the North Atlantic for the application with CNRM-CM5 in
Table 1. Results from the anomaly method and from the
quantile–quantile method are very similar, and both methods
succeed in applying the same change in mean and variance
coming from the AOGCM scenario to the observations when
producing bias-corrected SST.

3.2 Sea-ice concentration

3.2.1 Perfect model test

In this section, we present the results of the application of the
perfect model test for the three methods for the bias correc-
tion of SIC. The term “perfect model test” is not absolutely
pertinent for the evaluation of the look-up table method,
as we first computed LUTs using SST and SIC from an
AOGCM historical simulation. Then, we used the SST of the
climate change projection from the same AOGCM and re-

Figure 4. Frequency distribution of SST for PCMDI observa-
tions (black), IPSL-CM5A-LR historical (red) over 1971–2000 and
RCP8.5 (green), and quantile–quantile method (pink) and anomaly
method (blue) applications over 2071–2100 for the Weddell Sea (a),
central Pacific (b) and North Atlantic (c).

trieved SIC with the help of the previously computed LUT.
An example of computed LUT using data from the histori-
cal simulation of CNRM-CM5 can be seen in the Appendix
(Fig. B1). It is noteworthy that this new LUT is significantly
different from the one using PCMDI observations (Fig. 1).
Even though the use of this LUT for the perfect model test
instead of LUTs computed using observed SST and SIC over
the AMIP period can be discussed, the use of LUT computed
using observations would necessarily produce a poorer re-
sult for the reconstruction of SIC of the AOGCM scenario
in a perfect model test. Using AOGCM data, inconsistent or
missing results were found for most SST bins at or below
the freezing point of seawater (−1.8 ◦C). In order to fill the
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LUT, we therefore fixed SIC= 99 % for SST=−2.0 ◦C and
linearly interpolated SIC between −1.7 and −2.0 °C.

The perfect model test is more rigorously applied for the
evaluation of the relative anomaly and the analogue method,
as we simply replaced time series of the observed SIC with
the one from the AOGCM historical simulation before apply-
ing the method without any specific modification or calibra-
tion. For the analogue method, the tested AOGCM projection
was excluded from the possible analogue candidates before
applying the method and the perfect model test.

Errors (%) after applying the perfect model test are shown
for the three methods for the RCP4.5 and RCP8.5 scenarios
of the IPSL-CM5A-LR and CNRM-CM5 AOGCM (Fig. 5).
These errors are generally lower for the LUT method: the
mean root mean square error (RMSE) in the estimation for
each scenario for the Arctic and the Antarctic is 4.8 %. The
mean error (ME) using this method tends to be positive in the
Arctic and negative in the Antarctic seas. Errors using the
relative anomaly method exhibit some larger values (mean
RMSE= 8 %). The errors using the analogue method have
intermediate values with respect to the first two methods
(mean RMSE= 5.9 %). Some of the errors of the analogue
method for regions with very complex coastal geography,
such as the Canadian Archipelago, are due to the differences
in land mask between the tested and the chosen AOGCM as
an analogue candidate, despite the care taken for this issue.
The pattern of the errors using the iterative relative anomaly
seems robust among the different AOGCM scenarios. It is
also noteworthy that the pattern of the errors is similar among
different methods, especially if we consider the results in
the Arctic for the scenarios of the CNRM-CM5 model. The
spatial distribution of the errors for HadGEM2-ES SIC in
RCP4.5 and RCP8.5 scenarios within the frame of the perfect
model test is also presented in the Appendix for the analogue
and LUT methods (Fig. B3). The magnitude of the errors is
very similar, which increases the confidence in the indepen-
dence of the results from the selected model.

With the results of the perfect model test, we also per-
formed a comparison between the frequency distribution of
the mean SIC in the AOGCM future scenario (here CNRM-
CM5, RCP8.5) and in the corresponding estimation using the
bias-correction methods (Fig. 6). In these plots, we repre-
sented the histogram of the frequency of SIC for four re-
gions: Ross Sea (72–77◦ S, 174◦ E–163◦W), Weddell Sea
(63–73◦ S, 45–25◦W), Arctic Basin (80–90◦ N, 180◦W–
180◦ E), and the Canadian Archipelago (66–80◦ N, 130–
80◦W). These regions have been chosen because they are
the principal regions where a significant amount of sea ice
remains by the end of the 21st century under the RCP8.5 sce-
nario. With the LUT method (blue lines in Fig. 6), the distri-
bution of SIC is quite well reproduced in the Arctic (Fig. 6c
and d), whereas in the Antarctic seas the distribution (Fig. 6a
and b) exhibits well-marked peaks that we do not find in the
GCM data set (black lines). The presence of such peaks is
easy to explain by taking into account the structure of the

LUT as (i) for a given month, the SIC does not always in-
crease monotonically with decreasing SST, and (ii) the dis-
crete nature of LUT is not in favour of a continuous SIC fre-
quency distribution. Moreover, using this method, we find
a large underestimation of SIC above 90 %, mainly in the
Southern Hemisphere, with almost no occurrence of these
high SIC values in the estimations using the LUT method
for the Ross and Weddell seas. The frequency distribution of
the sea ice using the relative anomaly method (green lines
in Fig. 6) is closer to the distribution in the AOGCM, even
if there is a slight overestimation of the frequency for con-
centrations between 70 % and 90 % and an underestimation
for very high SICs (above 90 %). Finally, the distribution ob-
tained using the analogue method (red lines in Fig. 6) is very
close to the distribution of the original AOGCM scenario.
The results are robust because differences in sea-ice fre-
quency distribution between bias-corrected projections and
AOGCM scenarios are very similar for other scenarios and
coupled models (figures not shown).

3.2.2 Real-case application

We applied the three bias-correction methods using PCMDI
SIC data from the 1971–2000 period, as well as the IPSL-
CM5A-LR and CNRM-CM5 historical data over the same
period and data from the RCP4.5 and RCP8.5 scenarios from
2071–2100, in order to obtain future bias-corrected SIC.
The reliability of the methods is evaluated by comparing
the change in mean and variance between the observations
and the bias-corrected projected SICs with the corresponding
changes in the original AOGCM scenario with respect to the
historical simulation. We consider here that an ideal method
should apply the same statistical changes to observed sea ice
as the one present in the climate change projection used to
derive climate change signal.

In Fig. 7, the bias-corrected mean SIC change is plot-
ted against the corresponding change in mean SIC in the
AOGCM scenario used to determine the climate change sig-
nal. All points in the plot are obtained by the same four
AOGCM scenarios as well as the same four “test regions” as
in the previous section (Ross and Weddell seas, Arctic Basin,
Canadian Archipelago). Similarly, in Fig. 9, applied changes
in standard deviation for the bias-corrected projected SIC are
plotted against the corresponding standard deviation change
in the AOGCM climate change experiment.

For the LUT method (Fig. 7a), future SSTs have been bias
corrected using the quantile–quantile method before using
computed LUT for the retrieval of future SIC. Using this
method, there seems to be no systematic error in the applied
change in mean SIC. The mean error in the estimation of the
change in mean SIC for every region and scenario is −2.2 %
and the RMSE is 42 %. The spread of the points seems to
increase for stronger decreases in sea ice. Main outliers with
a high overestimation of the decrease in SIC are points rep-
resenting the evolution of sea ice in the Weddell Sea, mainly
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Figure 5. Mean error in the estimation of SIC with respect to the original AOGCM future scenario for the LUT, iterative relative anomaly
and analogue methods with CNRM-CM5 and IPSL-CM5A-LR RCP4.5 and RCP8.5 scenarios for the Arctic (a) and the Antarctic (b).
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Figure 6. Frequency distribution of SIC in CNRM-CM5 RCP8.5 scenario (black) and in estimation using different methods in a perfect
model test: look-up table (blue), analogue (red) and iterative relative anomaly (green). Regions are (a) Ross Sea (72–77◦ S, 174◦ E–163◦W);
(b) Weddell Sea (63–73◦ S, 43–25◦W); (c) Arctic Basin (80–90◦ N, 180◦W–180◦ E); (d) Canadian Archipelago (66–88◦ N, 130–80◦W).

for CNRM-CM5 scenarios. If we consider change in SIC
variability (Fig. 9a), systematic error (−14.9 %) and RMSE
(69.3 %) are strong. The decrease in SIC variability in the
Antarctic seas in the projection is strongly overestimated.
Indeed, due to the structure of the LUTs themselves, the
variability of SIC in the bias-corrected projections is much
lower than in the observations or in the original scenarios.

The application of the relative anomaly method shows
a more general overestimation (ME=−11.6 %; RMSE=
52.2 %) of the decrease in mean SIC (Fig. 7b). This over-
estimation is more pronounced for the Weddell Sea area and
for the scenarios of the CNRM-CM5 model. Only the de-
crease in mean SIC in the Arctic Basin is correctly repro-
duced with respect to the AOGCM scenarios. Concerning the
change in SIC variability (Fig. 8b), the scores are compara-
ble to the application of the LUT method (ME=−11.6 %;
RMSE= 64.7 %). The increase in variability in the Arctic
Basin and in the Canadian Archipelago is correctly repro-
duced, whereas for the Antarctic seas and particularly the
Weddell sector, the decrease in SIC variability is once again
dramatically overestimated.

Finally, the application of the analogue method gives inter-
mediate scores (ME=−8 %; RMSE= 48.7 %) with respect
to the two previous methods for the estimation of the change
in mean SIC (Fig. 7c). These scores are greatly deteriorated
by distinct outliers corresponding to the Weddell Sea sec-
tor for each AOGCM scenario, with an overestimation of the
decrease in sea ice. As for the relative anomaly method, the
change in SIC variability (Fig. 8c) is correctly reproduced
(ME=−9.3 %; RMSE= 60.3 %), especially in the Arctic,
while there is an overestimation of the decrease in variability
around Antarctica, particularly for the Weddell Sea.

3.3 Consistency between sea surface temperature and
sea-ice concentration

As bias corrections of SST and sea ice are performed sep-
arately, the physical consistency between the two variables
needs to be ensured a posteriori. To do so, three different is-
sues are examined.

– There is a considerable amount of sea ice (> 15 %) in
the corrected scenario in which the SST is above the
freshwater freezing point (273.15 K). In this case, we set
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Figure 7. Change in mean bias-corrected SIC projections using
(a) look-up table, (b) iterative relative anomaly and (c) analogue
methods against corresponding mean change in the A OGCM pro-
jection for the four test regions: Canadian Archipelago (blue), Arc-
tic Basin (orange), Weddell Sea (red) and Ross Sea (green) for pro-
jections from CNRM-CM5 and IPSL-CM5A-LR.

Figure 8. Change in bias-corrected SIC projection standard devi-
ation using (a) look-up table, (b) iterative relative anomaly and
(c) analogue methods against corresponding mean change in the
AOGCM projection for the four test regions: Canadian Archipelago
(blue), Arctic Basin (orange), Weddell Sea (red) and Ross Sea
(green) for projections from CNRM-CM5 and IPSL-CM5A-LR.
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Figure 9. Mean error in the estimation of SST with respect to the corresponding original AOGCM scenario after applying the analogue
method for sea ice, the quantile–quantile method for SST, and the correction for SST and SIC consistency for the Arctic (a) and the southern
oceans (b).

SST equal to the seawater freezing point (271.35 K) for
any SIC equal to or greater than 50%. If the future cal-
culated SIC is between 15 % and 50 %, the future SST is
obtained by linearly interpolating between the seawater
freezing point and the freshwater freezing point.

– The future corrected SST is below the freshwater freez-
ing point but there is no significant (< 15 %) SIC in the
bias-corrected scenario. In this case, we put the SST of
the concerned grid point equal to the freshwater freez-
ing point.

– SST has been used to remove very localised suspicious
sea ice (no ice) in the Arctic in summer. Any sea ice for
SST above 276.15 K has been removed, this tempera-
ture being the highest temperature at which a significant
amount of sea ice (15 %) is found in the Arctic for the
computed LUT using PCMDI data.

The impact of these modifications has been evaluated using
the framework of the perfect model test. After applying the
analogue method for SIC and the quantile–quantile method
for SST in a perfect model approach, we applied the cor-
rection for SST and SIC consistency and compared obtained
SSTs to the original AOCGM future scenario used to carry
out the experiment. The error can be seen in Fig. 9 for the
application of the method with IPSL-CM5A-LR and CNRM-
CM5 scenarios. Error is negligible in most regions. Very lo-
cally, it can reach up to 1 ◦C. These regions generally cor-
respond to regions where the analogue method has shown
some errors for the reconstruction of sea ice, especially for
CNRM-CM5 scenarios. The occurrences of the three cases
mentioned above have been assessed for both the perfect
method test and the real-case application. The first and third
cases are very rare and about 1 % or less of global oceanic

surfaces experience at least one case during a 30-year exper-
iment. The second case is more frequent; more than 20 % of
global oceanic surfaces experience at least one occurrence
during a 30-year experiment, while the mean occurrence at
each time step is about 1 % to 2 % of global oceanic sur-
faces. This case is responsible for the small (0.25 to 0.5 K)
but widespread warm bias in SST that can be seen in the
Antarctic seas for the reconstruction of IPSL model scenar-
ios in Fig. 9. Nevertheless, this slight decrease in the quality
of the reconstruction of SST is worth considering in order to
ensure physical consistency between SST and SIC.

3.4 Sea-ice thickness

The original formulation by Krinner et al. (1997) was param-
eterised for both hemispheres. We will therefore first present
results for the original unique parameter set c1, 2, 3 applied to
both hemispheres. In a second step, we will present results
for separate Arctic and Antarctic parameter sets, yielding a
better fit to the observations. The reasoning is that, at the ex-
pense of generality of the diagnostic parameterisation, one
could argue that the strong difference between the Arctic and
Antarctic geographic configuration – a closed small ocean
favouring ice ridging and thus thicker sea ice in the Arctic
versus a large open ocean favouring thinner sea ice around
Antarctica – justifies choosing different parameter sets for
the two hemispheres. As changes in the position of the con-
tinents will be irrelevant over the timescales of interest here,
climate change experiments will not be adversely affected by
this loss of generality.
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3.4.1 Option 1: global parameter set

A comparison between the observed (Lindsay and
Schweiger, 2015) and our diagnosed evolution of the
Arctic mean SIT is given in Fig. 10a. The geographical
patterns of the observed (in fact, observation-regressed) and
parameterised Arctic ice thickness for March and September
over the observation period 2000–2013 (Fig. 11a) do bear
some resemblance, but they also show some clear defi-
ciencies in the diagnostic parameterisation. The diagnostic
parameterisation reproduces high SIT north of Greenland
and the Canadian Archipelago linked to persistent strong
ice cover, but underestimates maximum ice thickness (due
in part to compression caused by the ocean surface current
configuration). Thinner sea-ice over the seasonally ice-free
parts of the basin is reproduced, but it is actually too thin,
particularly in winter (for example in the Chukchi Sea).
Obvious artifacts appear in September north of about 82◦ N
where the SIC in the ERA-Interim data set clearly bears
signs of limitations due to the absence of satellite data.

Both for spring (October–November) and fall (May–June),
our diagnosed SIT (Fig. 12) compares generally well with the
ICESat data except for an overestimate in the Weddell Sea in
both seasons. The geographical pattern of alternating regions
with thin and thick sea ice is remarkably well reproduced.

3.4.2 Option 2: separate Arctic and Antarctic
parameter sets

A slightly better fit for the two poles can be obtained with
separate parameter sets. For the Arctic, it seems desirable to
increase winter SIT in the Chukchi Sea area (by increasing
c3 slightly) and to decrease the average SIT over the central
Arctic (by decreasing c2). Figures 10b and 11b show results
for the Arctic with c1 = 0.2 m, c2 = 2.4 m and c3 = 3 m. The
spatial fit is slightly better, but the recent Arctic mean decadal
trend towards decreased average SIT is somewhat less well
reproduced. For the Antarctic, the main feature to improve
is the maximum ice thickness in the Weddell Sea, which can
be decreased by lowering c2 to 2.0 m. The Antarctic parame-
ter set then becomes c1 = 0.2 m, c2 = 2 m and c3 = 2 m. The
result (Fig. 12b) is indeed a decreased thickness of the peren-
nial Weddell Sea ice with little impact elsewhere.

In any case, these hemisphere-specific sea-ice parameter
sets are not very different from each other and are fairly sim-
ilar to the original formulation.

4 Discussion

4.1 Sea surface temperatures

The bias correction of projected SST coming from AOGCM
scenarios is fairly easy to deal with, and different appropriate
solutions have already been proposed in the literature (e.g.
Krinner et al., 2008; Ashfaq et al., 2011; Hernández-Díaz

Figure 10. Observed (black, after Lindsay and Schweiger, 2015)
and diagnosed (red) 12-month moving average mean sea-ice SIT of
the Arctic basin (see Fig. 11) using (a) the global parameter set and
(b) the Arctic-specific parameter set. Slight differences to Figure 12
of Lindsay and Schweiger (2015) appear because here we mask ice-
free (SIC < 15 %) areas that have a finite, non-zero ice thickness
in the regression proposed by Lindsay and Schweiger (2015), who
extend their regression to the entire Arctic Basin in all seasons.

et al., 2017; Holland et al., 2010). In these papers, it has been
demonstrated that the use of bias-corrected SSTs has consid-
erable influences on the modelled climate and its response in
projected scenarios for regions and processes as different as
precipitation and temperature in the tropics, the West African
monsoon and the climate of Antarctica.

In this paper, we reviewed two existing bias-correction
methods and propose a validation that allows for an objec-
tive evaluation of the efficiency of these methods with the
use of a perfect model test and a real-case application. Since
both methods show no biases in the perfect model test and
succeed in reproducing the change in mean and variability
coming from the AOGCM future scenarios, we can be con-
fident in the use of these methods for the bias correction of
future AOGCM scenarios.

4.2 Sea-ice concentration

SIC is a quantity that has to remain strictly bounded between
0 % and 100 %, exhibits some sharp gradients, and has to re-
main physically consistent with SST. Therefore the empirical
bias correction of future SIC from coupled model scenarios
is a much more complex issue to deal with than the bias cor-
rection of SSTs. The absence of satisfying solution proposals
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Figure 11. Observed (regressed, Lindsay and Schweiger, 2015) and parameterised Arctic SIT (in m) for March and September and the
difference between these (right) with (a) the global parameter set and (b) the Arctic parameter set.

for this issue in the literature has led to the incorrect bias cor-
rection of future SIC in a recent study (Hernández-Díaz et al.,
2017). Yet, the proposal of convenient solutions for the bias
correction of sea ice for projected scenarios is crucial for the
community interested in the downscaling of climate scenario
experiments for polar regions.

The perfect model test revealed that the LUT method
shows some reduced errors over most regions (Fig. 5). How-
ever, we have seen that the frequency distribution of future
SIC obtained using this method is very different than the
original distribution in the AOGCM and unavoidably ex-
hibits some peaks due to the structure of LUT (Fig. 6). More-
over, the absence of SIC above 90 % in the Antarctic is also
a considerable limitation to the method considering the large

differences in terms of heat and moisture exchanges in winter
between an ocean fully covered by sea ice and an ocean that
exhibits some ice-free channels (Krinner et al., 2010). In ad-
dition, the use of SST as a proxy for SIC is physically ques-
tionable, as we should expect a large SIC gradient around the
freezing point. The fact that both SST and SIC are averaged
over a long period (1 month) and over a considerable area
(1◦× 1◦) is probably the main reason why we nevertheless
find a relation between the two variables. The real-case ap-
plication of the method also shows some difficulties for the
reconstruction of large decreases in mean SIC (Fig. 7a) as
well as a poor reconstruction of the change in variability in
future SIC (Fig. 8a).
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Figure 12. Observed Kurtz and Markus (2012) and parameterised Antarctic sea-ice thickness (in m) for spring and fall and the difference
between these (right) with (a) the global parameter set and (b) the Antarctic-specific parameter set.

The relative anomaly method (Krinner et al., 2008) shows
the largest spatial mean errors in the perfect model test
(Fig. 5). The structure of some errors seems to be constant
across the reconstruction of different climate scenarios used
in the perfect model test. The empirical reduction of SIC by
an iterative “erosion” from the edges of sea-ice-covered re-
gions most likely has the tendency to overestimate the de-
crease in sea ice for some coastal regions, while it probably
fails to reproduce some processes involved in the disappear-
ance of sea ice in the future, such as the inflow of warmer wa-
ters through the Barents Sea or the Bering Strait in the Arctic.
The real-case application of the relative anomaly method has
shown some systematic negative errors in the reconstruction
of the decrease in mean SIC (Fig. 7b) and a substantial over-

estimation of the decrease in variability in the Antarctic seas
(Fig. 8b).

The evaluation of the analogue method with the perfect
model test shows that the mean error can be locally slightly
higher than for the LUT method (Fig. 5). However, the fre-
quency distribution of the bias-corrected SIC perfectly re-
produces the frequency distribution of the sea ice in the orig-
inal AOGCM scenario (Fig. 6). The real-case application of
the method succeeds in reproducing the change in mean and
variability of SIC for most of the tested regions and scenarios
(Fig. 7c). However, the decrease in mean (Fig. 7c) and vari-
ability (Fig. 8c) of the sea ice in the Antarctic, particularly the
Weddell Sea, is also largely overestimated using this method.
With respect to the relative anomaly method, the fact that we
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use observed or AOGCM-simulated sea-ice maps to recon-
struct estimated future sea ice, and that we use a criterion for
both SIA and SIE, allows us to better reproduce some critical
features of future sea-ice cover and to obtain a more realistic
frequency distribution. It should be noted that in the perfect
model test as well as in the real-case application, the original
AOGCM is not present among the possible analogue candi-
dates. If this is done, the results are even better using this
method.

The fact that the analogue method and the relative anomaly
method share the same errors in the real-case application
with a strong overestimation of the decrease in mean and
variability of the sea ice in the Weddell Sea, particularly
for the scenarios of the CNRM-CM5 model, is not a coinci-
dence. For both methods, the targeted future SIE (or SIA) for
a given sector is a product of the division of the integrated
SIE (SIA) in the AOGCM scenario by the corresponding
quantity in the historical simulation. As a consequence, the
targeted projected SIE (SIA) for a given sector and a given
month is null when the integrated SIE (SIA) is null in the fu-
ture AOGCM scenario. Therefore, the bias in the scenario is
not corrected in that case. The fact that both methods over-
estimate the decrease in sea ice mainly for CNRM-CM5 sce-
narios is linked to the fact that the historical simulation of this
AOGCM shows some considerable negative biases for the
sea ice in the Weddell Sea with respect to the observations.
Consequently, SIC in the Weddell Sea in the CNRM-CM5
RCP8.5 scenario is low and the number of months with a
complete disappearance of sea ice is large. For these months,
SIC in these sectors is not bias corrected with the latter two
methods. This means that although the methods described
here are in principle applicable to any AOGCM output, it
seems wise to exclude AOGCMs with a large negative bias
in sea ice from their historical simulation as initial material
for the bias correction.

4.3 Sea-ice thickness

Given the simplicity of the proposed diagnostic SIT parame-
terisation, the results are, at least in some aspects such as the
predicted average Arctic sea-ice thinning, surprisingly good.
The central Arctic SIT results are clearly adversely affected
by the input SICs north of 82◦ N. Arctic winter SIT in the
marginal seas appears underestimated. In the Antarctic, the
spatial pattern of SIT is very well represented.

We think that in the absence of pan-Arctic and pan-
Antarctic satellite-based data before approximately 2000,
this parameterisation can serve as a surrogate and that it can,
because it seems to have predictive power, also serve for cli-
mate change experiments with AGCMs or RCMs. Because
of its simplicity, implementing this parameterisation should
not be too complicated in any case provided the model does
explicitly take into account SIT in its computations of heat
flow through sea ice. In that case, SIT can either be calcu-
lated online (with the need to keep track of annual minimum

SIC during the execution of the code) or be input as a daily
boundary condition along with the SIC.

Of course, another possibility would be to prescribe
SIT anomalies from coupled models. In this case, it
would probably be wise to compute the prescribe SIT
using its relative thickness changes. For example, in a
climate change experiment, this would read hpresc(t)=

hobs, 2003−2008hsim(t)/hsim, 2003−2008. Problems could of
course occur in areas where the coupled model simulates no
sea-ice cover at present. A physically consistent diagnostic
parameterisation of SIT as a function of constructed SIC, as
proposed here, would not suffer from such problems.

In any case, it is very probable that Arctic SIT will fur-
ther decrease as multi-year sea ice will be replaced by a pre-
dominantly seasonal sea-ice cover. This should probably be
taken into account in future modelling exercises similar to
CORDEX or HighResMIP given the non-negligible impact
of sea-ice thinning on winter heat fluxes in particular.

4.4 General considerations on bias correction of
oceanic forcings

As already mentioned, one may doubt whether it is possible
to bias correct a GCM that has overly large biases in present-
day climate. Indeed, most of the bias-correction methods
rely on the hypothesis than the climate change signal com-
ing from an AOGCM scenario is not dependent on the bias
in the historical simulations. This hypothesis can largely be
questioned in a non-linear system (formed by SIC and SST).
For example, in a model with a large negative bias in sea ice
for present-day climate, most of the additional energy due to
an enhanced greenhouse effect will be used to heat the ocean,
while it would be primarily used to melt sea ice in a model
with a correct initial sea-ice state. For such a model, the reli-
ability of the climate change signal in SST is thus necessarily
questionable. The selection of climate models based on their
credibility for climate change scenarios is a complex issue
(Brekke et al., 2008; Baumberger et al., 2017, e.,g.) depen-
dent on the purposes, processes and region of study. Whether
the climate change signal should be corrected remains on
open question (Ehret et al., 2012), even though there are good
reasons to believe that model biases are time invariant (Mau-
rer et al., 2013).

The skills of coupled GCMs in reproducing the observed
climate and its variability for a region of interest are often
evaluated in order to use the GCM output as forcing for
downscaling experiments. However, the skills of atmospheric
GCMs are generally better when forced by observed oceanic
boundary conditions (Krinner et al., 2008; Ashfaq et al.,
2011; Hernández-Díaz et al., 2017; Li and Xie, 2014). Simi-
larly, even though bias-correction methods have some limita-
tions, for future climate experiments, there are good reasons
to believe that simulations produced using bias-corrected
oceanic forcings bear reduced uncertainties with respect to
simulations realised with “raw” oceanic forcings from cou-
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pled model scenarios such as those from the CMIP5 experi-
ments.

Bias-corrected oceanic forcings can be used to force a
regional climate model (RCM), but in this case an addi-
tional modelling step has to be carried out, as bias-corrected
oceanic forcings should be used to force an atmosphere-
only GCM that will provide atmospheric lateral bound-
ary conditions for the RCM in order to ensure consis-
tency between oceanic and atmospheric forcings, such as in
Hernández-Díaz et al. (2017). In this framework, the use of
a variable-resolution GCM which allows us to directly use
bias-corrected oceanic forcings and downscale climate sce-
narios is an alternative worth considering, as it also allows for
two-way interactions between the downscaled regions and
the general atmospheric circulation.

5 Conclusions

In this paper, we reviewed existing methods for the bias cor-
rection of SST and SIC and proposed new ones, such as
the analogue method for sea ice. We also proposed valida-
tion methods that allow for an objective evaluation of bias-
correction methods with the use of a perfect model test and
real-case applications.

The bias correction of SST is an issue that has already been
widely addressed in recent papers and its importance for the
modelling and downscaling of future climate scenarios has
been demonstrated for multiple regions of the world. In our
analysis, we were able to demonstrate the reliability and the
suitability of absolute anomaly and quantile–quantile meth-
ods for the bias correction of future SST scenarios.

The bias correction of SIC is a more difficult issue to ad-
dress. With the analogue method, we propose a method that
shows promising results in most cases and that allows for a
reconstruction of future SIC with a realistic frequency distri-
bution. However, the fact that the relative anomaly between
an AOGCM scenario and its historical simulation is also used
in this method in order to determine future targeted sea-ice
extent and area prevents the bias correction of cases in which
sea ice disappears entirely in a given sector or even a hemi-
sphere. Despite the absence of a perfect and definite solution
to this issue, we propose a new and improved method as well
as a convenient, objective way to evaluate bias-correction
methods for climate scenarios. The bias correction of sea ice
is currently somewhat overlooked by the community. The ap-
plication of a multivariate bias-correction method (Cannon,
2016) is also a perspective that could help with the bias cor-
rection of SST and SIC projected scenarios at the same time.
Nevertheless, corrected SIC using the analogue method rep-
resents a substantial improvement with respect to other previ-
ously existing bias-correction methods for sea-ice scenarios
and will therefore be made available to anyone willing to use
them as forcing for bias-corrected downscaling experiments.

Code and data availability. The FORTRAN code en-
abling the generation of bias-corrected future SST and
SIC using CMIP5 scenarios and PCMDI data as input
is publicly available for each method via https transfer
(https://mycore.core-cloud.net/index.php/s/80x0Te7CQ0BowNG,
last access: 9 January 2019) or using the following DOI:
https://doi.org/10.17605/OSF.IO/EFUY2 (Beaumet and
Krinner, 2018a). Bias-corrected future CMIP5 scenarios
(RCP4.5 and 8.5) realised within the framework of this study
(IPSL-CM5A-LR and CNRM-CM5) are available as well
(https://mycore.core-cloud.net/index.php/s/Q1cIsS71Mo4vGrG,
last access: 9 January 2019) or by using the DOI
https://doi.org/10.17605/OSF.IO/GMH8C (Beaumet and Krinner,
2018b).

Geosci. Model Dev., 12, 321–342, 2019 www.geosci-model-dev.net/12/321/2019/

https://mycore.core-cloud.net/index.php/s/80x0Te7CQ0BowNG
https://doi.org/10.17605/OSF.IO/EFUY2
https://mycore.core-cloud.net/index.php/s/Q1cIsS71Mo4vGrG
https://doi.org/10.17605/OSF.IO/GMH8C


J. Beaumet et al.: Bias corrections of oceanic surface conditions 337

Appendix A: Bias-correction methods: sea surface
temperatures

A1 Anomaly method

This frequently used method (e.g. Krinner et al., 2008) sim-
ply consists of adding the SST anomaly coming from the
difference between a coupled AOGCM projection and the
corresponding historical simulation to the present-day obser-
vations. In practice, for each grid point, the difference be-
tween the SST for a given month in the future from a climate
change simulation and the climatological mean SST in the
corresponding historical simulation from the same coupled
AOGCM is added to the observed climatological mean SST
(e.g. PCMDI, 1971–2000).

SSTFut, est = SSTobs+
(
SSTFut, AOGCM−SSTHist, AOGCM

)
(A1)

In Eq. (A1), SSTFut, est is the estimated future SST for a given
month, SSTobs the observed climatological monthly mean,
SSTFut, AOGCM the model future SST for a given month in
the future AOGCM scenario and SSTHist, AOGCM the model
climatological monthly mean in the AOGCM historical sim-
ulation for the same reference period as for the observed cli-
matology. As a result, the reconstructed SST time series has
the chronology of the AOGCM projected scenario.

}
}

}
}

ΔSSTmax

ΔSSTmin
(a) (b)

Figure A1. Illustration of the quantile–quantile method for min. and max. of SST time series for a grid point in the central Pacific: GCM
historical simulation (blue, a), GCM projected scenario (red, a), observed SST (dashed, b), reconstructed future SST (thick, b).

A2 Quantile–quantile method

This method has been proposed and described in Ashfaq
et al. (2011). It consists of adding, for each grid point and
each calendar month’s quantile in the observations, the cor-
responding quantile change in the GCM data set, i.e. the dif-
ference between the maximum SST in the projected scenario
and in the historical simulation, between the second high-
est SSTs in the two simulations and so on for each ranked
SST quantile. However, unlike Ashfaq et al. (2011), we did
not create a new SST field for the present by replacing SST
from the GCM in the historical period with its correspond-
ing quantile in the observations, but we directly added the
quantile change to the corresponding quantile of the obser-
vational time series (Fig. A1). This conserves the chronology
of the observations and their inter-annual variability in esti-
mated SSTs for the future. In our results, we noticed a large
fine-scale spatial variability in the constructed bias-corrected
SSTs that was due to the large spatial variability of the cli-
mate change increments (quantile change) calculated indi-
vidually for each pixel. To fix this, we applied a slight spa-
tial filtering (three-grid-point Hann box filter; Blackman and
Tukey, 1959) of the quantile shifts in order to produce more
consistent SST fields.
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Appendix B: Bias-correction methods: sea-ice
concentration

B1 LUT method

This section presents the LUT linking SST and SIC using
data from the CNRM-CM5 historical simulation (Fig. B1).
The LUT obtained is clearly different from the one obtained
using SST and SIC from the observations (Fig. 1).

Figure B1. Look-up tables linking SST and SIC for the Arctic (a)
and the Antarctic (c) built using 1971–2000 CNRM-CM5 historical
simulation data and the associated uncertainty (root mean square
error) in the computed SIC average (b, d).

Table B1. CMIP5 AOGCMs used to build the analogue candidate
list.

Model Scenarios

EC-EARTH RCP4.5, RCP8.5
IPSL-CM5A-MR RCP4.5, RCP8.5
MIROC-ESM RCP4.5, RCP8.5
NorESM1-M RCP4.5, RCP8.5
CCSM4 RCP4.5, RCP8.5

B2 Analogue method

In this section, the sectors of the Arctic and the Antarctic
used in the analogue method for the bias correction of SIC
are presented (Fig. B2). We also present the list of AOGCMs
used to build the analogue candidate library.

Figure B2. Geographical sectors used for the analogue method:
(1) Canadian Archipelago, (2) Hudson Bay, (3) Baffin Bay and the
Danish straits, (4) north-east Atlantic, (5) Baltic Sea, (6) Barents
Sea, (7) Kara and White Sea, (8) Laptev and East Siberian Sea,
(9) Beaufort Sea, (10) Arctic Basin, (11) Bering Sea, (12) Sea of
Okhotsk, (13) Weddell Sea, (14) East Atlantic, (15) West Indian
Ocean, (16) East Indian Ocean, (17) West Pacific, (18) Ross Sea,
(19) Amundsen and Bellingshausen Sea.
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B3 Results of the perfect model test

In this section, supplementary results are presented for the
application of the look-up table method and the analogue
method for the reconstruction of SIC in HadGEM2-ES
RCP4.5 and RCP8.5 scenarios within the framework of the
perfect model test. The spatial distribution of the errors (%) is
presented in Fig. B3. The magnitude of the errors is very sim-
ilar to those presented for CNRM-CM5 and IPSL-CM5-LR
in the main part of the article (Fig. 5). Both methods are suc-
cessful in reconstructing the model SIC fields in most part of
the Arctic and the Southern Ocean. Here again, the analogue
method has some biases in the Canadian Archipelago region
due to differences in land masks between the bias-corrected
AOGCM and the selected analogue candidate from the li-
brary.

Figure B3. Mean error in the estimation of SIC with respect to
the original AOGCM future scenario within the framework of the
perfect model test for the LUT and the analogue methods with
HadGEM2-ES RCP4.5 and RCP8.5 scenarios for the Arctic (a) and
the Antarctic (b).
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